Hide menu

SaS Seminars

Software and Systems Research Seminar Series

The SaS Seminars are a permanent series of open seminars of the Division of Software and Systems (SaS) at the Department of Computer and Information Science (IDA), Linköping University. The objective of the seminars is to present outstanding research and ideas/problems relevant for SaS present and future activities. In particular, seminars cover the SaS research areas software engineering, programming environments, system software, embedded SW/HW systems, computer systems engineering, realtime systems, parallel and distributed computing, and theoretical computer science. - Two kinds of seminars are planned:

  • talks by invited speakers not affiliated with SaS,

  • internal seminars presenting lab research to whole SaS.

The speakers are expected to give a broad perspective of the presented research, adressing the audience with a general computer science background but possibly with no specific knowledge in the domain of the presented research. The normal length of a presentation is 60 minutes, including discussion.

The SaS seminars are coordinated by Christoph Kessler.

Recent / Upcoming SaS Seminars (2014)

Collaborative Robotics

Dr. Alexander Kleiner, IDA, Linköping University

Thursday, 27 february 2014, 10:15, room Alan Turing

Increasingly cheaper computer technology, as well as sensor and actuator systems in robotics today are paving the way for large teams of collaborating robots. The coordination of large robot teams leads to almost intractable combinatorial problems as they were never relevant in practice before. Therefore, there exists an increasing demand for time-efficient approaches that are capable of solving heavy combinatorial problems as they appear in robotics and multi-agent systems today. Such problems arise, for example, in the application domains of manufacturing and intra-logistics where numerous mobile robots need to actively collaborate for managing transportation tasks. Also in search and rescue (SAR) robot coordination becomes computationally challenging with larger robot teams searching for either stationary or mobile targets, for example, when coordinating a team of unmanned aerial vehicles (UAVs) searching for lost hikers in the Alps. In this talk I will provide an overview on cognitive methods that I developed during the last years for facilitating successful collaboration in robot teams. I will provide examples from two target domains which are collaborative robots handling transportation tasks in intra-logistics, and teams of UAVs searching for survivors in Search and Rescue.

Short Bio:
Alexander Kleiner is docent and university lecturer at the computer science department (IDA) at the Linköping University. He obtained his docent degree in December 2013 from the Linköping University and his Ph.D. degree (Dr. rer. nat) from the University of Freiburg in February 2008. He worked as an invited guest researcher at the Carnegie Mellon University, Pittsburgh, USA in 2010 and at the La Sapienza University, Rome, Italy in 2011. Since 2006, he is member of the executive committee of RoboCup (Rescue Simulation League) and since 2008 member of the IEEE Technical Committee on Safety Security and Rescue Robotics. He served as General Chair of the IEEE International Symposium on Safety, Security, and Rescue Robotics 2013 and program chair in 2012. His research area focuses on collaborative robotics including autonomous robot exploration, guaranteed search, simultaneous localization and mapping (SLAM), distributed task allocation, and multi-robot motion planning. He published more than 70 papers and received several scientific awards. He successfully participated in several international robot competitions where his teams won almost constantly the first prize. Besides his research and teaching activities at the university, he works as a consultant for the industry where he works on projects implementing fleets of autonomous mobile robots for solving transportation tasks in intra-logistics and production.

Previous SaS Seminars

Page responsible: Christoph Kessler
Last updated: 2014-02-07