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Abstract— Robots are increasingly expected to move out of
the controlled environment of research labs and into populated
streets and workplaces. Collision avoidance in such cluttered
and dynamic environments is of increasing importance as robots
gain more autonomy. However, efficient avoidance is fundamen-
tally difficult since computing safe trajectories may require
considering both dynamics and uncertainty. While heuristics
are often used in practice, we take a holistic stochastic trajectory
optimization perspective that merges both collision avoidance
and control. We examine dynamic obstacles moving without
prior coordination, like pedestrians or vehicles. We find that
common stochastic simplifications lead to poor approximations
when obstacle behavior is difficult to predict. We instead
compute efficient approximations by drawing upon techniques
from machine learning. We propose to combine policy search
with model-predictive control. This allows us to use recent
fast constrained model-predictive control solvers, while gaining
the stochastic properties of policy-based methods. We exploit
recent advances in Bayesian optimization to efficiently solve
the resulting probabilistically-constrained policy optimization
problems. Finally, we present a real-time implementation of an
obstacle avoiding controller for a quadcopter. We demonstrate
the results in simulation as well as with real flight experiments.

I. INTRODUCTION

As robots gain increased autonomy, they are expected
to safely navigate populated environments and work along-
side humans in the workplace. Safe collision avoidance is
therefore of central importance for robots to be accepted
into wider society. Efficient collision avoidance is generally
considered a difficult problem as one may have to take both
dynamics and uncertainty into account. The last two decades
have seen considerable research into this area [1], but
collision avoidance in unmanaged real-world environments
remains difficult. In this paper we take a holistic approach to
the safe collision avoidance problem involving humans and
derive approximate solutions using machine learning and fast
model-predictive control solvers.

Most prior work on moving obstacles make use of strong
assumptions on dynamics, uncertainty or cooperative be-
havior. Velocity obstacles [2] is a popular heuristic that
ignores higher order dynamics, uncertainty and assumes
obstacles follow a predetermined trajectory. Many authors
have relaxed some of these assumptions, for example to
include state uncertainty [3], unconstrained linear dynamics
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[4], reciprocal obstacle behavior [5] or a combination there-
of [6]. Humans can however be unpredictable, inattentive and
can not necessarily be counted on to be cooperative.

To accurately take both dynamics and uncertainty into
account, we frame the problem as stochastic trajectory opti-
mization. This allows a principled way to solve both control
and collision avoidance in the same framework. Previous
work mainly considers the case of static obstacles [7] or
multi-robot scenarios where the control policies of other
robots are known [8].

To achieve safety we relax cooperative assumptions in
prior work and model humans as non-cooperative moving
obstacles under uncertainty, effectively giving them a right-
of-way privilege. We show that for non-cooperative moving
obstacles, common uncertainty assumptions result in poor
approximations of the safety constraints. We identify the
weakness as a deficiency in the modeling of controller
recourse, the capacity to adapt to obstacle behavior.

However, accurate modeling of controller recourse is dif-
ficult in continuous domains. Instead we propose an approx-
imation by drawing upon techniques from machine learning.
Policy search [9] are techniques from reinforcement learning
that can provide useful approximations to stochastic control
problems. Their drawback is that they rely on expert selection
of a policy parameterization suitable for the task. These range
from linear control laws to more complex motion primitives
[10].

We propose that the output of a model-predictive controller
(MPC) with a parameterized constraint function can be used
as a control policy. This allows us to approximate difficult
stochastic control problems with fast deterministic solvers
such as [11]. By using parameterized soft safety constraints,
we can find a controller producing safe trajectories for a
stochastic target domain with a chosen level of confidence.
Optimizing these policy parameters is a much smaller but
still difficult probabilistically-constrained stochastic opti-
mization problem in itself. We further propose to solve this
using recent advances in constrained Bayesian optimization
[12][13].

The contributions of this paper are threefold. First, we
consider common assumptions for stochastic trajectory opti-
mization and show that they lead to poor approximations for
non-cooperative moving obstacles. Second, we draw upon
techniques from machine learning to find a more pragmatic
approximation. We combine recent fast constrained MPC
solvers with the stochastic properties of policy search. An ef-
ficient solution is found using Bayesian policy optimization.
Finally, we present a model-predictive controller capable of



real-time collision avoidance on a quadcopter. The results
are demonstrated in simulations and using real flights.

The remainder of this paper is organized as follows. In
section II we introduce the stochastic trajectory optimization
perspective used to solve the collision avoidance problem. In
section III we introduce models of non-cooperative moving
obstacles like humans, as well as problems pertaining to
common stochastic assumptions. In section IV we formulate
the problem as probabilistically constrained policy search,
using a policy parameterized by a model-predictive control
solver. We propose an efficient solution to this by using
Bayesian optimization. In section V we introduce a real-time
capable collision avoiding quadcopter controller. Finally,
we present the results of multiple experiments with the
quadcopter in section VI.

II. STOCHASTIC TRAJECTORY OPTIMIZATION

Consider a robot with the state vector x ∈ Rn, control vec-
tor u ∈ Rm and transition dynamics xt = f(xt−1,ut−1). By
solving a discrete-time optimization problem, trajectory opti-
mization aims to select the future controls u0..T−1 that gen-
erates a trajectory x1..T with minimal cost c(x1..T ,u0..T−1).
In many practical applications, constraint (vector) functions
g(xt,ut−1) ≥ 0 also need to be observed along the trajec-
tory. These can include control saturations, speed limits, or
geometric constraints to enable collision avoidance.

Model-predictive control is an online application of trajec-
tory optimization where at each time step a trajectory with
fixed planning horizon T is computed, typically 10-100 time
steps, and only u0 is used. In our experiments we use 40
steps (10Hz). While theoretically sub-optimal, in many cases
there is little gain with a longer horizon. Fast MPC solvers
are increasingly available, in particular for convex problems
[14][11]. These have cubic complexity in the number of
constraints per time step (≥n), and interior-point solvers like
[11] have linear time complexity in the planning horizon.

Stochastic trajectory optimization, shown in Eq. (1), ex-
tends deterministic trajectory optimization to domains with
uncertainty in the dynamics or state estimation. Formally,
trajectories evolve according to a probability distribution
f(xt|xt−1,ut−1) from some prior p(x0). We now compute
an expected cost over these, and most importantly, we need
probabilistic constraints with confidence p. This is equiva-
lent to a continuous domain Markov decision process with
constraints, possibly under partial observability.

arg min
u0...uT−1

E

[
T∑
t=1

c(xt,ut−1)

]
subject to

p(g(xt,ut−1) ≥ 0) > p,

where t = 1, . . . , T.

(1)

The general constrained non-linear probabilistic case is dif-
ficult and rarely feasible to solve in anything approaching
real-time. For linear-Gaussian problems, uncertainty can be
propagated in closed-form using a Kalman filter, or approx-
imated by such. This also allows easier approximations for

some probabilistic constraints, e.g. [15],[8]. For the special
case of unconstrained linear-quadratic Gaussian systems, a
deterministic solver using the linear-Gaussian mean estimate
is also stochastically optimal. Belief space augmentations
are also possible for linear-Gaussian approximations, which
allows planning with regard to information acquisition. How-
ever that typically scales as O(n6) in the state space [4].

A. Obstacle Constraints

Obstacle avoidance can be modeled as geometric con-
straints on each time step of the trajectory. A simple formu-
lation is to constrain the distance between the position of the
robot and the obstacle, dist(pr,t,po,t) = ‖pr,t−po,t‖, to be
positive. Here pr,t is a subspace of xt, and uncontrollable
obstacle state like po,t can be treated as constants in the
optimization. Obstacle constraints are typically non-convex,
and while they can be solved by standard methods like
sequential quadratic programming (SQP) [16], we propose
an alternative projection approach in section V. However,
when the obstacles are moving without prior coordination,
the problem will be stochastic and the constraints will be
probabilistic against predicted obstacle position. For linear-
Gaussian approximations, distance constraints have closed
form solutions based on the confidence ellipsoid of a mul-
tivariate normal distribution. Although the proposed method
is not limited to this, for efficiency and simplicity, in this
paper we use isometric covariances by taking the max over
dimensions, varmax(pr − po). We can then use distance
constraints of the form

E[dist(pr,t,po,t)] >
√
χ2(1− p) varmax(pr,t,po,t). (2)

Assuming, the closest points on the robot and obstacle
can be found, the desired degree of confidence p can be
realized with χ2-distribution with k degrees of freedom in
Rk. However, since the confidence is per constraint and
instant in time, and these are not independent, it is difficult
to set the overall confidence level. More advanced online
risk allocation strategies have been proposed [17], but they
add complexity and are difficult to apply to model-predictive
control where only a short planning horizon is used. In this
paper we will use simple approximations like in Eq. (2) and
instead propose a method to calibrate them. That way we can
reach a desired level of safety confidence on more intuitive
criteria, like minutes of scenario time.

III. HUMAN OBSTACLE MODELS

As robots are leaving lab environments to autonomously
navigate streets or share work environments, the most press-
ing safety issue is avoiding collision with humans. While
attentive humans subtly cooperate with each other to some
extent while navigating, it is unclear how far that cooperation
extends to objects like robots that do not share the same size,
modalities or legal rights. Small robots might be stepped on,
and the rotors on a quadcopter could cause injury. To ensure
safety, a conservative assumption is therefore to consider
humans non-cooperative and always give them right-of-way.



Given a stochastic model of human movement, we could
bring the framework of stochastic trajectory optimization
from section II to bear on finding safe trajectories even if
humans change course without concern for the robot.

One popular model of movement is to use a random
Gaussian acceleration model. This model has previously been
used for moving obstacles in simulation studies like [18].

A random Gaussian model would also have practical ad-
vantages. A Kalman filter could compute the predictive dis-
tribution of the obstacle. Assuming the robot dynamics and
state uncertainty was also approximately linear-Gaussian, it
would be feasible to compute probabilistic constraints in
closed form similarly to Eq. (2).

However, when we attempt to construct a realistic motion
model using random Gaussian acceleration, we run into
some problems. Here we focus on a motion model for
walking humans. While there has been considerable research
on high level human behavior, there is less on the level
of dynamics and realistic validated stochastic models of
individual humans. We use the model from [19], where
the max velocity of a walking human is estimated to be
1.29m s−1. For simplicity, their acceleration profile can be
closely bounded by a constant acceleration of 1m s−2.

To translate this into a random acceleration model we set
the standard deviation of the random acceleration to 1m s−2.
This will surpass the profile some of the time, but it is also
optimistic in that it assumes independence. In Fig. 1 we plot
prediction intervals 4 s into the future, the trajectory planning
horizon we use in this paper. The pedestrian starts with a
forward velocity of 1.29m s−1. As seen, this quickly grows
into extremely wide intervals, even at the 95% level.

Fig. 1: Human prediction safety margins.

Humans are very agile, and may be capable of sustaining
such acceleration for a prediction horizon of 4 s, but it is not a
reasonable model of a pedestrian. The intent with the human
obstacle model is to be conservative but not adversarial. We
need to impose the estimated max walking velocity from
[19], but then the problem will not be linear-Gaussian, we
cannot use a Kalman filter and the stochastic optimization
problem will be more difficult.

An alternative obstacle model is to use a deterministic
worst-case bound, by assuming the pedestrian turns and

walks towards the robot. This bound is also used as a safety
margin distance in Fig. 1. As a reference, the distance a
pedestrian will cover from rest, is 4.3m, still a large number.
Deterministic bounds have previously been used in e.g. [20],
but they are still pessimistic and do not fit well with the
stochastic optimization view of robot and state uncertainty.

The second and main problem why these are so unrealistic
is that this is a constraint on the predictive obstacle distri-
bution from this point in time only. If a robot was to plan
a safe trajectory using predictive distributions only, it would
always need to plan to end its trajectory 6 or 11 meters away,
since initially it knows little of how the obstacle will move.

However, in practice, if the obstacle changes direction
from the mean prediction, that prediction is updated and the
controller has recourse, it will try to adapt. The predicted
future control inputs u0..T−1 are not static but can change as
the obstacle adjusts its course. Probabilistically, future con-
trols are not independent of future state. Ignoring recourse
means relying entirely on pessimistic predictive distributions
such as above, and for highly mobile obstacles like humans,
this also leads to very pessimistic controllers.

While recourse can be captured in global policy methods,
classically based on dynamic programming [21], unlike
trajectory optimization they scale poorly to high-dimensional
problems with dynamics. Trajectory optimization approaches
based on linear quadratic regulators or differential dynamic
programming [22], e.g. [4], also has local linear recourse
through the feedback policy Kt. Unfortunately, this feedback
assumes the system is unconstrained linear-quadratic and will
not allow recourse for non-convex obstacle constraints. We
also suspect control saturation will make these optimistic in
practice. A common heuristic for POMDPs is maximum-
likelihood observations, but this underestimates uncertainty
and is not suitable here. Finally, recent work include sidestep-
ping the problem by learning sufficiently accurate prediction
models, e.g. [23], but this seems like a strong assumption.

Here we instead propose a novel policy search method to
efficiently compute a probabilistic constraint approximation
including recourse. This allows any obstacle behavior model
and is not tied to linear-Gaussian models. For our exper-
iments in section VI, each human follow acceleration and
velocity profiles from [19] and is simply given a sequence
of target positions based on the scenario.

IV. TRAJECTORY-POLICY APPROXIMATIONS

Policy search is a stochastic optimal control approach
often used for reinforcement learning problems in robotics
[24], [9]. The controls are determined by a global policy
function ut = πθ(xt), with a parameter vector θ. This allows
approximate global solutions to stochastic problems, but we
can only manipulate the state and control inputs through the
policy parameters θ.

In some cases this problem admits closed form solu-
tion, but in the general case θ can be learned by episodic
simulations over a target scenario, either using a model or
with the real system in the loop. While being stochastically
correct, the problem is expensive and θ is usually limited



to a small number of parameters. Since the policy function
is global and needs to be defined over the entire state
space x ∈ Rn, this means higher-dimensional state spaces
require expertly structured policy representations. Policies
are typically composed of simpler control laws and motor
primitives [10]. Constraints are also problematic and are
typically included as costs when permissible.

Trajectory optimization on the other hand, while being
difficult for the general stochastic case, is otherwise typically
only computationally cubic in the state space. In addition, it
has a mature theory for deterministic constrained optimiza-
tion.

Fig. 2: Parametric safety margin.

To exploit the advantages of both we propose a novel
approximation to the stochastic constrained trajectory op-
timization problem in Eq. (1). By using a policy πθ(xt)
represented by the output ut=0 of a fast deterministic model-
predictive control solver. To the best of our knowledge this
has never been attempted before. In particular, we want
to approximate difficult constrained stochastic problems by
manipulating deterministic soft constraints, using a suitable
parametric safety margin m(θ,xt). Instead of difficult prob-
abilistic constraints of the type p(g(xt,ut−1) ≥ 0) > p we
have g(xt,ut−1) ≥m(θ,xt) inside the MPC policy, where
θ is the policy parameter vector. By using policy search,
this can be learned to satisfy probabilistic constraints with
confidence p over an entire scenario

arg min
θ

E

[
Tscenario∑
t=1

c(xt, πθ(xt−1))

]
subject to

p(dist(pr,t,po,t) > 0,∀t,∀o) > p.

(3)

We defer the specifics of learning θ to section IV-A and
now consider probabilistic collision constraints and deter-
ministic approximations of the type

E[dist(pr,t,po,t)] > m(θ,xt). (4)

We start from the simple constraints on predictive dis-
tribution from Eq. (2). As discussed in sections II and III,
there were two problems with these. First, since controller
recourse was not adequately captured, they grew increasingly
pessimistic for non-cooperative obstacles. Second, per-step
confidences of the type in Eq. (1) are generally difficult to
map to an overall safety level, especially for MPC. Here
we address both of these by introducing limit and scaling
parameters, respectively. The intuition behind this model is
that at some point the controller will have adjusted to a failed
prediction, which means that further predictive uncertainty
can be disregarded. The scaling parameter allows us to
calibrate the per-step uncertainties to satisfy a desired overall
confidence level for a scenario.

The overall shape of the safety margins will therefore be
spheres around each step of the trajectory, see Fig. 2. They
will increase in size with a rate controlled by θscale, up until
some limit θlimit in meters. We also include a constant θconst
to capture bias such as latency.

Formally, to approximate the stochastic collision
avoidance scenario we use the safety margin function
m(θlimit, θscale, θconst,xt) = min(θscale · n(xt) + θconst, θlimit).
Where n(xt) =

√
χ2
2(1− 0.95) varmax(pr,t − po,t) is the

original linear-Gaussian approximation from Eq. (2).
We could have used any parameterized function, but n(xt)

serves as a baseline for comparison. We fixed θconst to 0.4m
to account for worst-case latencies in the system, the rest
were learned by Bayesian optimization.

A. Constrained Bayesian Policy Optimization

An agile robot may only need a small safety margin, while
a less nimble robot may need a bigger one. Here we focus on
learning these parameters using Bayesian policy optimization
on simulations of the system. Bayesian optimization has
previously been used for policy optimization, most recently
in [25]. Here we expand upon this by using constrained
Bayesian optimization to solve the novel constrained policy
search problem in Eq. (3).

Bayesian optimization is a recent method for global opti-
mization that typically uses Gaussian processes to model the
outcome of sampling the parameter space of a cost function.

In brief, a Gaussian process is defined as a set of random
variables, any finite number of which have a joint Gaussian
distribution [26]. The process is completely specified by
a mean function m(x) and a covariance function k(x, x′)
that are functions of the input variables. For clarity we
assume that all data is standardized with zero mean, turning
the covariance function into k(x,x′) = E[f(x)f(x′)]. This
defines the covariance between input points such that the
distribution of any points on f(x) is completely specified
by a joint multivariate Gaussian. By conditioning on the
known data and marginalizing out the hyperparameters in
the covariance function, one can learn a distribution over
functions f(x) such that mean and confidence intervals over
any new point x∗ can be computed.

In Bayesian optimization, the learned GP f(x) is used as
a surrogate model for the cost function c(x) to find the most



beneficial points to sample according to some acquisition
function. Typical examples are expected improvement, UCB
and predictive entropy. Since Gaussian processes are highly
data efficient on smooth surfaces, points carry considerable
information on surrounding points.

Recent advances [12][13], whose work our policy search is
built upon, extend this to constrained Bayesian optimization,
where not only a cost function c(x) is learned, but also a
constraint function g(x). Since GPs are Bayesian, they can
handle probabilistic constraints that we need to solve our
novel constrained policy search problem in Eq. 3.

V. CASE STUDY: SAFE QUADCOPTER MPC

While the proposed approach generalizes to any non-
linear dynamics and constraints, fast off-the-shelf solvers
[11],[14]. so far only exist for the constrained convex case.
Here we focus on the special case of otherwise convex
problems with concave geometric collision constraints and
describe the real-time quadcopter implementation used in the
experiments. The underlying deterministic MPC controller
takes the standard form of Eq. (5).

arg min
u0...uT−1,x1...xT ,ε1..T

T∑
t=1

c(xt,ut−1)

subject to (5)
xt = f(xt−1,ut−1; θdyn),

gtask(xt,ut−1) ≥ −w−1taskεt,task,

E[dist(pr,t,po,t)]−m(θ,xt) ≥ w−1obstεt,obst,

εt ≥ 0, where t = 1, . . . , T.

The objective c(xt,ut) here includes goal distance
wobj‖pr,T − pg‖2, but this can also be handled by a soft
constraint. We found large control penalties wcontrol‖ut‖2 to
improve performance. Since the controller preferred small
control inputs, it reserved recourse to deal with unpredictable
obstacles. The objective also contains penalty terms for
violation of elastic constraints ‖εt‖2.

The dynamics f(.) were approximated by a linear function
and learned from data. The task constraints included hard
control saturation box constraints, as well as elastic box
constraints, for speed, which are all also convex. We prior-
itized them such that wobst ≈ wtask > wobj with exponential
discounting over time.

The obstacle constraints from Eq. (4) are unfortunately
concave. The classical approach is to use mixed-integer
programming with concave polygon constraints, but this
is slow and even the relaxed problem has multiple linear
constraints. Using our distance functions one could do full
SQP, but that is complicated and we found that just projecting
the constraint directly on the geometry (sphere) worked well.
Since obstacle constraints are concave, each point along the
trajectory will be iteratively projected. These constraints will
often conflict, but the soft constrained formulation typically
converged in just a few iterations.

Local minima can be a problem when multiple obstacles
are involved, but with random restarts it seems surprisingly

good at avoiding bad minima. We employed a variance
reduction strategy by randomizing control inputs sequentially
directed into each quadrant.

Fig. 3: The LinkQuad Quadcopter.

Quadcopters are often approximated by linear models,
which are conveniently convex. Using maximum likelihood
we learned a simple linear model θdyn of lateral and angular
dynamics from data. As is common, the on-board control
system uses hierarchical PID loops to control attitude given
some target control input values. For simplicity we opted
not to replace those and applied MPC by considering the
dynamics, including the PID loops, as part of the model. To
avoid unmodeled higher order dynamics we also included
control rate constraints reflecting observed control deltas in
the data. Here we only control it in the plane, but 3D is likely
also possible in real-time. This results in x = [x, ẋ, θ, y, ẏ, φ]
and u = [uθ, uφ].

VI. EXPERIMENTS

The aim of Bayesian Policy Optimization Model-
Predictive Control (BPO-MPC) is to provide a holistic
framework for safe collision avoidance, while still retaining
real-time capability by exploiting approximations based on
fast convex MPC solvers. To demonstrate the approach we
attempt to set up reasonably realistic scenarios involving
the quadcopter model from section V and non-cooperative
moving obstacles under uncertainty from section III. We
show that we can find highly accurate safety margins for
different scenarios by validating the results over 12 hours
of simulation. Learning the safety parameters to this degree
of accuracy took hours, but more conservative solutions
are found earlier. One can either use the safety parameters
of one suitably conservative scenario, or select between
them depending on situation. Interesting future work include
learning multi-scenario safety policies on-line.

All scenarios have uncertainty in the identified dynamics
model, observations, as well as in the movement of the
obstacles. As outlined in section III, obstacle unpredictability
is crucial for non-cooperative obstacles, which is the main
focus of this work. While our framework will work with
any observation model, we use a standard Kalman filter with
a constant velocity model. Since we only need to measure
the relative distance to the obstacle using a range finder,
the sensor noise σv is set to a relatively low value of 1 cm.
We expect actual on-board sensor uncertainty to result more
from occasional artefacts rather than white Gaussian noise,
but leave more accurate sensor models to future work.



The framework is implemented in Eigen/C++ and Python
using a ROS distributed architecture. All experiments were
run on one core of an Intel Core i7 3.4Ghz CPU. All
simulated scenarios are run in soft real-time to be as realistic
as possible, which includes possible artefacts from compu-
tation time and network latency that are present in the real
system. Finally, we include demonstration flights with the
real quadcopter platform, using real humans as obstacles.
Unless noted otherwise the quadcopter speed constraint was
set to 1.5m s−1.

Fig. 4: The intersection scenario, crossing a street.

A. Simulated Intersection Scenario

With autonomous cars on the horizon and the popularity
of consumer UAVs rising, their behavior in traffic is of great
importance. In the first scenario we simulate the quadcopter
from section V safely crossing a street.

We use the previously defined human obstacle model and
explore the safety radius required for a street with three
pedestrians. Each pedestrian is given a random destination
at either end of the street in a 10m long and 4m wide
area. They select a new destination either upon reaching their
current one, or at random every 10-20 s. This means that
the controller has to be able to cope with moving obstacles
adjusting course or turning unpredictably. It bears pointing
out that humans can accelerate very quickly from a state
of stand-still while many robotic platforms, including the
mid-size quadcopter from section V, have slower higher-
order dynamics. The scenario, shown in Fig.4, is split into
a sequence of runs across a street. The quadcopter tries to
safely reach its goal through traffic while the goal alternates
at opposite sides of the street.

We optimize the safety parameters of BPO-MPC with
constrained Bayesian optimization as described in section IV-
A. We take the mean time to reach the goal as the objective
cost, and the safety probability per minute as the constraint.
The resulting posterior surface approximations are seen in
Fig.5a for the cost, and Fig. 5b for the estimated safety
probability. For convenience the experiments are aggregated
into 20 minute runs, represented as a success (circle) or
failure (cross) in the figure.

In Table I we list actual outcomes of parameters learned by
BPO-MPC for different safety levels and compare them with
the obstacle motion models discussed in section III. These

(a) Expected cost (normalized). (b) Expected safety level.

Fig. 5: Bayesian policy optimization of safety parameters for
the intersection scenario.

are confidence intervals based on the random acceleration
model, as well as the deterministic upper bound.

TABLE I: Results from intersection scenario for different
algorithms and target safety levels. Actual safety level esti-
mated over 12 h.

Safety constraints θlimit θscale Cost Est. p

BPO-MPC p = 0.95 0.8m 0.6 9.82 0.956
BPO-MPC p = 0.99 0.9m 0.6 9.96 0.985
Prior assump. p = 0.951 ∞ 1 - -
Determ. Bound - - 36.36 0.9875

As can be seen The BPO-MPC controller solves the
problem with a low cost while being close to the target safety
level. We note that for BPO-MPC, p = 0.99 is per minute
of non-cooperative interaction, resulting in a cautious yet
efficient controller. The other motion models are extremely
pessimistic. The random acceleration model resulted in such
wide safety margins that it was unable to reach the goal even
at a p = 0.95 level. The deterministic bound was also very
conservative and completed the task only with high cost.
We also noted some degradation in MPC performance as
the large margins resulted in a need for longer trajectories.
While the confidence level of the random acceleration model
could be adjusted by hand, unlike the proposed approach, it
is unclear how to relate that to more meaningful units like
minutes of scenario time. As discussed in section IV, since
they do not take the effect of the controller recourse into
account, the overall shape of their safety region will also be
less useful for non-cooperative obstacles.

B. Simulated Warehouse Scenario

Safe interaction with humans is key to continued automa-
tion and acceptance of robots into workplaces. The ware-
house scenario was made to imitate the conditions a robot
might face working alongside humans in a warehouse or
assembly facility. Recently, commercial entities like Amazon
have expressed interest in using quadcopters for delivery. In
the warehouse scenario pictured in Fig. 6 a quadcopter is
given targets shown as green boxes, while avoiding human
workers freely roaming around the room. These could, for
example, be packages to pick up or areas to inspect. New
targets are continuously spawned in 15s intervals.



Fig. 6: The warehouse scenario.

We again give humans right-of-way by using the non-
cooperate assumption. Humans are given random destina-
tions in a 6x6m square, again using the model from section
III, but giving them new destinations with shorter, uniformly
distributed, intervals of 6 to 10s. This forces the controller
into intense avoidance situations as it tries to stay in-between
randomly moving obstacles to reach its targets2.

TABLE II: Warehouse scenario for different target safety
levels. Actual safety level estimated over 12 h.

Safety constraints θlimit θscale Cost Est. p

BPO-MPC p = 0.95 1.3m 0.5 2.66 0.954
BPO-MPC p = 0.99 1.5m 0.6 2.82 0.985
BPO-MPC p = 0.999 1.8m 0.6 3.13 0.997
BPO-MPC p = 0.999+ 2.1m 1.0 3.84 1.00

As can be seen in Table II the BPO-MPC controller can
safely navigate in this scenario. The Gaussian process safety
approximation gets a bit optimistic for the higher safety
levels, likely due to the actual distribution having thicker
tails. If more exact probabilities are needed it still provides
a good starting point for manual tuning over longer and more
expensive simulation runs. To illustrate that the probability
of collision tends to zero we also significantly perturbed
the safety parameters towards even safer regions in Fig. 7b,
shown as p = 0.999+ in the table.

We also examined what effect the number of obstacles
has. We use a safety level of p = 0.99 per minute. The
results for the scenario with one to three humans can be
seen in Table III. Most prominently, we see that the safety
margins steeply increase already when going from one to
two humans. As noted in section III this is not unexpected
since constraint saturation should limit the recourse available
to dodge a secondary obstacle when already dodging one.

With even more obstacles, all escape routes can easily be
blocked and ultimately box the robot in. Due to the physical
constraints of the robot, this becomes an increasingly ill-
posed problem, and we expect that this will lead to very con-
servative safety margins for large and dense crowds. When
given no recourse, humans can call attention to themselves
to trigger cooperative behavior, like using a horn on a car.

2See supplementary video material.

(a) Expected cost (normalized). (b) Expected safety level.

Fig. 7: Bayesian policy optimization of safety parameters for
the warehouse scenario.

We suspect a similar backup behavior could be employed
for robots, but we leave navigating such semi-cooperative
crowds to future work.

TABLE III: Optimization results from warehouse scenario
with different numbers of humans

Safety constraints Humans θlimit θscale Cost

BPO-MPC p = 0.99 1 0.8m 0.6 1.35
BPO-MPC p = 0.99 2 1.1m 0.6 2.32
BPO-MPC p = 0.99 3 1.5m 0.6 2.82

C. Real Quadcopter Flight Scenarios

We flew two scenarios with the real LinkQuad quadcopter
from Fig.3. For convenience the quadcopter was controlled
over a serial link from a ground station, although it is
currently possible for a platform of this size to carry an Intel
NUC with comparable performance on-board.

For in-door positioning we used a VICON motion capture
system and added sensory noise to the obstacle distance
corresponding to the previous assumptions. Limited size of
the tracking area introduced the additional requirement of
a safety margin small enough for meaningful interaction.
We therefore lowered the controller speed constraint to
1m s−1, as well as obstacle speed to a casual walk. As
seen in Table III, simultaneous interaction with multiple non-
cooperative obstacles can also have a large impact on the
required safety margin. To minimize this, obstacles moved
in non-overlapping segments. We found safety parameters
for this configuration and added an 0.2m extra for any
unmodelled effects like jitter in the serial link, rounding the
safety parameters up to 1.0m limit and 0.6m scaling.

We show two examples from multiple real flights in Fig. 8
and 9. In the first scenario one person is repeatedly attempt-
ing to walk through the space occupied by the quadcopter.
While a reactive controller would have bounced away, by
planning for the movement it smoothly moves to the side
and back, being the safe trajectory with lowest cost. In the
second scenario the quadcopter is trying to move diagonally
through the area while two humans walk around randomly.
At first it has to reverse to go around the red obstacle, passing
it on the right, and then swerving to the left to dodge the
blue obstacle coming in from the right.
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Fig. 8: Quadcopter avoiding one human obstacle.
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Fig. 9: Quadcopter avoiding two human obstacles.

Although a small sample, as can be seen from the distance
plots, the chosen 1m safety margin was never close to being
exhausted.

VII. CONCLUSIONS
We examined the problem of autonomous robots safely

navigating environments populated by humans, without prior
coordination. This was reduced to stochastic trajectory
optimization around non-cooperative obstacles. Common
stochastic simplifications lead to poor results and we in-
stead derived a novel stochastic approximation by combining
Bayesian policy optimization with fast solvers from model-
predictive control. This enabled us to construct holistic
controllers that can solve the collision avoidance problem for
a desired level of confidence while taking both uncertainty
and dynamics into account. We found the proposed approach
accurate on simulated scenarios and demonstrated a real-
time implementation by flying a real quadcopter. It produced
accurate control with safety margins tight enough for use on
real robots.
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