AIICS

Mariusz Wzorek

Conference and Workshop Publications

Hide abstracts BibTeX entries
2019
[27] Mariusz Wzorek, Cyrille Berger and Patrick Doherty. 2019.
Router Node Placement in Wireless Mesh Networks for Emergency Rescue Scenarios.
In PRICAI 2019: TRENDS IN ARTIFICIAL INTELLIGENCE, PT II, pages 496–509. In series: Lecture Notes in Artificial Intelligence #??. SPRINGER INTERNATIONAL PUBLISHING AG. ISBN: 978-3-030-29911-8, 978-3-030-29910-1.
DOI: 10.1007/978-3-030-29911-8_38.
Note: Funding Agencies|ELLIIT network organization for Information and Communication Technology; Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research [RIT 15-0097]; Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation

The focus of this paper is on base functionalities required for UAV-based rapid deployment of an ad hoc communication infrastructure in the initial phases of rescue operations. The general idea is to use heterogeneous teams of UAVs to deploy communication kits that include routers. These kits will then be used in the generation of ad hoc Wireless Mesh Networks. A fundamental problem, known as the Router Node Placement problem (RNP) is to determine how one can optimally place such routers. An extended version of the RNP problem is specified that takes into account additional constraints that arise in actual field usage. This extended problem is solved with a new algorithm, RRT-WMN, based on a novel use of the Rapidly Exploring Random Trees (RRT) algorithm used in motion planning. A comparative empirical evaluation between RRT-WMN and existing techniques, CMA-ES and PSO, shows that the RRT-WMN algorithm has far better performance both in time and coverage as the extended RNP problem scales to realistic scenarios.

2018
[26] Mariusz Wzorek, Cyrille Berger, Piotr Rudol and Patrick Doherty. 2018.
Deployment of Ad Hoc Network Nodes Using UAVs for Search and Rescue Missions.
In 2018 6TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON). In series: International Electrical Engineering Congress #??. IEEE. ISBN: 978-1-5386-2317-6.
DOI: 10.1109/IEECON.2018.8712230.
Note: Funding Agencies|Swedish Research Council CADICS; ELLIIT network organization for Information and Communication Technology; Swedish Foundation for Strategic Research [RIT 15-0097]

Due to the maturity of technological development, widespread use of Unmanned Aerial Vehicles (UAVs) is becoming prevalent in the civil and commercial sectors. One promising area of application is in emergency rescue support. As recently seen in a number of natural catastrophes such as the hurricanes in Texas, Florida and Puerto Rico, major communication and electrical infrastructure is knocked out, leading to an inability to communicate between the victims and rescuers on the ground as well as between rescuers themselves. This paper studies the feasibility of using heterogeneous teams of UAVs to rapidly deliver and establish ad hoc communication networks in operational environments through autonomous in-air delivery of CommKits that serve as nodes in local ad hoc networks. Hardware and software infrastructures for autonomous CommKit delivery in addition to CommKit specification and construction is considered. The results of initial evaluation of two design alternatives for CommKits are presented based on more than 25 real flight tests in different weather conditions using a commercial small-scale UAV platform.

2017
[25] Full text  Mariusz Wzorek, Cyrille Berger and Patrick Doherty. 2017.
A Framework for Safe Navigation of Unmanned Aerial Vehicles in Unknown Environments.
In 2017 25TH INTERNATIONAL CONFERENCE ON SYSTEMS ENGINEERING (ICSENG), pages 11–20. IEEE. ISBN: 978-1-5386-0610-0.
DOI: 10.1109/ICSEng.2017.58.
Note: Funding Agencies|Swedish Research Council (VR) Linnaeus Center CADICS; ELLIIT network organization for Information and Communication Technology; Swedish Foundation for Strategic Research [RIT 15-0097]

This paper presents a software framework which combines reactive collision avoidance control approach with path planning techniques for the purpose of safe navigation of multiple Unmanned Aerial Vehicles (UAVs) operating in unknown environments. The system proposed leverages advantages of using a fast local sense-and-react type control which guarantees real-time execution with computationally demanding path planning algorithms which generate globally optimal plans. A number of probabilistic path planning algorithms based on Probabilistic Roadmaps and Rapidly-Exploring Random Trees have been integrated. Additionally, the system uses a reactive controller based on Optimal Reciprocal Collision Avoidance (ORCA) for path execution and fast sense-and-avoid behavior. During the mission execution a 3D map representation of the environment is build incrementally and used for path planning. A prototype implementation on a small scale quad-rotor platform has been developed. The UAV used in the experiments was equipped with a structured-light depth sensor to obtain information about the environment in form of occupancy grid map. The system has been tested in a number of simulated missions as well as in real flights and the results of the evaluations are presented.

[24] Timo Hinzmann, Thomas Stastny, Gianpaolo Conte, Patrick Doherty, Piotr Rudol, Mariusz Wzorek, Enric Galceran, Roland Siegwart and Igor Gilitschenski. 2017.
Collaborative 3D Reconstruction Using Heterogeneous UAVs: System and Experiments.
In 2016 INTERNATIONAL SYMPOSIUM ON EXPERIMENTAL ROBOTICS, pages 43–56. In series: Springer Proceedings in Advanced Robotics #??. SPRINGER INTERNATIONAL PUBLISHING AG. ISBN: 978-3-319-50115-4, 978-3-319-50114-7.
DOI: 10.1007/978-3-319-50115-4_5.
Note: Funding Agencies|European Commissions Seventh Framework Programme (FP7) [285417, 600958]

This paper demonstrates how a heterogeneous fleet of unmanned aerial vehicles (UAVs) can support human operators in search and rescue (SaR) scenarios. We describe a fully autonomous delegation framework that interprets the top-level commands of the rescue team and converts them into actions of the UAVs. In particular, the UAVs are requested to autonomously scan a search area and to provide the operator with a consistent georeferenced 3D reconstruction of the environment to increase the environmental awareness and to support critical decision-making. The mission is executed based on the individual platform and sensor capabilities of rotary-and fixed-wing UAVs (RW-UAV and FW-UAV respectively): With the aid of an optical camera, the FW-UAV can generate a sparse point-cloud of a large area in a short amount of time. A LiDAR mounted on the autonomous helicopter is used to refine the visual point-cloud by generating denser point-clouds of specific areas of interest. In this context, we evaluate the performance of point-cloud registration methods to align two maps that were obtained by different sensors. In our validation, we compare classical point-cloud alignment methods to a novel probabilistic data association approach that specifically takes the individual point-cloud densities into consideration.

[23] Full text  Mariusz Wzorek, Piotr Rudol, Gianpaolo Conte and Patrick Doherty. 2017.
LinkBoard: Advanced Flight Control System for Micro Unmanned Aerial Vehicles.
In 2017 2ND INTERNATIONAL CONFERENCE ON CONTROL AND ROBOTICS ENGINEERING (ICCRE2017). IEEE. ISBN: 978-1-5090-3774-2.
DOI: 10.1109/ICCRE.2017.7935051.
Note: Funding Agencies|Swedish Research Council (VR) Linnaeus Center CADICS; ELLIIT network organization for Information and Communication Technology; Swedish Foundation for Strategic Research [RIT 15-0097]

This paper presents the design and development of the LinkBoard, an advanced flight control system for micro Unmanned Aerial Vehicles (UAVs). Both hardware and software architectures are presented. The LinkBoard includes four processing units and a full inertial measurement unit. In the basic configuration, the software architecture includes a fully configurable set of control modes and sensor fusion algorithms for autonomous UAV operation. The system proposed allows for easy integration with new platforms, additional external sensors and a flexibility to trade off computational power, weight and power consumption. Due to the available onboard computational power, it has been used for computationally demanding applications such as the implementation of an autonomous indoor vision-based navigation system with all computations performed onboard. The autopilot has been manufactured and deployed on multiple UAVs. Examples of UAV systems built with the LinkBoard and their applications are presented, as well as an in-flight experimental performance evaluation of a newly developed attitude estimation filter.

[22] Full text  Olov Andersson, Mariusz Wzorek and Patrick Doherty. 2017.
Deep Learning Quadcopter Control via Risk-Aware Active Learning.
In Satinder Singh and Shaul Markovitch, editors, Proceedings of The Thirty-first AAAI Conference on Artificial Intelligence (AAAI), pages 3812–3818. In series: Proceedings of the AAAI Conference on Artificial Intelligence #5. AAAI Press. ISBN: 978-1-57735-784-1.

Modern optimization-based approaches to control increasingly allow automatic generation of complex behavior from only a model and an objective. Recent years has seen growing interest in fast solvers to also allow real-time operation on robots, but the computational cost of such trajectory optimization remains prohibitive for many applications. In this paper we examine a novel deep neural network approximation and validate it on a safe navigation problem with a real nano-quadcopter. As the risk of costly failures is a major concern with real robots, we propose a risk-aware resampling technique. Contrary to prior work this active learning approach is easy to use with existing solvers for trajectory optimization, as well as deep learning. We demonstrate the efficacy of the approach on a difficult collision avoidance problem with non-cooperative moving obstacles. Our findings indicate that the resulting neural network approximations are least 50 times faster than the trajectory optimizer while still satisfying the safety requirements. We demonstrate the potential of the approach by implementing a synthesized deep neural network policy on the nano-quadcopter microcontroller.

2016
[21] Full text  Cyrille Berger, Mariusz Wzorek, Jonas Kvarnström, Gianpaolo Conte, Patrick Doherty and Alexander Eriksson. 2016.
Area Coverage with Heterogeneous UAVs using Scan Patterns.
In 2016 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR): proceedings. In series: 2016 IEEE INTERNATIONAL SYMPOSIUM ON SAFETY, SECURITY, AND RESCUE ROBOTICS (SSRR) #??. IEEE Robotics and Automation Society. ISBN: 978-1-5090-4349-1.
DOI: 10.1109/SSRR.2016.7784325.
fulltext:postprint: http://liu.diva-portal.org/smash/get/div...

In this paper we consider a problem of scanningan outdoor area with a team of heterogeneous Unmanned AirVehicles (UAVs) equipped with different sensors (e.g. LIDARs).Depending on the availability of the UAV platforms and themission requirements there is a need to either minimise thetotal mission time or to maximise certain properties of thescan output, such as the point cloud density. The key challengeis to divide the scanning task among UAVs while taking intoaccount the differences in capabilities between platforms andsensors. Additionally, the system should be able to ensure thatconstraints such as limit on the flight time are not violated.We present an approach that uses an optimisation techniqueto find a solution by dividing the area between platforms,generating efficient scan trajectories and selecting flight andscanning parameters, such as velocity and flight altitude. Thismethod has been extensively tested on a large set of randomlygenerated scanning missions covering a wide range of realisticscenarios as well as in real flights.

[20] Full text  Cyrille Berger, Piotr Rudol, Mariusz Wzorek and Alexander Kleiner. 2016.
Evaluation of Reactive Obstacle Avoidance Algorithms for a Quadcopter.
In Proceedings of the 14th International Conference on Control, Automation, Robotics and Vision 2016 (ICARCV). In series: International Conference on Control Automation Robotics and Vision #??. IEEE conference proceedings. ISBN: 9781509035496, 9781509047574, 9781509035502.
DOI: 10.1109/ICARCV.2016.7838803.
Note: Funding agencies:This work is partially supported by the Swedish Research Council (VR) Linnaeus Center CADICS, the ELLIIT network organization for Information and Communication Technology, and the Swedish Foundation for Strategic Research (CUAS Project, SymbiKCIoud Project).

In this work we are investigating reactive avoidance techniques which can be used on board of a small quadcopter and which do not require absolute localisation. We propose a local map representation which can be updated with proprioceptive sensors. The local map is centred around the robot and uses spherical coordinates to represent a point cloud. The local map is updated using a depth sensor, the Inertial Measurement Unit and a registration algorithm. We propose an extension of the Dynamic Window Approach to compute a velocity vector based on the current local map. We propose to use an OctoMap structure to compute a 2-pass A* which provide a path which is converted to a velocity vector. Both approaches are reactive as they only make use of local information. The algorithms were evaluated in a simulator which offers a realistic environment, both in terms of control and sensors. The results obtained were also validated by running the algorithms on a real platform.

[19] Full text  Patrick Doherty, Jonas Kvarnström, Piotr Rudol, Mariusz Wzorek, Gianpaolo Conte, Cyrille Berger, Timo Hinzmann and Thomas Stastny. 2016.
A Collaborative Framework for 3D Mapping using Unmanned Aerial Vehicles.
In Baldoni, M., Chopra, A.K., Son, T.C., Hirayama, K., Torroni, P., editors, PRIMA 2016: Principles and Practice of Multi-Agent Systems, pages 110–130. In series: Lecture Notes in Computer Science #9862. Springer Publishing Company. ISBN: 978-3-319-44831-2.
DOI: 10.1007/978-3-319-44832-9_7.
Note: Accepted for publication.

This paper describes an overview of a generic framework for collaboration among humans and multiple heterogeneous robotic systems based on the use of a formal characterization of delegation as a speech act. The system used contains a complex set of integrated software modules that include delegation managers for each platform, a task specification language for characterizing distributed tasks, a task planner, a multi-agent scan trajectory generation and region partitioning module, and a system infrastructure used to distributively instantiate any number of robotic systems and user interfaces in a collaborative team. The application focusses on 3D reconstruction in alpine environments intended to be used by alpine rescue teams. Two complex UAV systems used in the experiments are described. A fully autonomous collaborative mission executed in the Italian Alps using the framework is also described.

[18] Full text  Olov Andersson, Mariusz Wzorek, Piotr Rudol and Patrick Doherty. 2016.
Model-Predictive Control with Stochastic Collision Avoidance using Bayesian Policy Optimization.
In IEEE International Conference on Robotics and Automation (ICRA), 2016, pages 4597–4604. In series: Proceedings of IEEE International Conference on Robotics and Automation #??. Institute of Electrical and Electronics Engineers (IEEE).
DOI: 10.1109/ICRA.2016.7487661.

Robots are increasingly expected to move out of the controlled environment of research labs and into populated streets and workplaces. Collision avoidance in such cluttered and dynamic environments is of increasing importance as robots gain more autonomy. However, efficient avoidance is fundamentally difficult since computing safe trajectories may require considering both dynamics and uncertainty. While heuristics are often used in practice, we take a holistic stochastic trajectory optimization perspective that merges both collision avoidance and control. We examine dynamic obstacles moving without prior coordination, like pedestrians or vehicles. We find that common stochastic simplifications lead to poor approximations when obstacle behavior is difficult to predict. We instead compute efficient approximations by drawing upon techniques from machine learning. We propose to combine policy search with model-predictive control. This allows us to use recent fast constrained model-predictive control solvers, while gaining the stochastic properties of policy-based methods. We exploit recent advances in Bayesian optimization to efficiently solve the resulting probabilistically-constrained policy optimization problems. Finally, we present a real-time implementation of an obstacle avoiding controller for a quadcopter. We demonstrate the results in simulation as well as with real flight experiments.

2015
[17] Full text  Martin Danelljan, Fahad Shahbaz Khan, Michael Felsberg, Karl Granström, Fredrik Heintz, Piotr Rudol, Mariusz Wzorek, Jonas Kvarnström and Patrick Doherty. 2015.
A Low-Level Active Vision Framework for Collaborative Unmanned Aircraft Systems.
In Lourdes Agapito, Michael M. Bronstein and Carsten Rother, editors, COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I, pages 223–237. In series: Lecture Notes in Computer Science #8925. Springer Publishing Company. ISBN: 978-3-319-16177-8, 978-3-319-16178-5.
DOI: 10.1007/978-3-319-16178-5_15.
fulltext:postprint: http://liu.diva-portal.org/smash/get/div...

Micro unmanned aerial vehicles are becoming increasingly interesting for aiding and collaborating with human agents in myriads of applications, but in particular they are useful for monitoring inaccessible or dangerous areas. In order to interact with and monitor humans, these systems need robust and real-time computer vision subsystems that allow to detect and follow persons.In this work, we propose a low-level active vision framework to accomplish these challenging tasks. Based on the LinkQuad platform, we present a system study that implements the detection and tracking of people under fully autonomous flight conditions, keeping the vehicle within a certain distance of a person. The framework integrates state-of-the-art methods from visual detection and tracking, Bayesian filtering, and AI-based control. The results from our experiments clearly suggest that the proposed framework performs real-time detection and tracking of persons in complex scenarios

2013
[16] Full text  Gianpaolo Conte, Alexander Kleiner, Piotr Rudol, Karol Korwel, Mariusz Wzorek and Patrick Doherty. 2013.
Performance evaluation of a light weight multi-echo LIDAR for unmanned rotorcraft applications.
In International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XL-1/W2. In series: International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences #??. Copernicus Gesellschaft MBH.

The paper presents a light-weight and low-cost airborne terrain mapping system. The developed Airborne LiDAR Scanner (ALS) sys- tem consists of a high-precision GNSS receiver, an inertial measurement unit and a magnetic compass which are used to complement a LiDAR sensor in order to compute the terrain model. Evaluation of the accuracy of the generated 3D model is presented. Additionally, a comparison is provided between the terrain model generated from the developed ALS system and a model generated using a commer- cial photogrammetric software. Finally, the multi-echo capability of the used LiDAR sensor is evaluated in areas covered with dense vegetation. The ALS system and camera systems were mounted on-board an industrial unmanned helicopter of around 100 kilograms maximum take-off weight. Presented results are based on real flight-test data.

2010
[15] Full text  Piotr Rudol, Mariusz Wzorek and Patrick Doherty. 2010.
Vision-based Pose Estimation for Autonomous Indoor Navigation of Micro-scale Unmanned Aircraft Systems.
In Proceedings of the 2010 IEEE International Conference on Robotics and Automation (ICRA), pages 1913–1920. In series: Proceedings - IEEE International Conference on Robotics and Automation #2010. IEEE conference proceedings. ISBN: 978-1-4244-5038-1.
DOI: 10.1109/ROBOT.2010.5509203.

We present a navigation system for autonomous indoor flight of micro-scale Unmanned Aircraft Systems (UAS) which is based on a method for accurate monocular vision pose estimation. The method makes use of low cost artificial landmarks placed in the environment and allows for fully autonomous flight with all computation done on-board a UAS on COTS hardware. We provide a detailed description of all system components along with an accuracy evaluation and a time profiling result for the pose estimation method. Additionally, we show how the system is integrated with an existing micro-scale UAS and provide results of experimental autonomous flight tests. To our knowledge, this system is one of the first to allow for complete closed-loop control and goal-driven navigation of a micro-scale UAS in an indoor setting without requiring connection to any external entities.

[14] Full text  Mariusz Wzorek, Jonas Kvarnström and Patrick Doherty. 2010.
Choosing Path Replanning Strategies for Unmanned Aircraft Systems.
In Ronen Brafman, Héctor Geffner, Jörg Hoffmann, Henry Kautz, editors, Proceedings of the Twentieth International Conference on Automated Planning and Scheduling (ICAPS), pages 193–200. AAAI Press. ISBN: 978-1-57735-449-9.

Unmanned aircraft systems use a variety of techniques to plan collision-free flight paths given a map of obstacles and no- fly zones. However, maps are not perfect and obstacles may change over time or be detected during flight, which may in- validate paths that the aircraft is already following. Thus, dynamic in-flight replanning is required.Numerous strategies can be used for replanning, where the time requirements and the plan quality associated with each strategy depend on the environment around the original flight path. In this paper, we investigate the use of machine learn- ing techniques, in particular support vector machines, to choose the best possible replanning strategy depending on the amount of time available. The system has been implemented, integrated and tested in hardware-in-the-loop simulation with a Yamaha RMAX helicopter platform.

2008
[13] Full text  Gianpaolo Conte, Maria Hempel, Piotr Rudol, David Lundström, Simone Duranti, Mariusz Wzorek and Patrick Doherty. 2008.
High Accuracy Ground Target Geo-Location Using Autonomous Micro Aerial Vehicle Platforms.
In Proceedings of the AIAA Guidance, Navigation, and Control Conference (GNC). AIAA. ISBN: 978-1-56347-945-8.

This paper presents a method for high accuracy ground target localization using a Micro Aerial Vehicle (MAV) equipped with a video camera sensor. The proposed method is based on a satellite or aerial image registration technique. The target geo-location is calculated by registering the ground target image taken from an on-board video camera with a geo- referenced satellite image. This method does not require accurate knowledge of the aircraft position and attitude, therefore it is especially suitable for MAV platforms which do not have the capability to carry accurate sensors due to their limited payload weight and power resources. The paper presents results of a ground target geo-location experiment based on an image registration technique. The platform used is a MAV prototype which won the 3rd US-European Micro Aerial Vehicle Competition (MAV07). In the experiment a ground object was localized with an accuracy of 2.3 meters from a ight altitude of 70 meters.

[12] Full text  Piotr Rudol, Mariusz Wzorek, Gianpaolo Conte and Patrick Doherty. 2008.
Micro unmanned aerial vehicle visual servoing for cooperative indoor exploration.
In Proceedings of the IEEE Aerospace Conference. In series: Aerospace Conference Proceedings #2008. IEEE conference proceedings. ISBN: 978-1-4244-1487-1.
DOI: 10.1109/AERO.2008.4526558.

Recent advances in the field of micro unmanned aerial vehicles (MAVs) make flying robots of small dimensions suitable platforms for performing advanced indoor missions. In order to achieve autonomous indoor flight a pose estimation technique is necessary. This paper presents a complete system which incorporates a vision-based pose estimation method to allow a MAV to navigate in indoor environments in cooperation with a ground robot. The pose estimation technique uses a lightweight light emitting diode (LED) cube structure as a pattern attached to a MAV. The pattern is observed by a ground robot's camera which provides the flying robot with the estimate of its pose. The system is not confined to a single location and allows for cooperative exploration of unknown environments. It is suitable for performing missions of a search and rescue nature where a MAV extends the range of sensors of the ground robot. The performance of the pose estimation technique and the complete system is presented and experimental flights of a vertical take-off and landing (VTOL) MAV are described.

2007
[11] Full text  Simone Duranti, Gianpaolo Conte, David Lundström, Piotr Rudol, Mariusz Wzorek and Patrick Doherty. 2007.
LinkMAV, a prototype rotary wing micro aerial vehicle.
In 17th IFAC Symposium on Automatic Control in Aerospace,2007. Elsevier.

2006
[10] Full text  Alexander Kleiner, Christian Dornhege, Rainer Kümmerle, Michael Ruhnke, Bastian Steder, Bernhard Nebel, Patrick Doherty, Mariusz Wzorek, Piotr Rudol, Gianpaolo Conte, Simone Duranti and David Lundström. 2006.
RoboCupRescue - Robot League Team RescueRobots Freiburg (Germany).
In RoboCup 2006 (CDROM Proceedings), Team Description Paper, Rescue Robot League.
Note: (1st place in the autonomy competition)
fulltext:postprint: http://liu.diva-portal.org/smash/get/div...

This paper describes the approach of the RescueRobots Freiburg team, which is a team of students from the University of Freiburg that originates from the former CS Freiburg team (RoboCupSoccer) and the ResQ Freiburg team (RoboCupRescue Simulation). Furthermore we introduce linkMAV, a micro aerial vehicle platform. Our approach covers RFID-based SLAM and exploration, autonomous detection of relevant 3D structures, visual odometry, and autonomous victim identification. Furthermore, we introduce a custom made 3D Laser Range Finder (LRF) and a novel mechanism for the active distribution of RFID tags.

[9] Full text  Mariusz Wzorek, David Landén and Patrick Doherty. 2006.
GSM Technology as a Communication Media for an Autonomous Unmanned Aerial Vehicle.
In Proceedings of the 21st Bristol International UAV Systems Conference (UAVS). University of Bristol, Department of Aerospace engineering. ISBN: 0-9552644-0-5.
Note: ISBN: 0-9552644-0-5

[8] Full text  Mariusz Wzorek, Gianpaolo Conte, Piotr Rudol, Torsten Merz, Simone Duranti and Patrick Doherty. 2006.
From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle.
In Proceedings of the 21st Bristol UAV Systems Conference (UAVS).
Link to Ph.D. Thesis: http://urn.kb.se/resolve?urn=urn:nbn:se:...

The use of Unmanned Aerial Vehicles (UAVs) which can operate autonomously in dynamic and complex operational environments is becoming increasingly more common. While the application domains in which they are currently used are still predominantly military in nature, in the future we can expect wide spread usage in thecivil and commercial sectors. In order to insert such vehicles into commercial airspace, it is inherently important that these vehicles can generate collision-free motion plans and also be able to modify such plans during theirexecution in order to deal with contingencies which arise during the course of operation. In this paper, wepresent a fully deployed autonomous unmanned aerial vehicle, based on a Yamaha RMAX helicopter, whichis capable of navigation in urban environments. We describe a motion planning framework which integrates two sample-based motion planning techniques, Probabilistic Roadmaps and Rapidly Exploring Random Treestogether with a path following controller that is used during path execution. Integrating deliberative services, suchas planners, seamlessly with control components in autonomous architectures is currently one of the major open problems in robotics research. We show how the integration between the motion planning framework and thecontrol kernel is done in our system.Additionally, we incorporate a dynamic path reconfigurability scheme. It offers a surprisingly efficient method for dynamic replanning of a motion plan based on unforeseen contingencies which may arise during the execution of a plan. Those contingencies can be inserted via ground operator/UAV interaction to dynamically change UAV flight paths on the fly. The system has been verified through simulation and in actual flight. We present empirical results of the performance of the framework and the path following controller.

[7] Full text  Torsten Merz, Piotr Rudol and Mariusz Wzorek. 2006.
Control System Framework for Autonomous Robots Based on Extended State Machines.
In Proceedings of the International Conference on Autonomic and Autonomous Systems (ICAS).

[6] Full text  Mariusz Wzorek and Patrick Doherty. 2006.
The WITAS UAV Ground System Interface Demonstration with a Focus on Motion and Task Planning.
In Software Demonstrations at the International Conference on Automated Planning Scheduling (ICAPS-SD), pages 36–37.

The Autonomous UAV Technologies Laboratory at Linköping University, Sweden, has been developing fully autonomous rotor-based UAV systems in the mini- and micro-UAV class. Our current system design is the result of an evolutionary process based on many years of developing, testing and maintaining sophisticated UAV systems. In particular, we have used the Yamaha RMAX helicopter platform(Fig. 1) and developed a number of micro air vehicles from scratch.

[5] Full text  Mariusz Wzorek and Patrick Doherty. 2006.
Reconfigurable Path Planning for an Autonomous Unmanned Aerial Vehicle.
In Derek Long, Stephen F. Smith, Daniel Borrajo, Lee McCluskey, editors, Proceedings of the Sixteenth International Conference on Automated Planning and Scheduling (ICAPS), pages 438–441. AAAI Press. ISBN: 978-1-57735-270-9.

In this paper, we present a motion planning framework for a fully deployed autonomous unmanned aerial vehicle which integrates two sample-based motion planning techniques, Probabilistic Roadmaps and Rapidly Exploring Random Trees. Additionally, we incorporate dynamic reconfigurability into the framework by integrating the motion planners with the control kernel of the UAV in a novel manner with little modification to the original algorithms. The framework has been verified through simulation and in actual flight. Empirical results show that these techniques used with such a framework offer a surprisingly efficient method for dynamically reconfiguring a motion plan based on unforeseen contingencies which may arise during the execution of a plan. The framework is generic and can be used for additional platforms.

[4] Full text  Mariusz Wzorek and Patrick Doherty. 2006.
Reconfigurable Path Planning for an Autonomous Unmanned Aerial Vehicle.
In ICHIT 2006 - International Conference on Hybrid Information Technology,2006.

2005
[3] Full text  Mariusz Wzorek and Patrick Doherty. 2005.
Reconfigurable path planning for an autonomous unmanned aerial vehicle.
In National Swedish Workshop on Autonomous Systems, SWAR 05,2005.

[2] Full text  Mariusz Wzorek and Patrick Doherty. 2005.
Preliminary report: Reconfigurable path planning for an autonomous unmanned aerial vehicle.
In Proceedings of the 24th Annual Workshop of the UK Planning and Scheduling Special Interest Group (PlanSIG).

2003
[1] Igor S. Pandzic, Jörgen Ahlberg, Mariusz Wzorek, Piotr Rudol and Miran Mosmondor. 2003.
Faces Everywhere: Towards Ubiquitous Production and Delivery of Face Animation.
In MUM 2003. Proceedings of the 2nd International Conference on Mobile and Ubiquitous Multimedia, 10–12 December, 2003, Norrköping, Sweden, pages 49–56. In series: Linköping Electronic Conference Proceedings #11. Linköping University Electronic Press. ISBN: 1-58113-826-1.
Link to original published article: http://www.ep.liu.se/ecp/011/010/ecp0110...
fulltext:print: http://liu.diva-portal.org/smash/get/div...

While face animation is still considered one of the toughesttasks in computer animation, its potential application range israpidly moving from the classical field of film production intogames, communications, news delivery and commerce. Tosupport such novel applications, it is important to enableproduction and delivery of face animation on a wide range ofplatforms, from high-end animation systems to the web, gameconsoles and mobile phones. Our goal is to offer a frameworkof tools interconnected by standard formats and protocols andcapable of supporting any imaginable application involvingface animation with the desired level of animation quality,automatic production wherever it is possible, and delivery ona wide range of platforms. While this is clearly an ongoingtask, we present the current state of development along withseveral case studies showing that a wide range of applicationsis already enabled.