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Abstract

Modern optimization-based approaches to control increas-
ingly allow automatic generation of complex behavior from
only a model and an objective. Recent years has seen grow-
ing interest in fast solvers to also allow real-time operation
on robots, but the computational cost of such trajectory op-
timization remains prohibitive for many applications. In this
paper we examine a novel deep neural network approxima-
tion and validate it on a safe navigation problem with a real
nano-quadcopter. As the risk of costly failures is a major con-
cern with real robots, we propose a risk-aware resampling
technique. Contrary to prior work this active learning ap-
proach is easy to use with existing solvers for trajectory op-
timization, as well as deep learning. We demonstrate the effi-
cacy of the approach on a difficult collision avoidance prob-
lem with non-cooperative moving obstacles. Our findings in-
dicate that the resulting neural network approximations are
least 50 times faster than the trajectory optimizer while still
satisfying the safety requirements. We demonstrate the poten-
tial of the approach by implementing a synthesized deep neu-
ral network policy on the nano-quadcopter microcontroller.

Introduction

Optimization-based approaches to control and behavior syn-
thesis promise to automatically generate low-level control
commands given a model of the dynamics and an objective
function. With increasing computational power and maturity
of tools, trajectory optimization has been used for increas-
ingly complex behavior like quadcopter flight with slung
load, collision avoidance (Geisert and Mansard 2016) or hu-
manoid motion (Tassa, Erez, and Todorov 2012), without the
need for tedious custom-tailored controller architectures.

However, in many cases the computational cost of op-
timization is still too high for the real-time requirements
of real robots, particularly on smaller embedded platforms
that have limited computational power. Even though there
has been a push towards fast solvers (Ferreau et al. 2013;
Domahidi et al. 2012; Houska, Ferreau, and Diehl 2011),
the domain of problems where real-time operation is practi-
cal remains limited.

Policy-based approaches on the other hand are fast to
execute but remain a challenge to train. High-dimensional
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continuous problems are challenging for dynamic program-
ming, and policy-gradient approaches popular in robotics
are typically limited to parametric policies with a moderate
number of parameters.

It was recently suggested to combine trajectory and
policy-based methods, where a particular trajectory opti-
mizer acts as teacher for a deep neural network control pol-
icy. Guided policy search (GPS) (Levine and Koltun 2013)
alternates between stochastic trajectory optimization under
a locally Linear-Quadratic Gaussian (LQG) assumption and
fitting a neural network policy via supervised learning. A
heuristic cost term or constraint is imposed to make the tra-
jectory not stray too far from the current policy, with the aim
of making it easier to learn for the neural network. A simi-
lar but deterministic formulation was used by Mordatch and
Todorov (2014), which also empirically demonstrated that
such a training regime can yield greater sample efficiency.

Learning control policies from an optimizer this way has
the advantage that it reduces a difficult policy search prob-
lem to supervised learning, a technique that has shown great
promise in simulation. In Mordatch et al. (2015) it was used
to animate complex movement behaviors and in Zhang et
al. (2016) it was used for collision avoidance of static ob-
stacles with a simulated quadcopter. Reports of tests with
real hardware are so far few however, where it usually fea-
tures in safe and controlled environments. In Mordatch et al.
(2016) it was combined with an adaptive low-level control
scheme for balancing and reaching tasks with a DARWIN-
OP, a 45 cm humanoid, and in Levine, Wagener, and Abbeel
(2015) vision-based guided policy search was used for a ma-
nipulation task on a larger PR-2.

A major concern with real robots is the risk of costly fail-
ures. The aim of this paper is to provide a practical approach
to construct safe behaviors, generated via offline trajectory-
optimization software, into real-time deep policy approxi-
mations. The main contributions are that we propose a train-
ing procedure with a novel risk-aware resampling step, im-
proving the policy where it matters. This procedure is ag-
nostic of trajectory optimizer, which contrary to GPS is easy
to use with existing constrained solvers. We demonstrate
that policies maintain safety while being much faster than
a state-of-the-art solver for a difficult collision avoidance
scenario with non-cooperative moving obstacles. The com-
putational advantages allow us to implement the deep pol-



icy approximation on the microcontroller of a Crazyflie 2.0
nano-quadcopter. To the best of our knowledge this is the
first on-board implementation on such a small embedded
system, and serves to demonstrate how complex behavior
policies can be automatically synthesized and used for com-
putationally constrained platforms.

The remainder of this paper is structured as follows.
First we provide the necessary background on trajectory
optimization and deep policy approximations, then we in-
troduce the training procedure with risk-aware resampling.
The nano-quadcopter platform is briefly covered before we
demonstrate the computational gains and safety of the ap-
proach in simulation as well as with real flights.

Trajectory Optimization
Consider a robot with the state vector x € R"™, con-
trol vector u € R™ and uncertain transition dynamics
p(X¢|X¢—1,us—1), where x may include dynamic state like
linear and angular velocities. Uncertainty in the dynamics is
typically quantified by the fit of some learned function

X = f(Xi—1,0¢—1; Oayn) + €. (1)

We assume discrete-time dynamics, either directly or
through some numerical integration scheme like Euler or
Runge-Kutta. By solving the discrete-time optimization
problem in Eq. (2) at each time step ¢, we can select the fu-
ture controls u; ;+7—; that generate a trajectory X; 1. ¢+7
with minimal cost ¢(X¢y1. 147, Us. ¢+7—1) from the current
state.
arg min
Ug...Uppr—1

subject to (2)
Pr(g(X¢t1.t47, U t47-1) > 0) > p.

E [C(Xt+14.t+T, ut..t+T—1)]

In many real-world applications, constraint (vector) func-
tions g(x¢, u;—1) > 0 also need to be satisfied along the
trajectory. These can include control saturation, speed limits,
or geometric constraints for e.g. collision avoidance. Due to
the uncertain nature of the dynamics and state of a real sys-
tem, the trajectory is stochastic and constraints can only be
satisfied with some probability p. This corresponds to a con-
tinuous domain Markov decision process with constraints
and state uncertainty. The distribution of the state is com-
monly assumed given by some estimator from observations,
p(x¢|01...0¢), whose stochastic properties are known and in-
variant of the state.

Unfortunately, the constrained non-linear probabilistic
case is difficult and rarely feasible to solve in anything ap-
proaching real-time. For linear-Gaussian problems, uncer-
tainty can be propagated in closed-form using a Kalman fil-
ter, or approximated by such. This can also allow easier ap-
proximations for some probabilistic constraints (Blackmore
and Ono 2009; Vitus and Tomlin 2011). For the special case
of unconstrained linear-quadratic Gaussian systems with ad-
ditive noise, a deterministic solver using the linear-Gaussian
mean estimate is also optimal.

Most classical trajectory optimization methods from op-
timal control instead focus on deterministic optimization

problems, where models are deterministic and known, of-
ten derived form physical insight. Even when that is not the
case, “determinizing” the problem by working with expected
values of uncertain variables is often sufficient in practice.
Since the problem is discrete-time, it allows a trajectory to
be computed with standard optimization packages, where
constraints can easily be included. Deterministic constraints
will not fully hold for stochastic problems, but one can em-
ploy a safety margin. More sophisticated approaches in-
clude using Bayesian optimization of deterministic approxi-
mations to satisfy probabilistic constraints (Andersson et al.
2016).

Model-predictive control (MPC) is an iterative applica-
tion of trajectory optimization where at each time step ¢ a
trajectory with fixed planning horizon 7" is computed, typ-
ically 10-100 time steps and action u; is executed. This
makes it robust to inevitable disturbances in real-world ap-
plications and controller performance relies on using a plan-
ning horizon with sufficient look-ahead for the chosen task.
Due to the advantages of optimization-based control, there
has been a push towards fast MPC solvers. These are in-
creasingly available, at least for convex problems (Ferreau
et al. 2013; Domabhidi et al. 2012). They typically have cu-
bic complexity in the number of constraints per time step
(>n), and interior-point solvers can enjoy linear time com-
plexity in the planning horizon (Domabhidi et al. 2012). Non-
linear solvers can also be built on these via SQP-like iter-
ations, e.g. Houska, Ferreau, and Diehl (2011). Even with
these advances, the computational cost of MPC is often still
not practical on real robots, and real-time solutions are re-
liant on domain simplifications. In the following we instead
aim to find robust approximations to trajectory/MPC solvers
by training deep neural network policies.

Learning Deep Policy Approximations

Policy-based methods differ from trajectory optimization by
instead of at each time step solving for the control signals
from the current state, they optimize a parametric policy map
from any state to control signals, u = my(x). If these can be
successfully constructed offline, only evaluation is required
at each time step. Training policies for the high-dimensional
continuous problems in robotics remains a difficult problem,
and most success comes from direct policy search methods
with a moderate number of parameters (Deisenroth et al.
2013).

However, if we have a near-optimal trajectory optimizer,
e.g. an MPC solver, to generate examples (x;, u;) of near-
optimal actions, you can instead reduce this to a simpler
problem of learning a supervised learning policy approxima-
tion 7(X) A Tyajopt. (X). A difficulty with this is that stan-
dard empirical risk minimization assumes i.i.d. data such
that Ex o[L(me(x),u)] = >,[L(me(x;), u;)], but here we
have a sequential dependence from the dynamical system
Xt = f(thhutfl)-

Disregarding this is suboptimal as errors can accumulate
over time, particularly for unstable regions, resulting in poor
performance or even dangerous failures. A mitigating cir-
cumstance here is that a near-optimal controller has a strong
stabilizing effect on the system, such that moderate bounded
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Figure 1: Training procedure for deep neural network policy approximations.

errors in the policy tend to not accumulate, but instead result
in more benign steady-state errors. Unfortunately, the error
of a supervised policy approximation 7 (x) can get arbitrar-
ily bad in regions with little data. Since there is a sequential
dependence in the data distribution of x;, u;, this can eas-
ily lead to a feedback loop where errors in state and policy
approximation accumulate over time.

One popular approach to dealing with this “data mis-
match” in learning control policies via supervised learning
is DAGGER (Ross, Gordon, and Bagnell 2011), which is
formulated as active learning from an oracle. It is a batch
algorithm that in each episode fits a policy via supervised
learning and then records the encountered state. At the end
of the episode it asks the oracle for what the correct action
should have been and aggregates the examples.

Another recent approach is guided policy search and sim-
ilar algorithms, that specifically tightly couple policy learn-
ing with a trajectory optimizer (Levine and Koltun 2013;
Mordatch and Todorov 2014). Both problems are jointly op-
timized, coupled by costs or constraints to force the gener-
ated, now sub-optimal, trajectory closer to the current policy.
Effectively a bias towards trajectories that are easy to learn,
with the aim to mitigate accumulating errors. Unfortunately,
the coupled nature imposes requirements on trajectories and
solver, and has so far only been demonstrated with rather
elaborate custom-tailored solvers. Constrained solvers are
commonly used in optimization-based control both to en-
code goals and to keep the robot within a safe operating en-
vironment. The iLQR-type (Todorov and Li 2004) trajectory
solvers often used for GPS do not work directly with con-
straints. Emulating constraints in the cost function does not
appear to be ideal either due to the recursive Gauss-Newton
assumptions inherent to the iLQR backward pass.

Ideally, we would like some method to go from an offline
solution using standard trajectory optimization software, to a
fast deep neural network approximation that is safe to imple-
ment on a real robot. One such approach would be to employ
DAGGER. While originally not proposed for deep learning
from trajectory optimization, it is conceptually agnostic of
both choice of learning algorithm and oracle.

While DAGGER is a simple and powerful technique, it
can require many iterations until it converges to a policy
that is safe enough for use on a real robot. Especially when
a robot has costly failure modes that are relatively rare. In
practice, certain states of a domain tend to be more risky
than others. E.g. states close to obstacles, high speeds, or
large tilt angles for keeping ground robots from tipping over.
This highlights a perhaps under-appreciated aspect of learn-

ing control policies via a supervised learning transformation.
The cost function of the original control problem in Eq. (2),
¢(X¢41.t47, Ut t+7—1), OF the constraints, can be very sen-
sitive to errors in u; for certain “dangerous” states x;, while
being very forgiving in others. This information is lost when
transforming it to an empirical loss Ex [L(7p(x), u)] with
i.i.d.data. Since sequential dependence is ignored, we can-
not capture the true objective, but we can prioritize accuracy
in dangerous regions of the state space.

As we are using a trajectory solver, these might already
be encoded as constraints on the solution, in which case
the dangerous regions can be trivially defined as some delta
around the important constraints.

Risk-Aware Resampling

To combat both the data mismatch problem and heteroge-
neous costs we propose a simple but effective resampling
technique. Formally, assume we can reshape the data dis-
tribution to ¢(x,u) = r(x,u)p(x,u), where 7(x,u) is a
rescaling function assigning higher weight to dangerous re-
gions while still ensuring that ¢(x, u) is a proper probability
distribution. It is easy to see that this can be formulated as a
rescaling of the loss function,

Eq(x,u) [L(T(x),u)] = //q(x7 u)L(7g(x), u) dxdu

_ / / r(x, W)p(x, u) L(74(x), u) dxdu  (3)
= IEp(x,u) [’I”(X, U)L(’ﬁ'e (X)7 u)] .

To address both issues we want to select a r(x,u) that
widens the state distribution to make the controller robust
to moderate state perturbations from policy approximation
errors, as well as assigns more importance to dangerous re-
gions. We used a resampling procedure that first adds a small
amount of noise N(0,c,.) to make the controller robust to
moderate state perturbations from policy approximation er-
rors. To amplify dangerous state we do rejection sampling,
drawing more samples from dangerous regions by only ac-
cepting non-dangerous state with p = 1/o,, where o, is
an odds-multiplier of drawing dangerous state, reflecting a
rescaling of the loss. We found that a o, of 0.1 standard de-
viations and o,. of 10 worked well.

This has the dual benefit of both increasing sample cov-
erage and implicitly reweighting the loss function in dan-
gerous regions. Another benefit is that this also allows use
of standard supervised learning software without needing to
tamper with the loss function.



The full training procedure with this risk-aware resam-
pling is seen in Figure 1. Given an objective, constraints and
approximate model we can automatically generate wanted
robot behavior with a trajectory optimizer using an MPC
scheme. For robustness we simulate the system by sampling
the stochastic model and state estimator, while recording
the chosen state-action (x;, u;). These then go through the
robustness-enhancing risk-aware resampling step based on
the domain-specific dangerous regions. Finally, we learn a
deep neural network approximation using standard square
loss. While we found that this enabled one-shot learning of
safe controllers for our application, it is straight-forward to
use multiple DAGGER-like iterations.

Deep Neural Network Training

To learn the deep policy approximation we minimize
Ex u[L(mg(x),u)], where L(.) is simple square loss. The
policy is represented by a fully-connected feed-forward deep
neural network (DNN) (Bengio, Goodfellow, and Courville
2015), with 0 its parameters.

Each DNN layer ¢ is defined by

yit1 = hi(Wiy; 4+ b;) 4

with network input y; = x, outputy y = 7(x), and h; () is
the (vector) activation function for layer . In this paper we
use the popular ReLLU activation function, which for each
neuron j is the scalar function

x if >0
hi () = ,
4(@) { 0  otherwise

for all hidden layers ¢, except the output layer y, which
is linear. The networks were implemented in Tensorflow',
a graph-based language for numerical computation, and
trained using a consumer Geforce GTX970 GPU. Feed-
forward policy evaluation was also implemented on the
nano-quadcopter microcontroller, as will be detailed in the
experiments section.

Training batches contained about 500 000 examples from
the trajectory optimizer, which for our problems took ap-
proximately 12 hours to generate. We used the ADAM
(Kingma and Ba 2015) stochastic gradient algorithm with
mini-batches of size 500 and early stopping. Even just a
small amount of dropout (Srivastava et al. 2014), e.g. 1-5%,
seemed to be helpful for the larger problems.

®

Platform

The platform used in the experiments is a Crazyflie 2.0
from Bitcraze?, seen in Figure 2. The Crazyflie 2.0 is an
open-source 7 cm nano-quadcopter platform. It has an empty
weight of 27 grams, with 15 grams of payload capacity.
The platform is capable of up to 7 minutes of continuous
flight. Communication to the ground is realized using the
Crazyradio PA (2.4GHz ISM band radio) with 1km line-
of-sight range. On-board integrated sensors include a 10-
DOF IMU with accelerometer, gyro, magnetometer and a

Ywww.tensorflow. org
lwww.bitcraze.io

Figure 2: The Bitcraze Crazyflie 2.0 nano-quadcopter.

high precision pressure sensor. The data is collected and pro-
cessed by a STM32F405 main application MCU (Cortex-
M4, 168MHz, 192kb SRAM, 1Mb flash). The Crazyflie uses
a complementary filter for roll, pitch and yaw angle estima-
tion and has standard on-board PID controller stabilization
for angles given target setpoints.

Experiments

We evaluate the proposed deep policy approximation ap-
proach on navigation and collision avoidance tasks with the
Crazyflie nano-quadcopter. We first validate the safety of
the DNN policies in a difficult simulated collision avoidance
scenario and then proceed to implement a suitable policy on
the on-board microcontroller.

We follow the training procedure in Figure 1. First we
estimate a probabilistic dynamics model of the platform

f(.; Oayn) from Eq. (1). There are a multitude sources of er-
ror for a real robotic system, unmodelled dynamics (e.g. tur-
bulence), sensors, latencies and jitter from processing and
communication. We therefore do not seek a perfect model
and make a linear approximation, a common modeling as-
sumption for quadcopters. We treat the on-board attitude
PID loops as part of the dynamics and control the quad-
copter using the setpoints as control inputs u. The needed
quadcopter state x is position, velocity and angles. The pa-
rameters and errors are identified using domain knowledge
and flight data.

Navigation and Collision Avoidance

Efficient collision avoidance outside of controlled environ-
ments is in general a hard problem in robotics, particularly
for moving obstacles with uncertain motion patterns. Since
a trajectory optimizer can take both robot and obstacle dy-
namics into account, it can produce better behavior. We use
a standard objective function with a cost set to reflect dis-
tance to the quadcopter navigation goal and small costs on
actions, to make flight less aggressive close to the desti-
nation. To enforce obstacle avoidance we put constraints
on the minimum distance between quadcopter and obstacle
positions along the flight trajectory, dist(pq,¢, Post) > O.
Obstacles with uncertain movement patterns, e.g. humans,
are harder since their trajectories are stochastic. We follow
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Figure 3: Safety margin for stochastic collision avoidance.

Andersson et al. (2016) and use safe deterministic approx-
imations with parametric soft margin m(6,x;), such that
dist(pq,¢, Po,t) > m(0,x;). We use the parameterization
seen in Figure 3, where safe parameter values of fjjy; = 1.0
and Oy, = 0.9 were found by simulation.

Obstacle constraints are non-convex, and one can use
standard non-linear solvers like IPOPT (Wichter and
Biegler 2006) since our deep policy learning approach only
requires trajectories offline. To offer a better comparison of
the possible performance gains of the proposed approach,
we instead use the domain-specific iterative MPC solver and
scenarios of Andersson et al. (2016), which admitted 10 Hz
real-time operation on a desktop CPU.

As benchmark we use the warehouse scenario, seen in
Figure 4. This is a difficult scenario where the quadcopter
is given navigation goals to pick up green boxes while peo-
ple move around randomly in the same small area, and with-
out regard for the quadcopter. It is not allowed to fly above
humans, so we restrict it to the x-y plane. This makes the
collision avoidance task harder, and is a reasonable safety
requirement for indoor use. For our proposed risk-aware
resampling, we define the high-risk regions to be all state
within 1 m of an obstacle. We did not need to tune this.

We consider two problem sizes of this scenario, one mov-
ing obstacle and three moving obstacles. We learn DNN
policy approximations and evaluate their safety and perfor-
mance. To perform navigation we need the six-dimensional
dynamic state of the quadcopter, and since destination is a
free variable we encode it as an input to the policy. Each
obstacle is then encoded as another position and velocity
pair. We use three hidden layers for each problem size,
with the network architectures 10-200-200-200-2 and 18-
400-400-400-2 respectively. In terms of computational cost,
the largest deep neural network approximation took about
1ms, over 50 times faster than the trajectory optimization
via MPC. This is illustrated in greater detail by Figure 5.

The safety results of a 20 minute stochastic simulation
with one obstacle can be seen in Table 1.

Even in the smaller scenario, a simple supervised DNN

[JObstacle destination area
[ 1Robot destination area

.
" ¢
®

Figure 4: The warehouse scenario with three obstacles.

Scenario Collisions Min. Dist.  TTP
Traj. Opt. (MPC) 0 0.14m 3.125s
" Supervised DNN 9 —0.38m  3.14s
DAGGER DNN 0 0.21m 3.14s
Risk-Aware 0 0.19m 3.14s
Resampling DNN

Table 1: One non-cooperative moving obstacle.

approximation using the trajectory optimizer as teacher re-
sulted in possibly costly and dangerous collisions with the
obstacle. Looking at the recorded minimum distance, as the
obstacles and quadcopter have 0.35 m and 0.07 m radius re-
spectively, the quadcopter managed to go almost straight
through it. This is problematic as a small nudge can be ac-
ceptable in practice, while collisions at high speed can cause
serious damage. This behavior is typical of the data mis-
match problem, errors accumulate when the dynamical sys-
tem runs into regions rarely seen during training.

Scenario Collisions Min. Dist.  TTP
Traj. Opt. (MPC) 0 0.03m 4.63s
" Supervised DNN 49 —04lm  4.63s
DAGGER DNN 9 —0.39m  5.08s
Risk-Aware 0 0.16m 5.48s
Resampling DNN

Table 2: Three non-cooperative moving obstacles.

Both DNN-augmented DAGGER and the proposed risk-
aware resampling can handle this smaller instance. However,
as can be seen in Table 2, the larger problem instance is
too complicated for robust policies without risk-aware re-
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Figure 5: Computational cost of action selection.

sampling, and DAGGER also exhibits the same problematic
worst-case performance.

An interesting observation is that there is a trade-off be-
tween safety and travel time to package (TTP). The trajec-
tory optimizer oracle , while computationally expensive, can
make just the right safety trade-off to quickly pick up the
packages. The DNNs are approximations and lose some ac-
curacy. Risk-aware resampling allocates more of their ac-
curacy towards safety, which is precisely the trade-off we
wanted to make for operating real robots.

On-board DNN Flights

Having ascertained that the method works in simulation, we
considered the final step towards a working application, im-
plementing the policy on-board the nano-quadcopter MCU.
As generating the behavior via on-board optimization was
infeasible, we only evaluated the policy. As the Crazyflie
is designed to be small and affordable, it lacks the sensors
for positioning and detecting obstacles that may be found
on larger more expensive UAVs. We used a room equipped
with a motion capture system from Vicon® and added a small
amount of noise, emulating a laser ranging sensor.

The Bitcraze software running on the MCU uses a real-
time operating system kernel from FreeRTOS*. Tasks are
implemented in the form of modules and scheduled for ex-
ecution with a fixed update rate. The implementation of our
controller was added to the main stabilization task before
the target angle set points are set and processed by the inner
PID control loops. Each time the external position, velocity
and obstacle data are received, the neural network processes
them and calculates the target angle setpoints. The sensing
updates are sent at 10Hz from the ground.

While processing power was acceptable, the low amount
of SRAM turned out to be a bottleneck for large neural net-
works. Memory is normally not a concern, but this high-
lights the different computational and memory trade-offs in-
herent to trajectory and policy approaches. While the origi-
nal network sizes were chosen for high accuracy in a square-
loss sense, as noted this is an imperfect metric of actual

3www.vicon.com
*www .FreeRTOS. org
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Figure 6: On-board DNN quadcopter experiments. Top
shows it dodging one human obstacle. Bottom shows it fly-
ing a rectangular pattern while avoiding one human obstacle.

performance. We found that a 10-50-50-2 architecture could
reach sufficient safety for collision avoidance with one ob-
stacle, and we leave real-world tests of larger problem in-
stances for future work.

As Tensorflow is not made for use on resource constrained
platforms, we implemented feed-forward operation of the
networks in C. As seen in Figure 5, while Tensorflow saw
little change in performance due to overhead in the graph
execution, the native implementation realized the expected
two orders of magnitude speed-up. Another advantage for
embedded systems is that the run-time of a DNN policy has
low variance, while non-convex trajectory optimization re-
quires complicated iterative numerical algorithms that may
take a variable number of steps to converge to a solution.
Methods for learning sparser networks or deeper and better
abstractions seem like promising directions for leveraging
large DNN policies on embedded systems without dedicated
hardware.

We share typical flight results® in Figure 6. The human
obstacle repeatedly walks towards the quadcopter, which in
response glides to the side. As can be seen in Figure 6b it
maintains a safe distance and never gets closer than 0.8 m.
In Figure 6¢ the quadcopter instead attempts to navigate in
a rectangle pattern while the person is walking around ran-
domly. The quadcopter maintains a safe distance throughout
and we did not encounter any collisions in our experiments.

Conclusions

Guided by a real quadcopter application, we examined using
deep policy approximations to overcome the computational

5See supplemental material: youtu.be/xa53wltyz10



issues with optimization-based control for robotic platforms.
We proposed a novel risk-aware active learning procedure
that allows use of both standard trajectory-optimization and
deep learning software, while still enabling us to one-shot
learn safe policies for difficult quadcopter collision avoid-
ance scenarios. We found the deep neural network policies
to be over 50 times faster on the more challenging prob-
lems, and the smaller instances even allowed on-board im-
plementation on a nano-quadcopter microcontroller while
retaining safety. Deep policy approximations appear to be
a promising research direction for embedded platforms that
can be expected to improve with advances in deep learning.
In particular, methods to learn sparser or deeper and more
abstract architectures is an avenue of particular interest, as
that could further reduce both memory and computational
requirements.
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