
Reconfigurable Path Planning for an Autonomous Unmanned Aerial Vehicle

Mariusz Wzorek and Patrick Doherty
Department of Computer and Information Science

Linköping University, SE-58183 Linköping, Sweden
{marwz,patdo}@ida.liu.se

Abstract

In this paper, we present a motion planning framework
for a fully deployed autonomous unmanned aerial vehi-
cle which integrates two sample-based motion planning
techniques, Probabilistic Roadmaps and Rapidly Explor-
ing Random Trees. Additionally, we incorporate dynamic
reconfigurability into the framework by integrating the mo-
tion planners with the control kernel of the UAV in a novel
manner with little modification to the original algorithms.
The framework has been verified through simulation and in
actual flight. Empirical results show that these techniques
used with such a framework offer a surprisingly efficient
method for dynamically reconfiguring a motion plan based
on unforeseen contingencies which may arise during the ex-
ecution of a plan. The framework is generic and can be used
for additional platforms.

1 Introduction

The use of Unmanned Aerial Vehicles (UAVs) which
can operate autonomously in dynamic and complex oper-
ational environments is becoming increasingly more com-
mon. While the application domains in which they are cur-
rently used are still predominantly military in nature, in the
future we can expect widespread usage in the civil and com-
mercial sectors. In order to insert such vehicles into com-
mercial airspace, it is inherently important that these vehi-
cles can generate collision-free motion plans and also be
able to modify such plans during their execution in order
to deal with contingencies which arise during the course
of operation. Motion planners capable of dynamic replan-
ning will be an essential functionality in any high-level au-
tonomous UAV system. The motion planning problem, that
of generating a collision-free path from an initial to goal
waypoint, is inherently intractable for vehicles with many
degrees of freedom. Recently, a number of sample-based
motion planning techniques [10, 11] have been proposed
which tradeoff completeness in the planning algorithm for

tractability and efficiency in most cases.
The purpose of this paper is to show how one can in-

corporate dynamic replanning in such motion planners on
a deployed and fully operational UAV by integrating the
motion planner with the control kernel of the UAV in a
novel manner with little modification of the original algo-
rithms. Integrating both high- and low-end functionality
seamlessly in autonomous architectures is currently one of
the major open problems in robotics research. UAV plat-
forms offer an especially difficult challenge in comparison
with ground robotic systems due to the often tight time con-
straints present in the plan generation, execution and replan-
ning stages in many complex mission scenarios. It is the
intent of this paper to show how one can leverage sample-
based motion planning techniques in this respect, first by
describing how such integration would be done and then
empirically testing the results in a fully deployed system.

An example of the dynamic path replanning experiment
is shown in Fig. 1. It shows sample paths generated during
the flight in which four no-fly zones were added incremen-
tally. The plan was continuously monitored and repaired as
new no-fly zones were added.

The techniques and solutions described are generic in na-
ture and suitable for platforms other than the one used in
this experimentation. An important point to note is that to
our knowledge we are the first to use these sample-based
motion planning techniques with fully deployed UAVs.

The structure of the paper is as follows. First we give an
overview of the integrated hardware and software platform
used in our UAV. Then an overview of two sample-based
motion planning techniques, Probabilistic Roadmaps and
Rapidly Exploring Random Trees is provided. Later we de-
scribe the basic architecture for integrating motion planners
with the UAV control kernel. We explain the path execu-
tion mechanism in the static environments and describe the
dynamic path replanning scheme in addition to providing
timing constraints. At the end the empirical results from ex-
perimentation with the deployed system are presented. We
then conclude with related work and a summary including
future work.

Figure 1. Paths generated during the experi-
mental flight. Solid black line - updated path;
white dot - helicopter position; white dashed
line - invalid path; polygon box - forbidden re-
gion.

2 WITAS System Overview

2.1 The Hardware Platform

The WITAS 1 UAV platform [6] is a slightly modified
Yamaha RMAX helicopter (Fig. 2). It has a total length
of 3.6 m (including main rotor) and is powered by a 21
hp two-stroke engine with a maximum takeoff weight of
95 kg. The helicopter has a built-in attitude sensor (YAS)
and an attitude control system (YACS). The hardware plat-
form developed during the WITAS UAV project is inte-
grated with the Yamaha platform as shown in Fig. 3. It
contains three PC104 embedded computers. The primary
flight control (PFC) system runs on a PIII (700Mhz), and
includes a wireless Ethernet bridge, a RTK GPS receiver,
and several additional sensors including a barometric alti-
tude sensor. The PFC is connected to the YAS and YACS,
an image processing computer and a computer for delibera-
tive capabilities. The image processing (IP) system runs on
the second PC104 embedded computer (PIII 700MHz), and
includes a color CCD camera mounted on a pan/tilt unit,
a video transmitter and a recorder (miniDV). The deliber-
ative/reactive (D/R, DRC) system runs on the third PC104

1WITAS is an acronym for the Wallenberg Information Technology and
Autonomous Systems Lab which hosted a long term UAV research project
(1997-2004).

Figure 2. The WITAS RMAX Helicopter

embedded computer (Pentium-M 1.4GHz) and executes all
high-end autonomous functionality. Network communica-
tion between computers is physically realized with serial
line RS232C and Ethernet. Ethernet is mainly used for
CORBA applications (see below), remote login and file
transfer while serial lines are used for hard real-time net-
working.

IPC
- 700 MHz PIII
- 256MB RAM
- 512 MB flash

Yamaha RMAX
(YAS, YACS)

ethernet
switch

PFC
- 700 MHz PIII
- 256MB RAM
- 512 MB flash

sensor
suite

sensor
suite

RS232C
Ethernet
Other media

DRC
- 1.4 GHz P-M
- 1GB RAM
- 512 MB flash

Figure 3. On-Board Hardware Schematic

2.2 The Software Platform

A hybrid deliberative/reactive software architecture has
been developed for the UAV and has also been used in a
ground robot. Conceptually, it is a layered system with
deliberative, reactive and control components. The archi-
tecture has a reactive concentric flavor where reactive task
procedures use services provided by both deliberative and
control components in a highly distributed and concurrent
manner.

The software implementation is based on CORBA
(Common Object Request Broker Architecture), which is
often used as middleware for object-based distributed sys-
tems. It enables different objects or components to com-
municate with each other regardless of the programming

languages in which they are written, their location on dif-
ferent processors or the operating systems they running on.
A component can act as a client, a server or as both. The
functional interfaces to components are specified via the use
of IDL (Interface Definition Language). The majority of
the functionalities which are part of the architecture can be
viewed as CORBA objects or collections of objects, where
the communication infrastructure is provided by CORBA
facilities and other services such as real-time and standard
event channels. This architectural choice provides us with
an ideal development environment and versatile run-time
system with built-in scalability, modularity, software relo-
catability on various hardware configurations, performance
(real-time event channels and schedulers), and support for
plug-and-play software modules. Fig. 4 presents some (not

Geographical
Data

Repository

Knowledge
Repository

Dynamic
Object

Repository

Task Procedure Execution
Module (TPEM)

TP1 TPn

Prediction
Service

Chronicle
Recognition

Service

Path Planner
Service

Task Planner
Service

Helicopter
Controller

Physical
Camera

Controller

Image
Controller

IPAPI

IPAPI Runtime

Image Processing Module (IPM)

Qualitative
Signal Processing

Controller

Figure 4. Some deliberative, reactive and
control services

all) of the high-level services used in the WITAS UAV sys-
tem. Those services run on the D/R computer and interact
with the control system.

The control system is a hybrid distributed system that
runs primarily on the PFC computer in a real-time en-
vironment [13] constructed especially to integrate seam-
lessly with the rest of the architecture. Hierarchical concur-
rent state machines (HCSMs) are used to represent system
states. The ability to switch modes contingently is a fun-
damental functionality in the architecture and can be pro-
grammed into the task procedures associated with the re-
active component in the architecture. We have developed
and tested several autonomous flight control modes: take-
off, landing via visual navigation, hovering, dynamic path
following, and reactive flight modes for tracking and inter-
ception. A CORBA interface is setup on top of the con-
trol system kernel so high-level components can issue com-
mands to initiate and sequentialize different flight modes.
Helicopter states and events from the control system are in
turn sent to the high-level system.

3 The Path Planning Algorithms

In this section, we provide a brief overview of the
sample-based path planning techniques used in the exper-

iments. The problem of finding optimal paths between two
configurations in a high-dimensional configuration space
such as a helicopter is intractable in general. Sample-
based approaches such as probabilistic roadmaps (PRM) or
rapidly exploring random trees (RRT) often make the path
planning problem solvable in practice by sacrificing com-
pleteness and optimality.

3.1 Probabilistic Roadmaps

The standard probabilistic roadmap (PRM) algorithm
[10] works in two phases, one off-line and the other on-
line. In the off-line phase a roadmap is generated using a
3D world model. Configurations are randomly generated
and checked for collisions with the model. A local path
planner is then used to connect collision-free configurations
taking into account kinematic and dynamic constraints of
the helicopter. Paths between two configurations are also
checked for collisions. In the on-line or querying phase, ini-
tial and goal configurations are provided and an attempt is
made to connect each configuration to the previously gener-
ated roadmap using the local path planner. A graph search
algorithm such as A∗ is then used to find a path from the
initial to the goal configuration in the augmented roadmap.

Figure 5. PRM path plan generation

Fig. 5 provides a schema of the PRM path planner used
in the WITAS system. The planner uses an OBBTree-
algorithm [7] for collision checking and an A∗ algorithm
for graph search. Here one can optimize for shortest path,
minimal fuel usage, etc. The following extensions have
been made with respect to the standard version of PRM al-
gorithm in order to adapt the approach to our UAV platform.

• Multi-level roadmap planning
The standard probabilistic roadmap algorithm is for-
mulated for fully controllable systems only. This as-
sumption is true for a helicopter flying at low speed
with the capability to stop and hover at each waypoint.
However, when the speed is increased the helicopter is
no longer able to negotiate turns of a smaller radius,

which imposes demands on the planner similar to non-
holonomic constraints for car-like robots. In this case,
linear paths are first used to connect configurations in
the graph and at a later stage these are replaced with
cubic curves when possible. These are required for
smooth high speed flight. If it is not possible to replace
a linear path segment with a cubic curve then the heli-
copter has to slow down and switch to hovering mode
at the connecting waypoint before continuing. From
our experience, this rarely happens.

• Runtime constraint handling
Our motion planner has been extended to deal with
different types of constraints at runtime not available
during roadmap construction. Such constraints can
be introduced at the time of a query for a path plan.
Some examples of runtime constraints currently im-
plemented include maximum and minimum altitude,
adding forbidden regions (no-fly zones) and placing
limits on the ascent-/descent-rate. Such constraints are
dealt with during the A∗ search phase.

The mean planning time in the current implementation is
below 1000 ms and the use of runtime constraints does not
noticeably influence the mean. For a more detailed descrip-
tion of the modified PRM planner, see [14].

3.2 Rapidly Exploring Random Trees

The use of rapidly exploring random trees (RRT) pro-
vides an efficient motion planning algorithm that constructs
a roadmap online rather than offline (Fig. 6).

Figure 6. RRT path plan generation

The algorithm [11] generates two trees rooted in the start
and end configurations by exploring the configuration space
randomly in both directions. While the trees are being gen-
erated, an attempt is made at specific intervals to connect
them to create one roadmap. After the roadmap is created,
the remaining steps in the algorithm are the same as with
PRMs. In comparison with the PRM planner, the mean
planning time with RRT is also below 1000 ms, but in this
case, the success rate is much lower and the generated plans

are not optimal which may sometimes cause anomalous de-
tours [14].

4 The Path Execution Mechanism

The standard path execution scheme in our architecture
for static operational environments is depicted in Fig. 7.

Segment requests

Plan 2 1

Path segments

C
on

tro
l s

ys
te

m
 in

te
rfa

ce

Path Planner

Task
Procedures

Dynamic
Path

Following
Controller

(DPF)

End points,
Constraints

3

4

Figure 7. Plan execution scheme

A UAV mission is specified via a task procedure (TP) in
the reactive layer of our architecture, (perhaps after calling
a task-based planner). A TP is a high-level procedural exe-
cution component which provides a computational mecha-
nism for achieving different robotic behaviors. For the pur-
poses of this paper, it can be viewed as an augmented state
machine.

For the case of flying to a waypoint, an instance of a nav-
igation TP is created. First it calls the path planner service
(step 1) with the following parameters: initial position, goal
position, desired velocity and additional constraints.

If successful, the path planner (step 2) generates a seg-
mented cubic polynomial curve. Each segment is defined by
start and end points, start and end directions, target velocity
and end velocity. The TP sends the first segment (step 3)
of the trajectory via the control system interface and waits
for the Request Segment event that is generated by the con-
troller.

At the control level, the path is executed using a Dy-
namic Path Following (DPF) controller [5] which is a ref-
erence controller that can follow cubic splines. When a Re-
quest Segment event arrives (step 4) the TP sends the next
segment. This procedure is repeated (step 3-4) until the last
segment is sent. However, because the high-level system is
not implemented in hard real-time it may happen that the
next segment does not arrive at the control kernel on time.
In this case, the controller has a timeout limit after which it
goes into safety braking mode in order to stop and hover at
the end of the current segment. The timeout is determined
by a velocity profile, current position and current velocity.

∆t
2t

im
eo

ut

∆t
1t

ot
al

∆t
1t

im
eo

ut

br
ak

in
g fly
in

g
se

gm
en

t 1

TP
t0

DPF

tstart1

to1

tarrive1

t1

br
ak

in
g

fly
in

g
se

gm
en

t 2

to2

tarrive2

1

2

3

t t
1 – segment 1; 2 – Request segment
3 – segment 2

tstart2 t2

∆t
2t

ot
al

Figure 8. Execution timeline for trajectory
consisted of 2 segments

Fig. 8 depicts a timeline plot of the execution of a trajec-
tory (2 segments). At time t0, a TP sends the first segment
of the path to the DPF controller and waits for a Request
segment event which arrives immediately (t1) after the heli-
copter starts to fly (tstart1). Typical time values for receiv-
ing a Request segment event (t1−t0) are well below 200ms.
Time to1 is the timeout for the first segment which means
that the TP has a ∆t1timeout time window to send the next
segment to the DPF controller before it initiates the safety
braking procedure. If the segment is sent after to1, the he-
licopter will start braking. In the current implementation,
segments are not allowed to be sent after the timeout. This
will be changed in a future implementation. In practice the
∆t1timeout time window is large enough to replan the path
using the standard path planner. The updated segments are
then sent to the DPF controller transparently.

5 Dynamic Replanning of the Path

There are several services that are used during path re-
planning stage. They are called when changes in the envi-
ronment are detected and an update event is generated in the
system. The augmented state machine associated with the
TP used for the dynamic replanning of the path is depicted
in Fig. 9. The TP takes the start and the end point and the
target velocity as input. The TP then calls a path planning
service (Plan state) which returns an initial path.

Init

Align
Send

segment

Exit

Plan

no
t a

lig
ne

d

aligned

last
segment sent

no-fly zone
updated

re
qu

es
t

se
gm

en
t

re
ce

iv
ed

Estimate
timeout

timeout
calculated

Check
collision

Replan

Wait

tim
eo

ut
co

nd
itio

n

up
da

te
d

pa
th

no collision

Strategy
Selection

Times
Estimation

Strategy
Library

collis
ion dete

cte
d

strategy query
strategy

pa
th

pl
an

 p
at

h
w

ith
 st

ra
te

gy

pa
th estimated timings

estimate timings

for segments

St
at

ic

plan path

Figure 9. The dynamic path replanning au-
tomaton

If the helicopter is not aligned with the direction of the
flight, a command to align is sent to the controller (Align
state).The TP then sends the first segment of the generated
path to the DPF controller (Send segment state) and calls the
Prediction service to estimate a timeout for the current seg-
ment (Estimate timeout state). Based on the segment time-
out and system latency, a condition is calculated for sending
the next segment. If there is no change in the environment
the TP waits (Wait state) until a timeout condition is true
and then sends the next segment to the DPF controller.

In case new information about newly added or deleted
forbidden regions (no-fly zone updated) arrives, the TP
checks if the current path is in collision with the updated
world model (Check Collision state). If a collision is de-
tected in one or more segments the TP calls a Strategy Se-
lector service (Strategy Selection state) to determine which
replanning strategy is the most appropriate to use at the
time. The Strategy Selector service uses the Prediction ser-
vice for path timings estimation (Times Estimation state) to
get estimated timeouts, total travel times etc. It also uses
the Strategy Library service (Strategy Library state) to get
available replanning strategies that will be used to replan
when calling the path planner (Replan state).

The TP terminates when the last segment is sent. More
details on the Strategy Selector service, the Strategy library
and the Prediction service will follow in the next subsec-
tions.

5.1 Prediction Service

All time estimations that have to do with paths or part
of the paths are handled by the Prediction service. It uses
the velocity profile of the vehicle and path parameters to
calculate timeouts, total times, and combinations of those.

For instance, in the case of flying a two-segment trajec-
tory (see execution timeline in Fig. 8) it can estimate time-
outs (∆t1timeout, ∆t2timeout), total travel times (∆t1total,
∆t2total) as well as a combined timeout for the first and the
second segment (to2-t1).

5.2 Strategy Library

When part of the path is not valid anymore, the path plan-
ner service can be called in order to repair an existing plan
or to create a new one. There are many strategies that can be
used at that step which can give different results depending
on the situation.

helicopter
position
waypoint

forbidden
region

final
path

invalid
path

Strategy 1

Strategy 2

Strategy 3

Strategy 4

new pass
waypoint

Figure 10. Examples of replanning strategies.

The Strategy Library stores different replanning strate-
gies including information about the replanning algorithm
to be used, the estimated execution time and the priority.
Example strategies are shown in Fig. 10.

• Strategy 1
Replanning is done from the next waypoint (start point
of the next segment) to the end point. This implies
longer planning times and eventual replacement of
collision-free segments that could be reused. The dis-
tance to the obstacle in this case is usually large so the
generated path should be smoother and can possibly
result in a shorter flight time.

• Strategy 2
Segments up to the colliding one are left intact and re-
planning is done from the last collision-free waypoint
to the end point. In this case, planning times are cut
down and some parts of the old plan will be reused.
But since the distance to the obstacle is shorter than in
the previous case, it might be necessary for the vehicle
to slow down at the joint point of two plans, this can
result in a longer flight time.

• Strategy 3
Replanning is done only for colliding segments. The

helicopter will stay as close to the initial path as possi-
ble.

• Strategy 4
There can be many other strategies that take into ac-
count additional information that can make the result
of the replanning better from a global perspective. An
example can be a strategy that allows new pass way-
points that should be included in the repaired plan.

Note that each of these strategies progressively re-uses more
of the plan that was originally generated, thus cutting down
on planning times but maybe producing less optimal plans.
The decision as to which strategy to use is made by the
Strategy Selector service described in the next subsection.

5.3 Strategy Selector Service

The Strategy selector service is responsible for choosing
the strategy or strategies to execute in the event of path oc-
clusion. It keeps track of the time that it uses, so that always
valid path is available when the timeout condition becomes
true. The Strategy Selector holds information as to which
segments of the path were invalidated and it can use the Pre-
diction service to get estimated timings for the path or parts
of the path. Based on that and available strategies (from the
Strategy Library) it can make a decision which strategy or
strategies to use for replanning at the current time. If many
strategies are applied and more new plans are generated, it
also evaluates them according to a given optimization cri-
terion that is declared by the user or another service. For
instance, if the time window for making a decision about
the next segment is short then the fastest strategy is used in
order to produce a valid plan on time.

The Strategy Selector is also responsible for updating in-
formation about strategies in the Strategy Library, in par-
ticular estimated execution times. The same strategies in
different environments might require less or more time for
execution. That information is fed back to the library, so the
next time the Strategy Selector has more accurate informa-
tion about the execution time and can make a better decision
which strategy to apply.

6 Generic Nature of the Framework

The proposed framework is generic and can be used with
additional platforms. This implies using different segment
parameters that are more fitted to the platform capabilities.
Fig. 11 shows the dependency between the minimum dis-
tance required to detect the obstacle and velocity of the ve-
hicle in order to make one path replanning. This plot is valid
for our helicopter platforms. This is the worst case under the
assumption of constant velocity along the path. Accelera-
tion and deceleration is equal to 1.6 m/s2. The minimum

time for one replanning including system latency is below
1200 ms.

Figure 11. Critical distance for detecting an
obstacle

A similar plot can be created for other platforms and
based on the desired flight envelope the choice of the pre-
ferred parameters of the segments can be made. Addition-
ally some modifications to the path planners itself are neces-
sary because of the different characteristics of the controller.
Other than that, the idea of executing parts of the plan in the
form of segments and using estimated time widows to adapt
the plan to the changes in the environment would still apply.

7 Experimental Results

In our experiments we have used both the PRM and the
RRT planner. We included the first three strategies from the
Fig. 10 in the Strategy Library. During the flight forbidden
regions were randomly added by the ground operator. In or-
der to compare the performance of different strategies only
one strategy was used per experiment.

Typical values of parameters related to the execution and
the planning phases are presented in Tables 1 and 2. The
number of segments is taken from the final path.

Observe that in the case of Strategy 1 (Table 1), ∆t (time
window for replanning) is generally greater than four times
the amount of time required to generate full plans using ei-
ther the PRM or RRT planners.

The difference is even greater (up to 20 times) in the
case of Strategy 3 (Table 2). This is as expected, the more
the existing plan is reused the less time is needed to repair
it. Although, replanning times for applying Strategy 3 are
much smaller, the paths have much more segments (up to
15). Such paths usually imply a smaller average velocity
which can result in a longer flight time.

Table 1. Results of the experiments using
Strategy 1

path num- added min. max. min.
Planner length ber of forbid- seg- replan- ∆t

(m) seg- den re- ment nig time (ms)
ments gions length(m) (ms)

422.52 6 4 34.87 519 3518
420.55 6 4 40.95 486 2898
432.17 6 4 62.50 568 3673

PRM 427.94 6 5 53.15 524 3285
536.98 7 5 50.22 631 3158
472.40 7 6 45.25 603 2918
539.18 8 6 53.24 728 3153
500.12 7 4 26.68 315 2862
422.58 5 4 74.07 438 4079
392.89 5 5 61.11 441 3625

RRT 565.06 8 5 26.76 521 3648
503.42 6 5 65.07 954 3773
464.96 6 5 28.61 595 3866
491.42 8 6 20.40 326 1803

8 Related Work

Finding collision-free paths in dynamically changing en-
vironments is an open research problem in the motion plan-
ning community. As important as the problem is there are
a limited number of contributions that address issues re-
lated to changing environments and even less in the context
of UAVs. Results using probabilistic roadmap based plan-
ners focus mainly on the mobile manipulation domain (e.g.
[9], [12]). An example of planner that samples state×time
space in order to deal with kinematic and dynamic con-
strains on robots, as well as moving obstacles is presented
by [8]. Some work has also been done with the elastic
framework ([2], [3], [4]) and with decomposition-based
methods [1]. In the UAV domain, we believe we are the
first to apply sample-based motion planning approaches.

9 Conclusions and Future Work

The planning framework that has been described in this
paper was tested and used in a fully deployed autonomous
UAV system. We have presented a distributed software ar-
chitecture for UAVs and considered how one can success-
fully integrate sample-based motion planning techniques in
a robust and efficient manner. We have also shown how
these techniques can be used to deal with contingencies
such as new no-fly zones during plan execution. This has
been done by analyzing the course of plan execution and
extracting upper bounds on the time that can be spent gen-

Table 2. Results of the experiments using
Strategy 3

path num- added min. max. min.
Planner length ber of forbid- seg- replan- ∆t

(m) seg- den re- ment nig time (ms)
ments gions length(m) (ms)

524.47 12 4 28.23 196 2938
514.51 10 4 41.42 185 2892
607.72 11 4 33.98 163 2928

PRM 594.59 14 5 13.02 160 1080
586.74 12 5 20.53 163 1005
546.15 12 5 16.60 153 2607
575.15 13 6 29.38 202 2907
495.07 10 4 24.06 104 2088
527.95 11 4 12.24 240 1249
558.45 10 4 23.79 160 2096

RRT 562.07 12 5 22.14 132 1529
586.70 15 5 15.83 156 2686
604.90 13 5 21.97 251 2556
576.27 15 6 16.12 206 2696

erating new plans or repairing old plans by calling a PRM
or RRT planner. Experimental results show the feasibility of
using these techniques in the UAV domain, but similar anal-
yses and frameworks could in fact be used for other robotic
platforms.

In the future we would like to improve the efficiency of
the framework by working on the path planning algorithms.
This would also include extending the framework to handle
different platforms than helicopters e.g. fixed wing. An-
other interesting issue is extending the Strategy Library to
include additional external information e.g. weather con-
ditions. Some work will be put into the Strategy Selector
service which is a key component in the framework.

Acknowledgements

This research has been supported in part by the WITAS
UAV project grant under the Wallenberg Foundation, Swe-
den and an NFFP04-S4203 research grant.

References

[1] O. Brock and L. Kavraki. Decomposition-based Motion
Planning: A Framework for Real-time Motion Planning in
High-dimensional Configuration Spaces. In Proc. of the Int.
Conf. on Robotics and Automation, 2001.

[2] O. Brock and O. Khatib. Mobile Manipulation: Collision-
Free Path Modification and Motion Coordination. In Proc.
of the Int. Conf. on Computational Engineering in Systems
Applications, volume 4, pages 839–845, 1998.

[3] O. Brock and O. Khatib. Elastic Strips: A Framework for
Integrated Planning and Execution. In Proc. Int. Symp. on
Experimental Robotics, 1999.

[4] O. Brock and O. Khatib. Real Time Replanning in High-
Dimensional Configuration Spaces Using Sets of Homo-
topic Paths. In Proc. of the IEEE Int. Conf. on Robotics
and Automation, pages 550–555, 2000.

[5] G. Conte, S. Duranti, and T. Merz. Dynamic 3D Path Fol-
lowing for an Autonomous Helicopter. In Proc. of the IFAC
Symp. on Intelligent Autonomous Vehicles, 2004.

[6] P. Doherty, P. Haslum, F. Heintz, T. Merz, T. Persson, and
B. Wingman. A Distributed Architecture for Autonomous
Unmanned Aerial Vehicle Experimentation. In Proc. of
the Int. Symp. on Distributed Autonomous Robotic Systems,
pages 221–230, 2004.

[7] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: A
hierarchical structure for rapid interference detection. Com-
puter Graphics, 30(Annual Conference Series):171–180,
1996.

[8] D. Hsu, R. Kindel, J. C. Latombe, and S. Rock. Random-
ized Kinodynamic Motion Planning with Moving Obstacles.
In Proc. of the Workshop on Algorithmic Foundations of
Robotics (WAFR00), 2000.

[9] L. Jaillet and T. Siméon. A PRM-based Motion Planner for
Dynamically Changing Environments. In Proc. of the IEEE
Int. Conf. on Intelligent Robots and Systems, 2004.

[10] L. E. Kavraki, P. S̆vestka, J. Latombe, and M. H. Overmars.
Probabilistic Roadmaps for Path Planning in High Dimen-
sional Configuration Spaces. Proc. of the IEEE Transactions
on Robotics and Automation, 12(4):566–580, 1996.

[11] J. J. Kuffner and S. M. LaValle. RRT-connect: An Efficient
Approach to Single-Query Path Planning. In Proc. of the
IEEE Int. Conf. on Robotics and Automation, pages 995–
1001, 2000.

[12] P. Leven and S. Hutchinson. Toward Real-Time Path Plan-
ning in Changing Environments. In Proc. of the Workshop
on Algorithmic Foundations of Robotics, 2000.

[13] T. Merz. Building a System for Autonomous Aerial
Robotics Research. In Proc. of the IFAC Symp. on Intelli-
gent Autonomous Vehicles, 2004.

[14] P.-O. Pettersson. Using Randomized Algorithms for He-
licopter Path Planning. Lic. Thesis Linköping University.,
2006.

