IDA Dept. of Computer and Information science, Linköping University

IDA Technical Reports: abstract

Generated: Mon, 29 May 2017 03:53:37

Doherty, P., Lukaszewicz, W., and Szalas, A. (1996). General Domain Circumscription and its First-Order Reduction. Technical Report LiTH-IDA-R-96-01, Department of Computer and Information Science, Linköping University, Sweden. (bibtex),

Abstract: We first define general domain circumscription (GDC) and provide it with a semantics. GDC subsumes existing domain circumscription proposals in that it allows varying of arbitrary predicates, functions, or constants, to maximize the minimization of the domain of a theory. We then show that for the class of "semi-universal" theories without function symbols, that the domain circumscription of such theories can be constructively reduced to logically equivalent first-order theories by using an extension of the DLS algorithm, previously proposed by the authors for reducing second-order formulas. We also show that for a certain class of domain circumscribed theories, that any arbitrary second-order circumscription policy applied to these theories is guaranteed to be reducible to a logically equivalent first-order theory. In the case of semi-universal theories with functions and arbitrary theories which are not separated, we provide additional results, which although not guaranteed to provide reductions in all cases, do provide reductions in some cases. These results are based on the use of fixpoint reductions.

Goto (at Linköping University): CS Dept TR Overview