Defines the voltage amplitude and phase.
partial model BusBase "Shell model for busbar definitions" Base.VoltageAmplitude V(start=1) "Voltage Amplitude"; Base.VoltageAngle delta "Voltage Angle"; ObjectStab.Base.Pin T; equation V = sqrt((1 + T.va)*(1 + T.va) + T.vb*T.vb); delta = atan(T.vb/(1 + T.va))*180/Modelica.Constants.PI; end BusBase;
Name | Default | Description |
---|---|---|
R | 0.0 | Series Resistance [p.u.] |
X | 0.1 | Series Reactance [p.u.] |
B | 0.1 | Shunt Susceptance [p.u.] |
G | 0.0 | Shunt Conductance [p.u.] |
partial model PilinkBase "Pilink" extends Base.TwoPin; parameter Base.Resistance R=0.0 "Series Resistance"; parameter Base.Reactance X=0.1 "Series Reactance"; parameter Base.Susceptance B=0.1 "Shunt Susceptance"; parameter Base.Conductance G=0.0 "Shunt Conductance"; end PilinkBase;
Shell model for with leakage reactance and impedance transformers according to [1, pp.54-55]: R+jX ---- n:1 V1, I1 --- ---()-| V2, I2 -> ---- <- The resulting expressions for the nodal current injections can be written: I1 = Yt*V1 -n*Yt*V2 I2 = -conjugate(n)*Yt*V1+conjugate(n)*n*Yt*V2 The model does NOT incorporate active or reactive losses due to the excitation current, or transformer phase shift. --- [1] J. Machowski, J.W. Bialek, and J.R. Bumby, Power System Dynamics and Stability, Number ISBN 0-471-97174. Wiley, 1993.
Name | Default | Description |
---|---|---|
R | 0.0 | Leakage Resistance [p.u.] |
X | 0.1 | Leakage Reactance [p.u.] |
partial model ImpTransformer "Shell model for transformer" extends Base.TwoPin; parameter Base.Resistance R=0.0 "Leakage Resistance"; parameter Base.Reactance X=0.1 "Leakage Reactance"; Base.TapRatio n(start=1) "Tap Ratio"; equation T2.ia = n*(-R - R*T1.va - X*T1.vb + n*R + n*R*T2.va + n*X*T2.vb)/(R^2 + X^2) ; T2.ib = n*(X + X*T1.va - R*T1.vb - n*X - n*X*T2.va + n*R*T2.vb)/(R^2 + X^2); T1.ia = -(-R - R*T1.va - X*T1.vb + n*R + n*R*T2.va + n*X*T2.vb)/(R^2 + X^2); T1.ib = -(X + X*T1.va - R*T1.vb - n*X - n*X*T2.va + n*R*T2.vb)/(R^2 + X^2); end ImpTransformer;
Extends the ImpTransformer model with definitions for time delay and transformer stepsizes according to [1]. The model measures the voltage at it's terminal T1 and compares that to the voltage reference value Vref. The reulting voltage deviation is then used as input to the control system. Using the parameter the characteristics of the mechanical delay time (Tm) and the controlled delay time (Td) the TCUL can be influenced according to the table below: --------------------------------- method| Td | Tm | --------------------------------- 1 | constant | constant | 2 | inverse | constant | 3 | inverse | inverse | 4 | both | constant | --------------------------------- Use the subclasses TCULCon for continuous approximation (more computationally) efficient or the the subclass TCULDis for the true discrete realization. --- [1] P.W. Sauer and M.A. Pai, "A comparison of discrete vs. continuous dynamic models of tap-changing-under-load transformers", in Proceedings of NSF/ECC Workshop on Bulk power System Voltage Phenomena - III : Voltage Stability, Security and Control, Davos, Switzerland, 1994.
Name | Default | Description |
---|---|---|
R | 0.0 | Leakage Resistance [p.u.] |
X | 0.1 | Leakage Reactance [p.u.] |
method | 3 | Method number |
stepsize | 0.0167 | Step Size [p.u.] |
mintap | -8 | Minimum tap step [1] |
maxtap | 8 | Maximum tap step [1] |
Tm0 | 10 | Mechanical Time Delay [s] |
Td0 | 20 | Controller Time Delay 1 [s] |
Td1 | 20 | Controller Time Delay 1 [s] |
DB | 0.03 | TCUL Voltage Deadband (double-sided) [p.u.] |
Vref | 1 | TCUL Voltage Reference [p.u.] |
partial model TCULBase "Shell model for TCULs" extends ImpTransformer; parameter Integer method=3 "Method number"; parameter Base.TapRatio stepsize=0.0167 "Step Size"; parameter Base.TapStep mintap=-8 "Minimum tap step"; parameter Base.TapStep maxtap=8 "Maximum tap step"; parameter Base.Duration Tm0=10 "Mechanical Time Delay"; parameter Base.Duration Td0=20 "Controller Time Delay 1"; parameter Base.Duration Td1=20 "Controller Time Delay 1"; parameter Base.VoltageAmplitude DB=0.03 "TCUL Voltage Deadband (double-sided)"; parameter Base.VoltageAmplitude Vref=1 "TCUL Voltage Reference"; Integer tappos "Current tap step [number]"; Base.VoltageAmplitude udev; equation udev = sqrt((1 + T1.va)*(1 + T1.va) + T1.vb*T1.vb) - Vref; end TCULBase;