AIICS

Cyrille Berger

Other Publications

Hide abstracts BibTeX entries
2023
[2] Cyrille Berger and Simon Lacroix. 2023.
DSeg: Direct Line Segments Detection.
Technical Report. 37 pages.
DOI: 10.48550/arXiv.2311.18344.

This paper presents a model-driven approach to detect image line segments. The approach incrementally detects segments on the gradient image using a linear Kalman filter that estimates the supporting line parameters and their associated variances. The algorithm is fast and robust with respect to image noise and illumination variations, it allows the detection of longer line segments than data-driven approaches, and does not require any tedious parameters tuning. An extension of the algorithm that exploits a pyramidal approach to enhance the quality of results is proposed. Results with varying scene illumination and comparisons to classic existing approaches are presented.

0
[1] Mariusz Wzorek, Cyrille Berger and Patrick Doherty. 0.
Polygon Area Decomposition Using a Compactness Metric.
Manuscript (preprint).
Note: Funding Agencies|ELLIIT network organization for Information and Communication Technology; Swedish Foundation for Strategic ResearchSwedish Foundation for Strategic Research [RIT 15-0097]; Autonomous Systems and Software Program (WASP) - Knut and Alice Wallenberg Foundation.
arXiv: https://arxiv.org/abs/2110.04043

In this paper, we consider the problem of partitioning a polygon into a set of connected disjoint sub-polygons, each of which covers an area of a specific size. The work is motivated by terrain covering applications in robotics, where the goal is to find a set of efficient plans for a team of heterogeneous robots to cover a given area. Within this application, solving a polygon partitioning problem is an essential stepping stone. Unlike previous work, the problem formulation proposed in this paper also considers a compactness metric of the generated sub-polygons, in addition to the area size constraints. Maximizing the compactness of sub-polygons directly influences the optimality of any generated motion plans. Consequently, this increases the efficiency with which robotic tasks can be performed within each sub-region. The proposed problem representation is based on grid cell decomposition and a potential field model that allows for the use of standard optimization techniques. A new algorithm, the AreaDecompose algorithm, is proposed to solve this problem. The algorithm includes a number of existing and new optimization techniques combined with two post-processing methods. The approach has been evaluated on a set of randomly generated polygons which are then divided using different criteria and the results have been compared with a state-of-the-art algorithm. Results show that the proposed algorithm can efficiently divide polygon regions maximizing compactness of the resulting partitions, where the sub-polygon regions are on average up to 73% more compact in comparison to existing techniques.