AIICS

Mariusz Wzorek

Theses

Hide abstracts BibTeX entries
2023
[2] Mariusz Wzorek. 2023.
Selected Functionalities for Autonomous Intelligent Systems in Public Safety Scenarios.
PhD Thesis. In series: Linköping Studies in Science and Technology. Dissertations #2322. Linköping University Electronic Press. 69 pages. ISBN: 9789180751957, 9789180751964.
DOI: 10.3384/9789180751964.
Note: Funding: This work has been supported by the ELLIIT Network Organization for Information and Communication Technology, Sweden (Project B09), and Wallenberg AI, Autonomous Systems and Software Program (WASP) funded by the Knut and Alice Wallenberg Foundation, in addi‐tion to the sources already acknowledged in the individual papers.
Fulltext: https://doi.org/10.3384/9789180751964
preview image: https://liu.diva-portal.org/smash/get/di...

The public safety and security application domain is an important research area that provides great benefits to society. Within this application domain, governmental and non‐governmental agencies, such as blue light organizations (e.g., police or firefighters), are often tasked with essential life‐saving activities when responding to fallouts of natural or man‐made disasters, such as earthquakes, floods, or hurricanes. Recent technological advances in artificial intelligence and robotics offer novel tools that first responder teams can use to shorten response times and improve the effectiveness of rescue efforts. Modern first responder teams are increasingly being supported by autonomous intelligent systems such as ground robots or Unmanned Aerial Vehicles (UAVs). However, even though many commercial systems are available and used in real deployments, many important research questions still need to be answered. These relate to both autonomous intelligent system design and development in addition to how such systems can be used in the context of public safety applications. This thesis presents a collection of functionalities for autonomous intelligent systems in public safety scenarios. Contributions in this thesis are divided into two parts. In Part 1, we focus on the design of navigation frameworks for UAVs for solving the problem of autonomous navigation in dynamic or changing environments. In particular, we present several novel ideas for integrating motion planning, control, and perception functionalities within robotic architectures to solve navigation tasks efficiently. In Part 2, we concentrate on an important service that autonomous intelligent systems can offer to first responder teams. Specifically, we focus on base functionalities required for UAV‐based rapid ad hoc communication infrastructure deployment in the initial phases of rescue operations. The main idea is to use heterogeneous teams of UAVs to deploy communication nodes that include routers and are used to establish ad hoc Wireless Mesh Networks (WMNs). We consider fundamental problems related to WMN network design, such as calculating node placements, and propose efficient novel algorithms to solve these problems. Considerable effort has been put into applying the developed techniques in real systems and scenarios. Thus, the approaches presented in this thesis have been validated through extensive simulations and real‐world experimentation with various UAV systems. Several contributions presented in the thesis are generic and can be adapted to other autonomous intelligent system types and application domains other than public safety and security.

2011
[1] Full text  Mariusz Wzorek. 2011.
Selected Aspects of Navigation and Path Planning in Unmanned Aircraft Systems.
Licentiate Thesis. In series: Linköping Studies in Science and Technology. Thesis #1509. Linköping University Electronic Press. 108 pages. ISBN: 9789173930376.
cover: http://liu.diva-portal.org/smash/get/div...

Unmanned aircraft systems (UASs) are an important future technology with early generations already being used in many areas of application encompassing both military and civilian domains. This thesis proposes a number of integration techniques for combining control-based navigation with more abstract path planning functionality for UASs. These techniques are empirically tested and validated using an RMAX helicopter platform used in the UASTechLab at Linköping University. Although the thesis focuses on helicopter platforms, the techniques are generic in nature and can be used in other robotic systems.At the control level a navigation task is executed by a set of control modes. A framework based on the abstraction of hierarchical concurrent state machines for the design and development of hybrid control systems is presented. The framework is used to specify reactive behaviors and for sequentialisation of control modes. Selected examples of control systems deployed on UASs are presented. Collision-free paths executed at the control level are generated by path planning algorithms.We propose a path replanning framework extending the existing path planners to allow dynamic repair of flight paths when new obstacles or no-fly zones obstructing the current flight path are detected. Additionally, a novel approach to selecting the best path repair strategy based on machine learning technique is presented. A prerequisite for a safe navigation in a real-world environment is an accurate geometrical model. As a step towards building accurate 3D models onboard UASs initial work on the integration of a laser range finder with a helicopter platform is also presented.Combination of the techniques presented provides another step towards building comprehensive and robust navigation systems for future UASs.