A Systems View of Test and DFT

Outline

System and Board Test Issues
- Illustration of a system - functional and structural hierarchies and O&M
- Production test
- Test and diagnosis in the field
- Repair test

Test and DFT for SoC
- SoC characteristics
- State-of-the-art Test and DFT for SoC
- Optimal DFT implementation for different structures
- Access and isolation
- Chip level integration and external access
- Design flow
A Systems View of Test and DFT

System and Board Test Issues
Radio Network - Traffic View

O&M - Network Element Management

Centralized
E.g Remote SW handling, Network Product Inventory, Planned Area implementation

OMC
OMC

RANOS

Coordinated handling of multiple NEs

Embedded Element Management

TCP/IP over ATM

Each node contains all its own O&M functionality for EM.

Centralized
E.g Remote SW handling, Network Product Inventory, Planned Area implementation

OMC
OMC

RANOS

Coordinated handling of multiple NEs

Embedded Element Management

Each node contains all its own O&M functionality for EM.
RBS cabinet

Capacitor Unit

Base Band Subrack

MXRX: RX Module with RX Filters
TX/RX: Transmitter/Receiver Board
ENRC: Enriched RX Board
RDAC: Radio Access Board
SN: Switch Control Board
TM: Time Module Board
TX: Transmitter Board
RX: Receiver Board
AL: Alarm Interface Board
TXRX: Transmit/Receive Board
AP: Access Power Board
ANT: Antenna Interface Unit
TNC: Transceiver Board
RF: Radio Frequency Interface Board
IRU: I/O Radio Unit Board
SCD: Switch Control Board
B: Base Band Subrack
AG: Adjunct Board
MPA: Multi-Channel Power Amplifier
RF Subrack

Figure 6

Capacitor Unit
RBS Control and Communication
Subrack Space Switching

- Multi-purpose cell switch
 - Traffic
 - SW Loading
 - Internal Control Paths (ICPs)
- QoS separation
- Switch sub-components
 - Space Switch Interface Circuit (SPIC)
 - ATM Switch Core Circuit (ASCC)
- 1 + 1 switch redundancy
- Explicit routing - stateless HW
- Non-blocking within subrack
 - 510 Mbps SPIC - SPIC
 - Subrack capacity 28 × 510 Mbps
 - ASCC made for 28 × 622 Mbps
 - 53-byte cell size
RBS Control Structure
Physical building blocks of the RBS

To/from RNC (traffic & O&M access)
- Mains Power
- To/from TMS antenna'
- O&M access, TC
- SiteLAN
- EACU
- External alarms
- SCB
- TX
- RX
- BBIF
- TMS
- MP
- EACU
- O&M access, TC
- SiteLAN
- External alarms
- Mains Power
- RBS cabinet
- Power subrack
- CU or PSU/PCU
- Baseband subrack
- ET
- TU
- RFIF
- TRX
- AIU
- MCPA subrack
- MCPA
- TMA+RET
- Or RET

Mains Power
To/from RNC (traffic & O&M access)
Micro RBS
Board - Technology

• General observation: boards are very heterogeneous
• 16 layer fine pitch
• SMT, often 0.5 mm pitch packages
• BGA, CSP, DCA introduced, integrated discretes
• Mix of single ended and differential signals, e.g. LVDS, 10-200 MHz usual, +600 MHz sometimes
• On-board uP, as std components and/or in ASIC
• DSPs common in some products
• Often few, very large ASICs/SoCs
Board - Technology cont.

• FPGA common when introducing new concepts, else ASIC/SoC are deployed for major functionality
• Except the above and bus drivers, other std digital components are rare
• Oscillators and power supply
• HS electrical and opto interfaces
• Sometimes protection against over-voltage, short-circuit, etc.
ET Board
Board - Test and DFT

- Mix of many methods, more process oriented now
- Vision and X-ray, ICT
- Focus on testing interconnects and type and placement of components
- Incoming inspection rare
- Boundary scan whenever possible
Board - Test and DFT cont.

- Functional test common in radio and fixed access
- P-BIST used for functional test at speed, e.g. testing memories, interface loops
- Special instruments used in some cases, e.g. when testing communication protocols
Board - Test Problems

- Test mainly static, many dynamic faults not detected
- Functional test, e.g. P-BIST has poor diagnostics
- Download of test SW, FPGA etc. is slow
Board - Technology Forecast

- Feature sizes decreasing, convergence towards MCM
- Improved yield
- Micro BGA, CSP, DCA common
- Integrated discretes
- Few standard components
- HS interconnects dominating, e.g. LVDS
- Going towards single board systems
Board - Test Requirements

- Statistical based process test after production ramp-up
- Support for easy test of internal and external interfaces
Sub-rack - Technology

- Often multidrop, std backplane
- HS serial busses, LVDS
- Often control and data over same bus
- Un-structured multi-wire interconnects are rare
Sub-rack - Test and DFT

- Objective: to find functional anomalies and low level HW faults
- Done mainly by system level test SW
- Functional test at system speed
- Mock-up of system environment
- Simulated operator interface common
- Standardized system test platform also usual
- Test often during long time and elevated temperature
Sub-rack - Test Problems

- Diagnosis extremely time consuming
- Often trial-and-error
- Boards returned to board test are often NFFs
Network Node - Technology

• Often single or few cabinets or “box”
• Communication via fiber, microwave or radio
• Techniques for robustness and fault tolerance varies
• Network management via IP with web MMI
Network Node - Test and DFT

• Complete node test now introduced
• Replaces much of installation test
• Checks that user configuration of HW and SW works as specified
Sub-rack/Node - Test Requirements

• Inter-board interconnect test, dynamic and static better supported
• More HW test support in general
• DFT functions easily controlled by system level SW
• Hierarchical access to lower level DFT
Supervision

• Dependability is becoming a major competitive characteristic
• Soft errors and shorter IC life span
• Better and more structured supervision needed
• Both on-line and off-line test required
Test and Diagnosis in the Field

• Alarm driven tests:
 • Judge severity
 • Stop fault propagation (block function, etc.)
 • Redirect traffic
 • Test (and diagnose to plug-in unit)
 • Restart or (replace faulty unit and restart)
• Preventive tests: performed regularly and/or at low load
• Critical factors:
 • Detection capability
 • Diagnostic accuracy
 • Preventive tests: test time
Repair Test

- Always performed at plug-in units (mostly boards)
- Legacy testers and test programs from production
- Much NFF due to different fault spectrum than production test
- Trial-and-error replacement of complex components
- Repair test must be better supported
Goals - Technology View

• Qualified understanding of failure mechanisms at all levels and during the life span
• Capability to predict failures in new technologies
• Control over design verification; coverage, uncertainties, margins
• Achieving a more failure focussed test
Goals - Methodology View

- A life cycle perspective to testing is required
- Proactive engagement in early design phases to plan test and supervision implementation
- Established methods and building blocks to support test - DFT reuse
- Tools and methods to support both HW and SW BIT implementations, including trade-off support
- Composite coverage calculation must be solved
Goals - DFT View

• Architectures and concepts for self test implementation at all levels
• A hierarchical DFT concept
• SoC HW and embedded SW as a DFT platform for board and node test
• Qualified test/DFT support needed
RBS DFT Example
A Systems View of Test and DFT

Test and DFT for SoC
Technology

- CMOS 0.15 um and smaller, 3 M gates + memory
- Al -> Cu metallization
- On-chip SRAM, DRAM introduced
- uP cores, DSP cores and other IP on-chip
- Several PLLs and clock domains
- Gated clocks
- Proprietary DFT and debug features
TARAC Floorplan

Figures of Merit:

- Logic: 1731 kGates
- SRAM: 3448 kBit
- FlipFlops: 51 k
- Transistors: 27.5 M

Performance: >3000 MIPS

Max useful power: 4.1 W
(Theoretical max 6.4 W)

304 HBGA Package
230 Active I/O pins
75 Power pins

DSP Core Size
2.69 x 2.75 = 7.56 mm²
162 kGates
6.5 kWord SRAM

Chip Core Area
11.6 x 12.2 = 141.5 mm²
~ 18% routing

Logic Density in Global Blocks = 35 kGates/mm²

Total Chip Area Including Padring
12.02 x 12.52 = 151.7 mm²

VSC10p38 Pad
81.6 μm wide
210 μm high

Contents of Area
DSP1
DSP2
DSP3
DSP4
DSP5
DSP6
DSP7
DSP8

31 kGates
320 μm²
200 nF

51 kGates
462 μm²
50 nF

17 kGates
42 μm²
10 nF

20 kGates
66 μm²
10 nF

8.5 kGates
250 μm²
10 nF

3 kGates
220 μm²
10 nF
Test and DFT

- Scan mainstream for digital
- Memory BIST of different flavors
- Logic BIST ramping up, scan based
- Hard uP cores tested with proprietary DFT and vectors
- Small set of functional vectors
- A handful of IDDQ vectors
- PLLs tested with vendor methods
- Analog tested functionally
IDDQ Test

![Diagram of IDDQ Test](image)
Test Problems

- Scan vectors hardly fits in tester memory
- Scan vectors does not hit all CMOS defects
- IDDQ will not work for very large ICs
- Signal integrity becoming a problem
- Hard core testing awkward
- Test execution time increases rapidly, +10 s
Implementation Forecast

• Feature sizes decreasing, causing more leakage, lower yield, more metal migration, more soft faults
• Reuse of building blocks major design practice
• More heterogeneous chips, including analog, FPGA and flash memories
• Major chip area will be memories
• Long inter-block wires
• Reuse of building blocks major design practice
• IP’s will appear in hierarchies
BIST Requirements

• More efficient logic BIST
• New techniques for on-chip DRAM and SRAM test and repair, dual mode BIST
• BIST for Flash, FPGA etc.
• BIST for analog: PLL, A/D, D/A, etc.
• Interconnection BIST
• BIST both HW and SW implemented, support
STUMPS - Serial BIST

CUT = Circuit Under Test
BSR = Boundary Scan Register
PO, PI = Primary Output/Input
ISR = Internal Scan Register
Test Register Selection

Parallel BIST
DFT Requirements

• P1500 access and isolation
• User defined test access mechanism (TAM) strategy
• Test scheduling, driven by test time, power dissipation, DFT resource and test bus sharing, etc.
• Test controller and external access
• Management of test instructions at several levels of abstraction
• A common test and DFT architecture (HW+SW) to facilitate reuse and distributed design
Blocks with Different Test Properties

- HARD W. VECTORS
- HARD W/O VECT.
- MEMORY WITH ALGORITHM
- SOFT W/O VECT.
- PROCESSOR WITH MULT. BIST FEATURES
- UDL WITH BIST
- SOFT W/O VECT.
Boundary Scan

- HARD W. VECTORS
- MEMORY WITH ALGORITHM
- PROCESSOR WITH MULT. BIST FEATURES
- UDL WITH BIST
- SOFT W/O VECT.
- SOFT W/O VECT.
- SOFT W/O VECT.
- SOFT W/O VECT.
Test Isolation/Access Collars around Blocks
IEEE P1500
Test Bus Linked to Boundary Scan TAP
DFT for Block Test
DFT for Board/System Level Test
Embedded Test Controller
SoC DFT Architecture

Embedded Test Controller
- IP-BIST1
- IP-BIST2
- IP-BIST3
- Chip-ID
- MemBIST
- Test I/F Controller
- FuncTestuP
- TestIP-1
- TestIP-2
- TestIP-3
- TestIP-4
- FChecksum

Syst. I/F
- uP

DRAM
- IntIP
- ExtIP

FLASH
- IntIP
- P-BIST

RAM
- IntIP
- RAM
- RAM
- RAM
- RAM

I/F Controller

Diagnostic access

Board busses
LBIST Design Flow Today - Block Level

- Run Synopsys’ Design Compiler with scan insertion, but without scan routing
- Run rules checking, correct violations
- Check fault coverage
- Run test-point insertion and scan routing
- Generate signature and test bench
- Run unit delay simulation
- Run static timing simulation analysis on the BIST ready block
LBIST Design Flow Today - Chip Level

- Do chip level functional integration
- Connect scan chains to the scan router block
- Run rules checking, correct violations
- Generate clock pre-scaler, PRPG, MISR, BIST control, boundary scan cells, TAP, instruction decoder, etc.
- Add manually private instruction logic and DFT
- Verify
Design Flow Requirements

• Well integrated DFT tools:
 • Rules checking linked to behaviour/RT descriptions
 • Test points inserted at synthesis
• DFT tools at block level manageable by designers
• Both BISTed and BIST-ready support at block level
• Flexible and comprehensive
 chip level integration support
• Flexible test controller design support
• Minimal DFT rework at ECO, w.r.t. both block and
 chip levels