LiU > IDA > Real-Time Systems Lab
ABOUT
MEMBERS
COOPERATION
PROJECTS
PUBLICATIONS
COURSES
OPEN POSITIONS
THESES
ALUMNI

Announcements

[26 May 2014] A bachelor student at RTSLAB was awarded the best thesis award from IDA - Simon Andersson. more ...

[31 May 2012] A masters student at RTSLAB was awarded the best thesis award from IDA - Ulf Magnusson. more ...

[27 February 2008] A masters student at RTSLAB was awarded the best thesis award from IDA - Johan Sigholm. more ...

[03 March 2004] A masters student at RTSLAB was awarded the best thesis award from IDA - Tobias Chyssler. more ...

[01 Jul 2003] For second year in a row a masters student at RTSLAB was awarded the best thesis award from SNART - Mehdi Amirijoo. more ...

Master Thesis - Past Projects - Abstract

Indoor robot localization and collaboration

ID: LiTH-IDA/ERASMUS-A--13/003--SE

The purpose of this thesis is to create an indoor rescue scenario with multiple self-localizing robots that are able to collaborate for a victim search. Victims are represented by RFID tags and detecting them combined with an accurate enough location data is considered as a successful finding. This setup is created for use in a laboratory assignment at Linköping University. We consider the indoor localization problem by trying to use as few sensors as possible and implement three indoor localization methods - odometry based, passive RFID based, and our approach by fusing both sensor data with particle filter.The Results show that particle filter based localization performs the best in comparison to the two other implemented methods and satisfies the accuracy requirements stated for the scenario. The victim search problem is solved by an ant mobility (pheromone-based) approach which integrates our localization method and provides a collaborative navigation through the rescue area. The purpose of the pheromone mobility approach is to achieve a high coverage with an acceptable resource consumption.Experiments show that area is covered with approximately 30-40% overhead in traveled distance comparing to an optimal path.

Keywords: search and rescue, indoor localization, robot collaboration, particle filter, real-time

File: Click here to download/view the thesis

Author(s): Eriks Zaharans

Contact: Simin Nadjm-Tehrani

Click here to return.
Last modified September 2012. If you have questions or suggestions for the webpages, contact the webmaster