Hide menu

Machine Learning - Introduction and Application for Automated Performance Tuning

DF22400, 2012HT

Status Archive
School National Graduate School in Computer Science (CUGS)
Division PELAB
Owner Christoph Kessler
Homepage http://www.ida.liu.se/~chrke/courses/MACHLEARN/

  Log in  

Course plan


Lectures (ca. 12h), student projects and/or presentations. Written exam.

Recommended for

Graduate (CUGS, CIS, ...) students interested in the application of machine learning techniques to advanced system performance optimization, as in compiler construction, library generation, runtime systems, parallel computing, software engineering, system simulation and optimization.

The course was last given

This is a new course.


The course introduces fundamental techniques of machine learning and considers case studies for its application in automated system performance tuning, such as auto-tuning library generators, compilers, and runtime systems.


Linear algebra. Discrete mathematics. Data structures and algorithms. Some basic knowledge of computer architecture is assumed. For the case study presentations, some background in at least one application area, such as compiler construction, library generation, signal processing software, runtime systems, or software composition, is required.


"[Machine] learning is the process of [automatically] constructing, from training data, a fast and/or compact surrogate function that heuristically solves a decision, prediction or classification problem for which only expensive or no algorithmic solutions are known. It automatically abstracts from sample data to a total decision function."
- [Danylenko et al., Comparing Machine Learning Approaches..., SC'2011, LNCS 6708]

The course will introduce the following techniques:
Artificial neural networks (e.g. Perceptron and linear classifiers, Feed-forward networks and backpropagation learning algorithm); Linear and nonlinear regression; Decision trees; Decision diagrams;
Support Vector Machines; Bayesian Classifiers.
Autotuning principles.
Application of machine learning in autotuning (student projects and/or presentations).


Lecture block(s) (several days) and presentation session (1 day) in Linköping.


To be announced.


Christoph Kessler, Welf Löwe.


Christoph Kessler.


Written exam, 1.5p
Small project with presentation or presentation of a research paper, 1.5p


3p if both examination moments are fulfilled. Admission to the exam requires attendance in 50% of the lectures and lessons.

Organized by



New course 2012.

Page responsible: Director of Graduate Studies