template<class IntType = int>
  class uniform_int_distribution {
  public:
    // types
    using result_type = IntType;
    using param_type  = unspecified;
    // constructors and reset functions
    explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits<IntType>::max());
    explicit uniform_int_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    result_type a() const;
    result_type b() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit uniform_int_distribution(IntType a = 0, IntType b = numeric_limits<IntType>::max());
result_type a() const;
result_type b() const;
template<class RealType = double>
  class uniform_real_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructors and reset functions
    explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);
    explicit uniform_real_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    result_type a() const;
    result_type b() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit uniform_real_distribution(RealType a = 0.0, RealType b = 1.0);
result_type a() const;
result_type b() const;
class bernoulli_distribution {
public:
  // types
  using result_type = bool;
  using param_type  = unspecified;
  // constructors and reset functions
  explicit bernoulli_distribution(double p = 0.5);
  explicit bernoulli_distribution(const param_type& parm);
  void reset();
  // generating functions
  template<class URBG>
    result_type operator()(URBG& g);
  template<class URBG>
    result_type operator()(URBG& g, const param_type& parm);
  // property functions
  double p() const;
  param_type param() const;
  void param(const param_type& parm);
  result_type min() const;
  result_type max() const;
};explicit bernoulli_distribution(double p = 0.5);
double p() const;
template<class IntType = int>
  class binomial_distribution {
  public:
    // types
    using result_type = IntType;
    using param_type  = unspecified;
    // constructors and reset functions
    explicit binomial_distribution(IntType t = 1, double p = 0.5);
    explicit binomial_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    IntType t() const;
    double p() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit binomial_distribution(IntType t = 1, double p = 0.5);
IntType t() const;
double p() const;
template<class IntType = int>
  class geometric_distribution {
  public:
    // types
    using result_type = IntType;
    using param_type  = unspecified;
    // constructors and reset functions
    explicit geometric_distribution(double p = 0.5);
    explicit geometric_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    double p() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit geometric_distribution(double p = 0.5);
double p() const;
template<class IntType = int>
  class negative_binomial_distribution {
  public:
    // types
    using result_type = IntType;
    using param_type  = unspecified;
    // constructor and reset functions
    explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);
    explicit negative_binomial_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    IntType k() const;
    double p() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit negative_binomial_distribution(IntType k = 1, double p = 0.5);
IntType k() const;
double p() const;
The distribution parameter μ is also known as this distribution's mean.
template<class IntType = int>
  class poisson_distribution
  {
  public:
    // types
    using result_type = IntType;
    using param_type  = unspecified;
    // constructors and reset functions
    explicit poisson_distribution(double mean = 1.0);
    explicit poisson_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    double mean() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit poisson_distribution(double mean = 1.0);
double mean() const;
template<class RealType = double>
  class exponential_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructors and reset functions
    explicit exponential_distribution(RealType lambda = 1.0);
    explicit exponential_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    RealType lambda() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit exponential_distribution(RealType lambda = 1.0);
RealType lambda() const;
template<class RealType = double>
  class gamma_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructors and reset functions
    explicit gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0);
    explicit gamma_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    RealType alpha() const;
    RealType beta() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit gamma_distribution(RealType alpha = 1.0, RealType beta = 1.0);
RealType alpha() const;
RealType beta() const;
template<class RealType = double>
  class weibull_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructor and reset functions
    explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0);
    explicit weibull_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    RealType a() const;
    RealType b() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit weibull_distribution(RealType a = 1.0, RealType b = 1.0);
RealType a() const;
RealType b() const;
template<class RealType = double>
  class extreme_value_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructor and reset functions
    explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0);
    explicit extreme_value_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    RealType a() const;
    RealType b() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit extreme_value_distribution(RealType a = 0.0, RealType b = 1.0);
RealType a() const;
RealType b() const;
The distribution parameters μ and σ are also known as this distribution's mean and standard deviation.
template<class RealType = double>
  class normal_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructors and reset functions
    explicit normal_distribution(RealType mean = 0.0, RealType stddev = 1.0);
    explicit normal_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    RealType mean() const;
    RealType stddev() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit normal_distribution(RealType mean = 0.0, RealType stddev = 1.0);
RealType mean() const;
RealType stddev() const;
template<class RealType = double>
  class lognormal_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructor and reset functions
    explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
    explicit lognormal_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    RealType m() const;
    RealType s() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit lognormal_distribution(RealType m = 0.0, RealType s = 1.0);
RealType m() const;
RealType s() const;
template<class RealType = double>
  class chi_squared_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructor and reset functions
    explicit chi_squared_distribution(RealType n = 1);
    explicit chi_squared_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    RealType n() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit chi_squared_distribution(RealType n = 1);
RealType n() const;
template<class RealType = double>
  class cauchy_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructor and reset functions
    explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
    explicit cauchy_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    RealType a() const;
    RealType b() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit cauchy_distribution(RealType a = 0.0, RealType b = 1.0);
RealType a() const;
RealType b() const;
template<class RealType = double>
  class fisher_f_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructor and reset functions
    explicit fisher_f_distribution(RealType m = 1, RealType n = 1);
    explicit fisher_f_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    RealType m() const;
    RealType n() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit fisher_f_distribution(RealType m = 1, RealType n = 1);
RealType m() const;
RealType n() const;
template<class RealType = double>
  class student_t_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructor and reset functions
    explicit student_t_distribution(RealType n = 1);
    explicit student_t_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    RealType n() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };explicit student_t_distribution(RealType n = 1);
RealType n() const;
template<class IntType = int>
  class discrete_distribution {
  public:
    // types
    using result_type = IntType;
    using param_type  = unspecified;
    // constructor and reset functions
    discrete_distribution();
    template<class InputIterator>
      discrete_distribution(InputIterator firstW, InputIterator lastW);
    discrete_distribution(initializer_list<double> wl);
    template<class UnaryOperation>
      discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
    explicit discrete_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    vector<double> probabilities() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };discrete_distribution();
template<class InputIterator>
  discrete_distribution(InputIterator firstW, InputIterator lastW);
discrete_distribution(initializer_list<double> wl);
template<class UnaryOperation>
  discrete_distribution(size_t nw, double xmin, double xmax, UnaryOperation fw);
vector<double> probabilities() const;
in which the values , commonly known as the weights, shall be non-negative, non-NaN, and non-infinity.
template<class RealType = double>
  class piecewise_constant_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructor and reset functions
    piecewise_constant_distribution();
    template<class InputIteratorB, class InputIteratorW>
      piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,
                                      InputIteratorW firstW);
    template<class UnaryOperation>
      piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);
    template<class UnaryOperation>
      piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax,
                                      UnaryOperation fw);
    explicit piecewise_constant_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    vector<result_type> intervals() const;
    vector<result_type> densities() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };piecewise_constant_distribution();
template<class InputIteratorB, class InputIteratorW>
 piecewise_constant_distribution(InputIteratorB firstB, InputIteratorB lastB,
                                 InputIteratorW firstW);
template<class UnaryOperation>
 piecewise_constant_distribution(initializer_list<RealType> bl, UnaryOperation fw);
template<class UnaryOperation>
 piecewise_constant_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
vector<result_type> intervals() const;
vector<result_type> densities() const;
template<class RealType = double>
  class piecewise_linear_distribution {
  public:
    // types
    using result_type = RealType;
    using param_type  = unspecified;
    // constructor and reset functions
    piecewise_linear_distribution();
    template<class InputIteratorB, class InputIteratorW>
      piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB,
                                    InputIteratorW firstW);
    template<class UnaryOperation>
      piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);
    template<class UnaryOperation>
      piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
    explicit piecewise_linear_distribution(const param_type& parm);
    void reset();
    // generating functions
    template<class URBG>
      result_type operator()(URBG& g);
    template<class URBG>
      result_type operator()(URBG& g, const param_type& parm);
    // property functions
    vector<result_type> intervals() const;
    vector<result_type> densities() const;
    param_type param() const;
    void param(const param_type& parm);
    result_type min() const;
    result_type max() const;
  };piecewise_linear_distribution();
template<class InputIteratorB, class InputIteratorW>
 piecewise_linear_distribution(InputIteratorB firstB, InputIteratorB lastB,
                               InputIteratorW firstW);
template<class UnaryOperation>
 piecewise_linear_distribution(initializer_list<RealType> bl, UnaryOperation fw);
template<class UnaryOperation>
 piecewise_linear_distribution(size_t nw, RealType xmin, RealType xmax, UnaryOperation fw);
vector<result_type> intervals() const;
vector<result_type> densities() const;