ObjectStab.Generators.Partials.Generator
The complex power a generator delivers to the network is given by: S = Pg+jQg = -v * conj(i) The variables Pg and Qg corresponds to the actual active and reactive power delivered to the network.
partial model Generator "Shell model for generator" extends Base.OnePin; Base.ActivePower Pg "Generated Active Power"; Base.ReactivePower Qg "Generated Reactive Power"; Base.VoltageAmplitude V(start=1); equation V = sqrt((1 + T.va)*(1 + T.va) + T.vb*T.vb); T.ia = -(T.vb*Qg + Pg + Pg*T.va)/(1 + 2*T.va + T.va*T.va + T.vb*T.vb); T.ib = -(Pg*T.vb - Qg - T.va*Qg)/(1 + 2*T.va + T.va*T.va + T.vb*T.vb); end Generator;
ObjectStab.Generators.Partials.DetGen3
The 3rd order detailed generator model corresponds to Model 3 in [1, pp 348], and extends the DetGen class. It adds a single transient EMF source in the quatradure axis and the field voltage input. This model neglects the effect of damper windings and the damping produced by rotor eddy-currents. The effect of this damping is usually included in the damping coefficient D. --- [1] J. Machowski, J.W. Bialek, and J.R. Bumby, Power System Dynamics and Stability, Number ISBN 0-471-97174. Wiley, 1993.
| Name | Default | Description |
|---|---|---|
| H | 6 | Inertia Constant [s] |
| D | 0 | Damping Coeficient [1] |
| Pgref | 0.60 | Active Power Generation Reference [p.u.] |
| rt | 0 | Step-up Transformer Resistance [p.u.] |
| xt | 0 | Step-up Transformer Reactance [p.u.] |
| ra | 0 | Armature Resistance [p.u.] |
| xd | 0.8948 | Direct Axis Synchronous Reactance [p.u.] |
| xq | 0.84 | Quadrature Axis Synchronous Reactance [p.u.] |
| xdp | 0.30 | Direct Axis Transient Reactance [p.u.] |
| Td0p | 7 | Open-circuit Direct Axis Transient Time Constant [s] |
partial model DetGen3 "3rd Order Detailed Generator"
extends DetGen;
parameter Base.Resistance ra=0 "Armature Resistance";
parameter Base.Reactance xd=0.8948
"Direct Axis Synchronous Reactance";
parameter Base.Reactance xq=0.84
"Quadrature Axis Synchronous Reactance";
parameter Base.Reactance xdp=0.30
"Direct Axis Transient Reactance";
parameter Base.Time Td0p=7
"Open-circuit Direct Axis Transient Time Constant";
Base.VoltageRealPart Eqp(start=1);
Base.VoltageAmplitude Efd(start=1);
equation
// Transient EMF equation
Td0p*der(Eqp) = Efd - Eqp + id*(xd - xdp);
// stator equations
vd = -ra*id - xq*iq;
vq = Eqp + xdp*id - ra*iq;
// electrical power
Pe = Eqp*iq + (xdp - xq)*id*iq;
end DetGen3;
ObjectStab.Generators.Partials.DetGen6
The 6th order detailed generator model extends the DetGen class and corresponds to Model 6 in [1, pp 347], and adds subtransient EMF voltage sources in both the direct quatradure axes and the field voltage input. This model includes the damping introduced by damper winding and eddy-currents in the rotor, and the damping coefficient D should only model the damping due to friction. --- [1] J. Machowski, J.W. Bialek, and J.R. Bumby, Power System Dynamics and Stability, Number ISBN 0-471-97174. Wiley, 1993.
| Name | Default | Description |
|---|---|---|
| H | 6 | Inertia Constant [s] |
| D | 0 | Damping Coeficient [1] |
| Pgref | 0.60 | Active Power Generation Reference [p.u.] |
| rt | 0 | Step-up Transformer Resistance [p.u.] |
| xt | 0 | Step-up Transformer Reactance [p.u.] |
| ra | 0 | Armature Resistance [p.u.] |
| xd | 0.8948 | Direct Axis Synchronous Reactance [p.u.] |
| xq | 0.84 | Quadrature Axis Synchronous Reactance [p.u.] |
| xdp | 0.30 | Direct Axis Transient Reactance [p.u.] |
| xqp | 0.10 | Quadrature Axis Transient Reactance [p.u.] |
| xqpp | 0.20 | Direct Axis Subtransient Reactance [p.u.] |
| xdpp | 0.10 | Quadrature Axis Subransient Reactance [p.u.] |
| Td0p | 7 | Open-circuit Direct Axis Transient Time Constant [s] |
| Tq0p | 0.44 | Open-circuit Quadrature Axis Transient Time Constant [s] |
| Td0pp | 0.02 | Open-circuit Direct Axis Subtransient Time Constant [s] |
| Tq0pp | 0.03 | Open-circuit Quadrature Axis Subtransient Time Constant [s] |
partial model DetGen6 "6th Order Detailed Generator"
extends DetGen;
parameter Base.Resistance ra=0 "Armature Resistance";
parameter Base.Reactance xd=0.8948
"Direct Axis Synchronous Reactance";
parameter Base.Reactance xq=0.84
"Quadrature Axis Synchronous Reactance";
parameter Base.Reactance xdp=0.30
"Direct Axis Transient Reactance";
parameter Base.Reactance xqp=0.10
"Quadrature Axis Transient Reactance";
parameter Base.Reactance xqpp=0.20
"Direct Axis Subtransient Reactance";
parameter Base.Reactance xdpp=0.10
"Quadrature Axis Subransient Reactance";
parameter Base.Time Td0p=7
"Open-circuit Direct Axis Transient Time Constant";
parameter Base.Time Tq0p=0.44
"Open-circuit Quadrature Axis Transient Time Constant";
parameter Base.Time Td0pp=0.02
"Open-circuit Direct Axis Subtransient Time Constant";
parameter Base.Time Tq0pp=0.03
"Open-circuit Quadrature Axis Subtransient Time Constant";
Base.VoltageAmplitude Efd(start=1);
Base.VoltageRealPart Eqp(start=1);
Base.VoltageImagPart Edp(start=0);
Base.VoltageRealPart Eqpp(start=1);
Base.VoltageRealPart Edpp(start=0);
equation
// transient and subtransient equations
Td0pp*der(Eqpp) = Eqp - Eqpp + id*(xdp - xdpp);
Tq0pp*der(Edpp) = Edp - Edpp - iq*(xqp - xqpp);
Td0p*der(Eqp) = Efd - Eqp + id*(xd - xdp);
Tq0p*der(Edp) = -Edp - iq*(xq - xqp);
// stator equations
vd = Edpp - ra*id - xqpp*iq;
vq = Eqpp + xdpp*id - ra*iq;
// electrical power
Pe = (Edpp*id + Eqpp*iq) + (xdpp - xqpp)*id*iq;
end DetGen6;
ObjectStab.Generators.Partials.DetGen
Common definitions for detailed generator models, includeing generator step-up transformer. The terminal voltage used by the voltage regulator is the voltage on the network side of the step-up transformer. Each generator has it's own dq coordinate system, and its stator equations must therefore be related to the network (global) coordinate system using the so called Kron's transformations [1, pp. 90]. --- [1] J. Machowski, J.W. Bialek, and J.R. Bumby, Power System Dynamics and Stability, Number ISBN 0-471-97174. Wiley, 1993.
| Name | Default | Description |
|---|---|---|
| H | 6 | Inertia Constant [s] |
| D | 0 | Damping Coeficient [1] |
| Pgref | 0.60 | Active Power Generation Reference [p.u.] |
| rt | 0 | Step-up Transformer Resistance [p.u.] |
| xt | 0 | Step-up Transformer Reactance [p.u.] |
partial model DetGen "Common Definitions for Detailed Generator"
extends Generator;
parameter Base.InertiaConstant H=6 "Inertia Constant";
parameter Base.DampingCoefficient D=0 "Damping Coeficient";
parameter Base.ActivePower Pgref=0.60
"Active Power Generation Reference";
parameter Base.Resistance rt=0 "Step-up Transformer Resistance";
parameter Base.Reactance xt=0 "Step-up Transformer Reactance";
Base.VoltageAngle delta "Rotor Angle [rad]";
Base.MechanicalPower Pm(start=Pgref) "Mechanical Power";
Base.ActivePower Pe(start=Pgref) "Electrical Power";
Base.CurrentImagPart id
"Direct axis component of Armature Current";
Base.CurrentRealPart iq
"Quatrature axis component of Armature Current";
Base.VoltageImagPart vd
"Direct axis component of Armature Voltage";
Base.VoltageRealPart vq
"Quadrature axis component of Armature Voltage";
Base.AngularVelocity dw(start=0)
"Deviation from Synchronous Angular Speed";
Base.AngularVelocity w(start=Base.ws) "Angular Speed";
Real[2, 2] KronMatrix;
Base.VoltageRealPart vap;
Base.VoltageImagPart vbp;
equation
// swing equations
dw = w - Base.ws;
der(dw) = Base.ws/(2*H)*(Pm - Pe - D/Base.ws*dw);
der(delta) = dw;
// Kron's transformation, see fig 3.30 in Machovski
KronMatrix = [-sin(delta), cos(delta); cos(delta), sin(delta)];
[1 + vap; vbp] = KronMatrix*[vd; vq];
-[T.ia; T.ib] = KronMatrix*[id; iq];
// step-up transformer eqs
[T.va - vap; T.vb - vbp] = [rt, -xt; xt, rt]*[T.ia; T.ib];
end DetGen;