The complex power a generator delivers to the network is given by: S = Pg+jQg = -v * conj(i) The variables Pg and Qg corresponds to the actual active and reactive power delivered to the network.
partial model Generator "Shell model for generator" extends Base.OnePin; Base.ActivePower Pg "Generated Active Power"; Base.ReactivePower Qg "Generated Reactive Power"; Base.VoltageAmplitude V(start=1); equation V = sqrt((1 + T.va)*(1 + T.va) + T.vb*T.vb); T.ia = -(T.vb*Qg + Pg + Pg*T.va)/(1 + 2*T.va + T.va*T.va + T.vb*T.vb); T.ib = -(Pg*T.vb - Qg - T.va*Qg)/(1 + 2*T.va + T.va*T.va + T.vb*T.vb); end Generator;
The 3rd order detailed generator model corresponds to Model 3 in [1, pp 348], and extends the DetGen class. It adds a single transient EMF source in the quatradure axis and the field voltage input. This model neglects the effect of damper windings and the damping produced by rotor eddy-currents. The effect of this damping is usually included in the damping coefficient D. --- [1] J. Machowski, J.W. Bialek, and J.R. Bumby, Power System Dynamics and Stability, Number ISBN 0-471-97174. Wiley, 1993.
Name | Default | Description |
---|---|---|
H | 6 | Inertia Constant [s] |
D | 0 | Damping Coeficient [1] |
Pgref | 0.60 | Active Power Generation Reference [p.u.] |
rt | 0 | Step-up Transformer Resistance [p.u.] |
xt | 0 | Step-up Transformer Reactance [p.u.] |
ra | 0 | Armature Resistance [p.u.] |
xd | 0.8948 | Direct Axis Synchronous Reactance [p.u.] |
xq | 0.84 | Quadrature Axis Synchronous Reactance [p.u.] |
xdp | 0.30 | Direct Axis Transient Reactance [p.u.] |
Td0p | 7 | Open-circuit Direct Axis Transient Time Constant [s] |
partial model DetGen3 "3rd Order Detailed Generator" extends DetGen; parameter Base.Resistance ra=0 "Armature Resistance"; parameter Base.Reactance xd=0.8948 "Direct Axis Synchronous Reactance"; parameter Base.Reactance xq=0.84 "Quadrature Axis Synchronous Reactance"; parameter Base.Reactance xdp=0.30 "Direct Axis Transient Reactance"; parameter Base.Time Td0p=7 "Open-circuit Direct Axis Transient Time Constant"; Base.VoltageRealPart Eqp(start=1); Base.VoltageAmplitude Efd(start=1); equation // Transient EMF equation Td0p*der(Eqp) = Efd - Eqp + id*(xd - xdp); // stator equations vd = -ra*id - xq*iq; vq = Eqp + xdp*id - ra*iq; // electrical power Pe = Eqp*iq + (xdp - xq)*id*iq; end DetGen3;
The 6th order detailed generator model extends the DetGen class and corresponds to Model 6 in [1, pp 347], and adds subtransient EMF voltage sources in both the direct quatradure axes and the field voltage input. This model includes the damping introduced by damper winding and eddy-currents in the rotor, and the damping coefficient D should only model the damping due to friction. --- [1] J. Machowski, J.W. Bialek, and J.R. Bumby, Power System Dynamics and Stability, Number ISBN 0-471-97174. Wiley, 1993.
Name | Default | Description |
---|---|---|
H | 6 | Inertia Constant [s] |
D | 0 | Damping Coeficient [1] |
Pgref | 0.60 | Active Power Generation Reference [p.u.] |
rt | 0 | Step-up Transformer Resistance [p.u.] |
xt | 0 | Step-up Transformer Reactance [p.u.] |
ra | 0 | Armature Resistance [p.u.] |
xd | 0.8948 | Direct Axis Synchronous Reactance [p.u.] |
xq | 0.84 | Quadrature Axis Synchronous Reactance [p.u.] |
xdp | 0.30 | Direct Axis Transient Reactance [p.u.] |
xqp | 0.10 | Quadrature Axis Transient Reactance [p.u.] |
xqpp | 0.20 | Direct Axis Subtransient Reactance [p.u.] |
xdpp | 0.10 | Quadrature Axis Subransient Reactance [p.u.] |
Td0p | 7 | Open-circuit Direct Axis Transient Time Constant [s] |
Tq0p | 0.44 | Open-circuit Quadrature Axis Transient Time Constant [s] |
Td0pp | 0.02 | Open-circuit Direct Axis Subtransient Time Constant [s] |
Tq0pp | 0.03 | Open-circuit Quadrature Axis Subtransient Time Constant [s] |
partial model DetGen6 "6th Order Detailed Generator" extends DetGen; parameter Base.Resistance ra=0 "Armature Resistance"; parameter Base.Reactance xd=0.8948 "Direct Axis Synchronous Reactance"; parameter Base.Reactance xq=0.84 "Quadrature Axis Synchronous Reactance"; parameter Base.Reactance xdp=0.30 "Direct Axis Transient Reactance"; parameter Base.Reactance xqp=0.10 "Quadrature Axis Transient Reactance"; parameter Base.Reactance xqpp=0.20 "Direct Axis Subtransient Reactance"; parameter Base.Reactance xdpp=0.10 "Quadrature Axis Subransient Reactance"; parameter Base.Time Td0p=7 "Open-circuit Direct Axis Transient Time Constant"; parameter Base.Time Tq0p=0.44 "Open-circuit Quadrature Axis Transient Time Constant"; parameter Base.Time Td0pp=0.02 "Open-circuit Direct Axis Subtransient Time Constant"; parameter Base.Time Tq0pp=0.03 "Open-circuit Quadrature Axis Subtransient Time Constant"; Base.VoltageAmplitude Efd(start=1); Base.VoltageRealPart Eqp(start=1); Base.VoltageImagPart Edp(start=0); Base.VoltageRealPart Eqpp(start=1); Base.VoltageRealPart Edpp(start=0); equation // transient and subtransient equations Td0pp*der(Eqpp) = Eqp - Eqpp + id*(xdp - xdpp); Tq0pp*der(Edpp) = Edp - Edpp - iq*(xqp - xqpp); Td0p*der(Eqp) = Efd - Eqp + id*(xd - xdp); Tq0p*der(Edp) = -Edp - iq*(xq - xqp); // stator equations vd = Edpp - ra*id - xqpp*iq; vq = Eqpp + xdpp*id - ra*iq; // electrical power Pe = (Edpp*id + Eqpp*iq) + (xdpp - xqpp)*id*iq; end DetGen6;
Common definitions for detailed generator models, includeing generator step-up transformer. The terminal voltage used by the voltage regulator is the voltage on the network side of the step-up transformer. Each generator has it's own dq coordinate system, and its stator equations must therefore be related to the network (global) coordinate system using the so called Kron's transformations [1, pp. 90]. --- [1] J. Machowski, J.W. Bialek, and J.R. Bumby, Power System Dynamics and Stability, Number ISBN 0-471-97174. Wiley, 1993.
Name | Default | Description |
---|---|---|
H | 6 | Inertia Constant [s] |
D | 0 | Damping Coeficient [1] |
Pgref | 0.60 | Active Power Generation Reference [p.u.] |
rt | 0 | Step-up Transformer Resistance [p.u.] |
xt | 0 | Step-up Transformer Reactance [p.u.] |
partial model DetGen "Common Definitions for Detailed Generator" extends Generator; parameter Base.InertiaConstant H=6 "Inertia Constant"; parameter Base.DampingCoefficient D=0 "Damping Coeficient"; parameter Base.ActivePower Pgref=0.60 "Active Power Generation Reference"; parameter Base.Resistance rt=0 "Step-up Transformer Resistance"; parameter Base.Reactance xt=0 "Step-up Transformer Reactance"; Base.VoltageAngle delta "Rotor Angle [rad]"; Base.MechanicalPower Pm(start=Pgref) "Mechanical Power"; Base.ActivePower Pe(start=Pgref) "Electrical Power"; Base.CurrentImagPart id "Direct axis component of Armature Current"; Base.CurrentRealPart iq "Quatrature axis component of Armature Current"; Base.VoltageImagPart vd "Direct axis component of Armature Voltage"; Base.VoltageRealPart vq "Quadrature axis component of Armature Voltage"; Base.AngularVelocity dw(start=0) "Deviation from Synchronous Angular Speed"; Base.AngularVelocity w(start=Base.ws) "Angular Speed"; Real[2, 2] KronMatrix; Base.VoltageRealPart vap; Base.VoltageImagPart vbp; equation // swing equations dw = w - Base.ws; der(dw) = Base.ws/(2*H)*(Pm - Pe - D/Base.ws*dw); der(delta) = dw; // Kron's transformation, see fig 3.30 in Machovski KronMatrix = [-sin(delta), cos(delta); cos(delta), sin(delta)]; [1 + vap; vbp] = KronMatrix*[vd; vq]; -[T.ia; T.ib] = KronMatrix*[id; iq]; // step-up transformer eqs [T.va - vap; T.vb - vbp] = [rt, -xt; xt, rt]*[T.ia; T.ib]; end DetGen;