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Abstract

In this paper, we present a motion planning framework
for a fully deployed autonomous unmanned aerial ve-
hicle which integrates two sample-based motion plan-
ning techniques, Probabilistic Roadmaps and Rapidly
Exploring Random Trees. Additionally, we incorporate
dynamic reconfigurability into the framework by inte-
grating the motion planners with the control kernel of
the UAV in a novel manner with little modification to
the original algorithms. The framework has been ver-
ified through simulation and in actual flight. Empiri-
cal results show that these techniques used with such a
framework offer a surprisingly efficient method for dy-
namically reconfiguring a motion plan based on unfore-
seen contingencies which may arise during the execu-
tion of a plan.

Introduction
The use of Unmanned Aerial Vehicles (UAVs) which can op-
erate autonomously in dynamic and complex operational en-
vironments is becoming increasingly more common. While
the application domains in which they are currently used are
still predominantly military in nature, in the future we can
expect widespread usage in the civil and commercial sectors.
In order to insert such vehicles into commercial airspace,
it is inherently important that these vehicles can generate
collision-free motion plans and also be able to modify such
plans during their execution in order to deal with contin-
gencies which arise during the course of operation. Motion
planners capable of dynamic reconfiguration will be an es-
sential functionality in any high-level autonomous UAV sys-
tem.

The motion planning problem, that of generating a
collision-free path from an initial to goal waypoint, is inher-
ently intractable for vehicles with many degrees of freedom.
Recently, a number of sample-based motion planning tech-
niques (Kavrakiet al. 1996; Kuffner & LaValle 2000) have
been proposed which tradeoff completeness in the planning
algorithm for tractability and efficiency in most cases. The
purpose of this paper is to show how one can incorporate
dynamic reconfigurability in such motion planners on a de-
ployed and fully operational UAV by integrating the motion
planner with the control kernel of the UAV in a novel manner
with little modification of the original algorithms.

Integrating both high- and low-end functionality seam-
lessly in autonomous architectures is currently one of the
major open problems in robotics research. UAV platforms
offer an especially difficult challenge in comparison with
ground robotic systems due to the often tight time con-
straints present in the plan generation, execution and recon-
figuration stages in many complex mission scenarios.

It is the intent of this paper to show how one can leverage
sample-based motion planning techniques in this respect,
first by describing how such integration would be done and
then empirically testing the results in a fully deployed sys-
tem. The techniques and solutions described are generic in
nature and suitable for platforms other than the one used in
this experimentation. An important point to note is that to
our knowledge we are the first to use these sample-based
motion planning techniques with fully deployed UAVs.

The structure of the paper is as follows. First we give
an overview of the integrated hardware and software plat-
form used in our UAV. Then an overview of two sample-
based motion planning techniques, Probabilistic Roadmaps
and Rapidly Exploring Random Trees is provided. Later we
describe the basic architecture for integrating motion plan-
ners with the UAV control kernel. We explain the path ex-
ecution mechanism in the static environments and describe
the dynamic path replanning scheme in addition to provid-
ing timing constraints. At the end the empirical results from
the preliminary experiments with the deployed system are
presented. We then conclude with related work and a sum-
mary.

Figure 1: The WITAS RMAX Helicopter



WITAS System Overview
The hardware platform
The WITAS 1 UAV platform (Dohertyet al. 2004) is a
slightly modified Yamaha RMAX helicopter (Fig. 1). It has
a total length of 3.6 m (including main rotor) and is pow-
ered by a 21 hp two-stroke engine with a maximum takeoff
weight of 95 kg. The helicopter has a built-in attitude sen-
sor (YAS) and an attitude control system (YACS). The hard-
ware platform developed during the WITAS UAV project is
integrated with the Yamaha platform as shown in Fig. 2. It
contains three PC104 embedded computers.

The primary flight control (PFC) system runs on a PIII
(700Mhz), and includes a wireless Ethernet bridge, a RTK
GPS receiver, and several additional sensors including a
barometric altitude sensor. The PFC is connected to the YAS
and YACS, an image processing computer and a computer
for deliberative capabilities.

The image processing (IP) system runs on the second
PC104 embedded computer (PIII 700MHz), and includes a
color CCD camera mounted on a pan/tilt unit, a video trans-
mitter and a recorder (miniDV).

The deliberative/reactive (D/R) system runs on the third
PC104 embedded computer (Pentium-M 1.4GHz) and exe-
cutes all high-end autonomous functionality. Network com-
munication between computers is physically realized with
serial line RS232C and Ethernet. Ethernet is mainly used
for CORBA applications (see below), remote login and file
transfer while serial lines are used for hard real-time net-
working.
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Figure 2: On-Board Hardware Schematic

The Software platform
A hybrid deliberative/reactive software architecture has
been developed for the UAV and has also been used in a
ground robot. Conceptually, it is a layered system with

1WITAS is an acronym for the Wallenberg Information Tech-
nology and Autonomous Systems Lab which hosted a long term
UAV research project (1997-2004).

deliberative, reactive and control components. The archi-
tecture has areactive concentricflavor where reactive task
procedures use services provided by both deliberative and
control components in a highly distributed and concurrent
manner.

The software implementation is based on CORBA (Com-
mon Object Request Broker Architecture), which is often
used as middleware for object-based distributed systems.
It enables different objects or components to communicate
with each other regardless of the programming languages in
which they are written, their location on different processors
or the operating systems they running on. A component can
act as a client, a server or as both. The functional interfaces
to components are specified via the use of IDL (Interface
Definition Language). The majority of the functionalities
which are part of the architecture can be viewed as CORBA
objects or collections of objects, where the communication
infrastructure is provided by CORBA facilities and other ser-
vices such as real-time and standard event channels.

This architectural choice provides us with an ideal de-
velopment environment and versatile run-time system with
built-in scalability, modularity, software relocatability on
various hardware configurations, performance (real-time
event channels and schedulers), and support for plug-and-
play software modules.
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Figure 3: Some deliberative, reactive and control services

Fig. 3 presents some (not all) of the high-level services
used in the WITAS UAV system. Those services run on the
D/R computer and interact with the control system.
The control system is a hybrid distributed system that runs
primarily on the PFC computer in a real-time environment
(Merz 2004) constructed especially to integrate seamlessly
with the rest of the architecture. Hierarchical concurrent
state machines (HCSMs) are used to represent system states.
The ability to switch modes contingently is a fundamental
functionality in the architecture and can be programmed into
the task procedures associated with the reactive component
in the architecture.

We have developed and tested several autonomous flight
control modes: take-off, landing via visual navigation, hov-
ering, dynamic path following, and reactive flight modes for
tracking and interception. A CORBA interface is setup on
top of the control system kernel so high-level components
can issue commands to initiate and sequentialize different
flight modes. Helicopter states and events from the control
system are in turn sent to the high-level system.



The Path Planning algorithms
In this section, we provide a brief overview of the sample-
based path planning techniques used in the experiments. The
problem of finding optimal paths between two configura-
tions in a high-dimensional configuration space such as a he-
licopter is intractable in general. Sample-based approaches
such as probabilistic roadmaps (PRM) or rapidly exploring
random trees (RRT) often make the path planning problem
solvable in practice by sacrificing completeness and opti-
mality.

Probabilistic Roadmaps
The standard probabilistic roadmap (PRM) algorithm
(Kavraki et al. 1996) works in two phases, one off-line and
the other on-line. In the off-line phase a roadmap is gener-
ated using a 3D world model. Configurations are randomly
generated and checked for collisions with the model. A local
path planner is then used to connect collision-free configura-
tions taking into account kinematic and dynamic constraints
of the helicopter. Paths between two configurations are also
checked for collisions. In the on-line or querying phase, ini-
tial and goal configurations are provided and an attempt is
made to connect each configuration to the previously gener-
ated roadmap using the local path planner. A graph search
algorithm such as A∗ is then used to find a path from the
initial to the goal configuration in the augmented roadmap.

Fig. 4 provides a schema of the PRM path planner used

Figure 4: PRM path plan generation

in the WITAS system. The planner uses an OBBTree-
algorithm for collision checking and an A∗ algorithm for
graph search. Here one can optimize for shortest path, min-
imal fuel usage, etc. The following extensions have been
made with respect to the standard version of PRM algorithm
in order to adapt the approach to our UAV platform.

• Multi-level roadmap planning
The standard probabilistic roadmap algorithm is formulated for
fully controllable systems only. This assumption is true for a
helicopter flying at low speed with the capability to stop and
hover at each waypoint. However, when the speed is increased
the helicopter is no longer able to negotiate turns of a smaller
radius, which imposes demands on the planner similar to non-
holonomic constraints for car-like robots. In this case, linear
paths are first used to connect configurations in the graph and at
a later stage these are replaced with cubic curves when possible.

These are required for smooth high speed flight. If it is not pos-
sible to replace a linear path segment with a cubic curve then the
helicopter has to slow down and switch to hovering mode at the
connecting waypoint before continuing. From our experience,
this rarely happens.

• Runtime Constraint Handling
Our motion planner has been extended to deal with different
types of constraints at runtime not available during roadmap
construction. Such constraints can be introduced at the time of a
query for a path plan. Some examples of runtime constraints cur-
rently implemented include maximum and minimum altitude,
adding forbidden regions (no-fly zones) and placing limits on
the ascent-/descent-rate. Such constraints are dealt with during
the A∗ search phase.

The mean planning time in the current implementation is
below 1000ms and the use of runtime constraints do not no-
ticeably influence the mean. For a more detailed description
of the modified PRM planner, see (Pettersson & Doherty
2004; Pettersson 2005).

Rapidly Exploring Random Trees

The use of rapidly exploring random trees (RRT) provides
an efficient motion planning algorithm that constructs a
roadmap online rather than offline. The algorithm (Kuffner
& LaValle 2000) generates two trees rooted in the start and
end configurations by exploring the configuration space ran-
domly in both directions. While the trees are being gen-
erated, an attempt is made at specific intervals to connect
them to create one roadmap. After the roadmap is created,
the remaining steps in the algorithm are the same as with
PRMs. In comparison with the PRM planner, the mean
planning time with RRT is also below 1000ms, but in this
case, the success rate is much lower and the generated plans
are not optimal which may sometimes cause anomalous de-
tours (Pettersson 2005).

Path execution mechanism
The standard path execution scheme in our architecture for
static operational environments is depicted in Fig. 5. A UAV
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Figure 5: Plan execution scheme

mission is specified via a task procedure (TP) in the reactive
layer of our architecture, (perhaps after calling a task-based



planner). A TP is a high-level procedural execution compo-
nent which provides a computational mechanism for achiev-
ing different robotic behaviors. For the purposes of this pa-
per, it can be viewed as an augmented state machine.
For the case of flying to a waypoint, an instance of a navi-
gation TP is created. First it calls the path planner service
(step 1) with the following parameters: initial position, goal
position, desired velocity and additional constraints.
If successful, the path planner (step 2) generates a seg-
mented cubic polynomial curve. Each segment is defined by
start and end points, start and end directions, target velocity
and end velocity. The TP sends the first segment (step 3) of
the trajectory via the control system interface and waits for
theRequest Segmentevent that is generated by the controller.
At the control level, the path is executed using a dynamic
path following controller (Conte, Duranti, & Merz 2004)
which is a reference controller that can follow cubic splines.
When aRequest Segmentevent arrives (step 4) the TP sends
the next segment. This procedure is repeated (step 3-4) un-
til the last segment is sent. However, because the high-level
system is not implemented in hard real-time it may happen
that the next segment does not arrive to the control kernel
on time. In this case, the controller has a timeout limit after
which it goes into safety braking mode in order to stop and
hover at the end of the current segment. The timeout is de-
termined by a velocity profile, current position and current
velocity.
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Figure 6: Execution timeline for trajectory consisted of 2
segments

Fig. 6 depicts a timeline plot of the execution of a trajec-
tory (2 segments). At timet0, a TP sends the first segment
of the path to the DPF controller and waits for aRequest
segmentevent which arrives immediately (t1) after the heli-
copter starts to fly (tstart). Typical time values for receiving
a Request segmentevent (t1 − t0) are well below200ms.
Time to1 is the timeout for the first segment which means
that the TP has a∆t1 time window to send the next segment
to the DPF controller before it initiates the safety braking
procedure. If the segment is sent afterto1, the helicopter will

start braking. In the current implementation it is not allowed
to send segments after the timeout. This will be changed in
a future implementation. In practice the∆t1 time window is
large enough to reconfigure the path using the standard path
planner. The updated segments are then sent to the DFP con-
troller transparently.
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Figure 7: The reconfigurable path mode automaton

The augmented state machine associated with the TP used
for reconfigurable path planning is depicted in Fig. 7. The
TP takes a start and end point and target velocity as input.
The TP then calls a path planning service (Planstate) which
returns an initial path. If the helicopter is not aligned with
the direction of the flight, a command to align is sent to the
controller (Align state).The TP then sends the first segment
of the generated path to the DPF controller (Send segment
state) and estimates a timeout for the current segment based
on the velocity profile (Estimate timeoutstate). Based on
the segment timeout and system latency, a condition is cal-
culated for sending the next segment. If new information
about newly added or deleted forbidden regions (no-fly zone
updated) arrives, the TP reconfigures the path by calling the
path planner again. The TP terminates when the last seg-
ment is sent. There are several different policies that can be
used during the reconfiguration step (Fig. 8):
Policy 1
Reconfiguration is done from the next waypoint (start point
of the next segment) to the end point. This implies longer
planning times and eventual replacement of collision-free
segments.
Policy 2
Segments up to the colliding one are left intact and reconfig-
uration is done from the last collision-free waypoint to the
end point.
Policy 3
Replanning is done only for colliding segments. The heli-
copter will stay as close to the initial path as possible.

Note that each of these policies progressively re-uses
more of the plan originally generated, thus cutting down
on planning times. We are currently experimenting with all
three policies.

Fig. 9 shows the minimum distance required to detect a
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Figure 8: Replanning policies.

forbidden region (obstacle) in order to reconfigure the path.
This is the worst case under the assumption of constant ve-
locity along the path and when second policy is applied. Ac-
celeration and deceleration is equal to 1.6m/s2. The mini-
mum time for one reconfiguration including system latency
is below 1200ms.

Figure 9: Critical distance for detecting an obstacle

Experimental results
In our experiments we have used both the PRM and the RRT
planner with a TP that implements the first policy. Forbidden
regions were randomly added by the ground operator during
the flight.

The results of the experiments are presented in Table 1.
The table shows typical values of parameters related to the
execution and the planning phases.

The number of segments is taken from the final path.
Observe that∆t1 is generally greater than four times the
amount of time required to generate full plans using either
the PRM or RRT planners.

Fig. 10 shows sample paths generated during one of the
experiments in which four no-fly zones were added incre-
mentally during plan execution where each of the newly gen-
erated plans is reconfigured as new no-fly zones are added.

Related work
Finding collision-free paths in dynamically changing envi-
ronments is an open research problem in the motion plan-
ning community. As important as the problem is there are
a limited number of contributions that address issues related

Table 1: Results of the experiments
path num- added min. max. min.

Planner length ber of forbid- seg- replan-∆t1
(m) seg- den re- ment nig time (ms)

ments gions length(m) (ms)
422.52 6 4 34.87 519 3518
420.55 6 4 40.95 486 2898
432.17 6 4 62.50 568 3673

PRM 427.94 6 5 53.15 524 3285
536.98 7 5 50.22 631 3158
472.40 7 6 45.25 603 2918
539.18 8 6 53.24 728 3153
500.12 7 4 26.68 315 2862
422.58 5 4 74.07 438 4079
392.89 5 5 61.11 441 3625

RRT 565.06 8 5 26.76 521 3648
503.42 6 5 65.07 954 3773
464.96 6 5 28.61 595 3866
491.42 8 6 20.40 326 1803

to changing environments and even less in the context of
UAVs. Results using probabilistic roadmap based planners
focus mainly on the mobile manipulation domain (e.g. Jail-
let & Siméon, 2004; Leven & Hutchinson, 2000). An exam-
ple of planner that samplesstate×timespace in order to deal
with kinematic and dynamic constrains on robots, as well as
moving obstacles is presented by Hsuet al. ( 2000). Some
work has also been done with the elastic framework ( Brock
& Khatib, 1998; 1999; 2000) and with decomposition-based
methods (Brock & Kavraki 2001). In the UAV domain, we
believe we are the first to apply sample-based motion plan-
ning approaches.

Conclusions

We have presented a distributed software architecture for
UAVs and considered how one can successfully integrate
sample-based motion planning techniques in a robust and
efficient manner. We have also shown how these techniques
can be used to deal with random contingencies such as new
no-fly zones during plan execution. This has been done by
analyzing the course of plan execution and extracting upper
bounds on the time that can be spent generating new plans or
repairing old plans by calling a PRM or RRT planner. Exper-
imental results show the feasibility of using these techniques
in the UAV domain, but similar analyses and frameworks
could in fact be used for other robotic platforms. The plan-
ning framework has been tested and used in a fully deployed
autonomous UAV system.
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Figure 10: Paths generated during experimental flight. Solid
black line - updated path (white dot - helicopter position);
white dashed line - invalid path; polygon box - forbidden
region.
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