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Abstract 

This paper describes serial and parallel implementations of two different search techniques 
applied to the traveling salesman problem. A novel approach has been taken to parallelize 
simulated annealing and the results are compared with the traditional annealing algorithm. 
This approach uses abbreviated cooling schedule and achieves a superlinear speedup. Also a 
new search technique, called tabu search, has been adapted to execute in a parallel computing 
environment. Comparison between simulated annealing and tabu search indicate that tabu 
search consistently outperforms simulated annealing with respect to computation time while 
giving comparable solutions. F, xamples include 25, 33, 42, 50, 57, 75 and 100 city problems. 

1. Introduction 

The Traveling Salesman Problem (TSP) is a classic problem in combinatorial 
optimization research. This is because it is easily defined, and improved al- 
gorithms to find optimized solutions to this problem can be adapted to an entire 
class of NP-complete problems. 

Our objective is to implement combinatorial optimization algorithms such that 
they may execute in parallel and exchange data periodically. The goal is to study 
the potential performance improvements as compared to a single processor 
implementation of the traveling salesman problem. 

In particular, we are interested in comparing the time efficiency and cost of 
simulated annealing [1] and tabu search [2] algorithms. Each of these algorithms 
have the ability to avoid or escape local minima in searching for the global 
optimal solution. However, the method of reaching the optimal solution is very 
different as will be described later. These tmiversal search algorithms are tested 
on a specific heuristic used for the TSP problem. 

The traveling salesman problem consists of finding the shortest Hamiltonian 
circuit in a complete graph where the nodes represent cities. The weights on the 
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Fig. 1. A 2-opt move. 

edges represent the distance between cities. The cost of the tour is the total 
distance covered in traversing all the cities. Although we did not consider the 
possibility of two cities not having a direct route this can be accounted for by 
assigning the distance as some arbitrarily large value. Experiments were con- 
ducted on seven well-known problems from the literature [3], namely, the 25 city 
[2], 33 city [4], 42 city [5], 50 city [6], 57 city [4], 75 city [6] and 100 city [7] 
problems. Other algorithms and problems for the TSP are described in [9] and 
[10l. 

Each of the algorithms we will present takes an arbitrary starting solution and 
makes incremental changes to it to search for a better solution. We use moves of 
the 2-opt heuristic [8] to make these incremental changes in the tours. Basically, 
2-opt move (exchange) is the swap of two non-adjacent edges. 

In fig. 1 we have a tour on eight nodes. As an example we delete the edges 
between nodes 4 and 6 and between nodes 3 and 1. We replace them with edges 
between nodes 6 and 1 and between nodes 3 and 4. These two edges are the only 
ones which will maintain a Hamiltonian circuit. Our computer algorithms repre- 
sent a tour as an array of cities such that the index into the array corresponds to 
the position in the tour. The 2-opt swap can then be performed simply by 
reversing the order of all the cities in the tour from node 6 to node 3. The result 
of the 2-opt swap is subtracting the cost of two edges from the original tour cost 
and adding the cost of the two new edges to the tour cost. This edge exchange is 
very economical in terms of computation time. 
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2. Description of algorithms 

2.1. SIMULATED ANNEALING 

2.1. I. Physical analogy 
Simulated annealing uses the analogy of annealing to guide the use of moves 

which increase cost. Annealing is a process which finds a low energy state of a 
metal by melting it and then cooling it slowly. Temperature is the controlling 
variable in the annealing process and determines how random the energy state is. 
Let's take a simple intuitive account of why simulated annealing works. Consider 
an energy landscape as shown in fig. 2 [11]. The energy barrier equally divides the 
energy landscape into the two local minima A and B. A ball placed at random on 
the landscape and allowed to only travel downhill has an equal chance of ending 
up in A as in B. 

To increase the probability of the ball ending in B let us use shaking to 
simulate temperature in the annealing process. Due to a smaller energy barrier 
shaking is more likely to cause the ball to cross the energy barrier from A to B. 
Also, the harder we shake the more likely the ball will cross the energy barrier in 
either direction. We should therefore shake hard at first and then slowly decrease 
the intensity of shaking. As we decrease the intensity of shaking, we also decrease 
the probability of crossing the barrier in any direction. However, the ratio of 
probabilities of crossing from A to B versus from B to A is increased. Finally, the 
result is the ball stays on the side of the barrier which offers the lowest energy 
state. 

2.1.2. Simulated annealing algorithm 
The main body of the algorithm consists of two loops, where the inner loop is 

nested within an outer loop. The inner loop 

WHILE (equilibrium not reached) 
Generate-next-move( ) 
IF (Accept(Temperature 1, change-in-cost)) 

Update-tour( ) 
ENDWHILE 

runs till an equilibrium is reached. In this loop, a possible move is generated 
using the 2-opt exchange and the decision of accepting the chosen move is made 
using an accept function. If the move is accepted, it is applied to the current tour 
to generate the next tour state. Equilibrium is reached when large swings in 
average energy (miles) no longer occur at this temperature. 

I Temperature, by analogy to physical annealing process, represents the control variable for 
accepting uphill moves. 
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Fig. 2. Energy landscape. 

The outer loop 

WHILE (stopping criterion not met) 
INNER LOOP 
Calculate-new-temperature( ) 

ENDWHILE 

checks for the stopping condition to be met. Each time the inner loop is 
completed, the temperature (T) is updated using an update temperature function 
and the stopping criterion is checked again. This continues until the stopping 
criterion is met. 

The accept function 

IF (AC < 0) RETURN (TRUE) 
ELSEIF (e-aC/r > random(O, 1)) RETURN(TRUE) 
ELSE RETURN(FALSE) 

assigns a probability of accepting a move based on the current temperature and 
the change in cost (AC) which would result in the tour if the move is accepted. If 
AC is negative, meaning the cost would go down, a probability of one is assigned 
to acceptance. Otherwise the probability of acceptance is assigned the value 

probability of acceptance = exp( - AC/T ). 

- d C / T  
e 

Fig. 3. Probability function for annealing process. 
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A randomly generated number  is used to test whether the move is accepted. The 
probability function takes the shape shown in fig. 3. Notice at high temperatures 
most  uphill moves are accepted with a high probability regardless of the increase 
in cost. Eventually, as temperature decreases, only downhill  moves will be 
accepted. 

2.2. T A B U  S E A R C H  

Tabu search is an optimization technique for solving permutat ion problems [2]. 
In this technique, we start with an arbitrary permutat ion and make a succession 
of moves to transform this permutation into an optimal one (or as close to the 
op t imum as possible). In this particular setting, it is equivalent to starting with a 
randomly generated tour and making a succession of edge swaps trying to reduce 
the cost of the tour until we can find the min imum cost. As in simulated 
annealing, we use the 2-opt exchange as the basic move. 

2.2.1. The algorithm 
The hill climbing heuristic is greedy and gets stuck at local optima. But, this 

can be avoided by forming a simple tabu search procedure. Now, in order to 
guide this hill climbing process out of the local op t imum and to continue 
exploration, we have to identify the swap attributes that will be used to create a 
tabu classification. The attributes could be one of the following: 

• the cities involved in the swap, or 
• the positions they occupy,before/af ter  the swap, or 
• the direction in which the cities move in the swap. 

The tour of the cities is represented in a one-dimensional array format, with the 
array index denoting the position of the city in the tour. If the city moves from a 
lower index to a higher index during a swap, then it is said to move right. 
Conversely, if it moves from a higher index to a lower one, then it is said to move 
left. 

We also need to identify the tabu classifications based on the attributes so that 
we can specify a set of moves as tabu. These attributes are discussed in detail in 
the next section. Figure 4 shows the tabu strategy superimposed on the hill 
climbing heuristic. 

The main distinction comes in the decision making stage of the inner loop. The 
algorithm examines all the swaps of the current tour and keeps track of the 
best-swap-value, however, those that are classified as tabu are rejected if they do 
not  satisfy the aspiration criteria 2. In other words, we restrict the set of available 
swaps. The tabu status of the move is overridden and the move is accepted if the 
swap-value satisfies the aspiration level. The best-swap among all the available 

2 This is a concept  based on the observation that  it may be advantageous to override a tabu 
restriction if it promises a better solution or  a new search space. 
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swaps for the current tour is obtained at the exit of the inner loop. In the hill 
climbing method, the best-swap-value is usually negative indicating a reduction of 
the current tour cost. When it becomes positive, the process has reached its 
terminating condition. 

In tabu search, the best-swap is executed regardless of the sign of the 
best-swap-value. The best swap from the inner loop is accepted even if it results 
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in a higher tour cost. This helps the process to climb out of local optima. The 
outer loop keeps track of the best-tour and its cost. The tabu list is also suitably 
updated by including the current move made. The stopping criteria is usually a 
fixed set of iterations or a fixed computation time specified in the input. 

2.2.2. Tabu conditions 
This section presents examples of the move attributes and the tabu restrictions 

based on these attributes. In our implementation we select only one tabu 
condition for a specific tabu search process. 

1. Vector (I,  J, POSITION(I) ,  POSITION( J ) ) -  
this vector is maintained to prevent any swap in the future from resulting in 
a tour with city I and city J occupying POSITION(I)  and POSITION(J)  
respectively. 

2. Vector (I ,  J, POSITION(I) ,  P O S I T I O N ( J ) ) -  
the same vector to prevent a swap resulting in city I occupying POSITION(I)  
or city J occupying POSITION(J). 

3. Vector (I ,  POSITION( / ))-  
to prevent city I from returning to POSITION(l) .  

4. City l -  
to prevent city I from moving left of current position. 

5. City l -  
to prevent I from moving in any direction. 

6. Vector (J, POSITION( J ) ) -  
to prevent city J from returning to POSITION(J).  

7. City J -  
to prevent city J from moving right of current position. 

8. City J -  
to prevent J from moving in any direction. 

9. Cities I and J -  
to prevent both from moving. 

Conditions 3 through 9 have been established by assuming that cities I and J 
are identified such that POSITION(I) < POSITION(J).  It is obvious that condi- 
tion 1 is the least restrictive and 9 is the most restrictive. Conditions 3, 4 and 5 
have increasing restrictiveness. 

3. Serial and parallel implementation of simulated annealing 

3.1. IMPLEMENTATION OF SIMULATED ANNEALING 

To implement the simulated annealing algorithm, as described earlier, requires 
specifying the stopping and equilibrium criteria, and the update temperature rule. 
The stopping criteria chosen for the algorithm is for the temperature to reach a 
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specified value. This stopping temperature is chosen such that the probability of 
accepting an uphill move is very close to 0. We make the typical assumption that 
the equilibrium is reached after a fixed number  of iterations. The update 
temperature rule is 

new-temperature = a * temperature, 

where a is a constant less than one. 
The consequence of choosing these parameters to be simple constants is some 

increase in computation time. The simulated annealing algorithm implemented 
has as inputs the initial temperature, the number  of iterations to simulate 
equilibrium, and ix. 

3.2. PARALLEL IMPLEMENTATION OF SIMULATED ANNEALING 

There are several approaches to parallelization of algorithms. The most com- 
mon one is based on dividing (partitioning) the problem such that several 
partitions could be run in parallel and then merged. This method has good 
potential if the traveling salesman problem is based on real cartographical map. 
Then the probabilistic technique, as suggested by Held and Karp [12] could be 
implemented in parallel. Since this approach is not general for the traveling 
salesman problem and is efficient only for TSP problems with at least hundreds 
of cities due to interprocessor communication overhead, we still need another 
approach to solve each partition or the entire problem. Our basic idea is to run 
several processes, for the entire problem, in parallel and periodically compare the 
results. The search is then continued by all the processes from a common good 
solution. 

First, a main process is generated which reads in the problem definition. Then 
it creates a set of child processes on separate processors, each running an 
annealing algorithm with different parameters (starting temperature, a, number  
of iterations to equilibrium). After specified time intervals, the child processes are 
halted and the main process compares their results. It selects a good solution for 
the child process to continue with. A good solution might be the one with the 
least cost. To prevent cycling, an alternative tour is passed back if the tour is 
repetitive. 

During the parallel search, a process may start off with an entirely different 
tour after the previous results have been compared. This tour might not  corre- 
spond to the current annealing temperature. The following strategies for updating 
the temperature have been considered: 
1. Continue with the same temperature after swapping. 
2. Update temperatures in proportion to change in cost. 
3. Reset temperature to starting value. 
After some experimentation, it was found that the first two strategies did not  lead 
to good solutions, while a modification of the third strategy turned out to be very 
effective. In this case, each process is annealed at a faster rate by keeping a small 
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and reducing the number of iterations to reach equilibrium. This in turn allows 
each process to complete its annealing schedule before swapping the results. The 
temperature is reset to the starting value after the swap and this causes the 
annealing process to begin all over again from the new tour. A memory function 
assures this new tour is not repetitive. 

4. Serial and parallel implementation of tabu search 

4.1. IMPLEMENTATION OF TABU SEARCH 

4.1.1. Data structures 
In order to determine the tabu status of a move and update the tabu list 

efficiently, we need well-designed data structures. As an example, the tabu 
identification and tabu-fist update for one of the tabu conditions (condition-4) is 
described below. 

There are two fists, tabu-left and tabu-list. The first fist, tabu-left, indicates 
which cities are prevented from moving left of their current position. The second 
fist, tabu-list, contains a fixed number of cities that had been moved to the right 
in the last k iterations (k is the tabu-list size which is an input parameter). 

Updating the tabu-fist with a new city i which was moved right is done by 
incrementing an index (ring-index) to the tabu-fist and overwriting the city i at 
this new index position. This automatically removes the tabu status of the city 
which was residing in the new position of the index. In order for the index to stay 
in range of the fist, the incremen0ng is done using a mod operator: new-ring 
index = (ring-index + 1) mod tabu-size. Similar data structures have been imple- 
mented for other tabu conditions. 

4.1.2. Aspiration criterion 
The aspiration criterion we have used is straightforward. Any tabu move that 

reduces the current tour-cost to a value below the best-tour-cost obtained by the 
process so far is accepted. When the move results in a tour-cost lower than the 
best-tour-cost, it indicates a new path not previously visited and so the move can 
no longer be termed as tabu. This simple aspiration criterion is: 
tour-cost + swap-value(I, J) < best-tour-cost 

4.1.3. Tabu list size 
This parameter needs experimental tuning. It can be observed that for highly 

restrictive tabu conditions the tabu fist size has to be smaller than for lesser 
restrictive conditions. If the tabu fist size is small, cycling phenomena will be 
evident, whereas, if it is large, the process might be driven away from the vicinity 
of global optimum. The optimum tabu fist size will be the one which is long 
enough to prevent cycling but small enough to explore a continuum of solution 
space. Experimental results with the 42 and 57 city problems have shown that for 
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tabu conditions 1, 2, 3 and 6, list sizes of the order of the size of the problem is 
good. For conditions 4, 5, 7 and 8, the list size ranging from 7 to 30 gave us good 
results. 

4.1.4. Long term memory 
This is a function designed to enable the process to explore new areas of the 

solution state space. Applying tabu search from several different starting points is 
more likely to perform better than exploring from one starting point. Instead of 
starting at randomly chosen starting points, if we can provide a purposeful 
alternate starting point for search, we might be able to reach the op t imum faster. 
In our approach for an alternate starting point, we use a long term history 
function that maintains the edges visited by the process and generates a starting 
point  consisting of edges that have been visited the least. We maintain a two 
dimensional array of occurrence of each edge. After each 2-opt move, the entries 
corresponding to all the edges in the new tour are incremented. After a specified 
number of iterations, a new starting tour is generated based on the edges that 
occur least frequently. The results obtained using this memory function are very 
encouraging. We were able to reach the op t imum results for the 42 and 57 city 
problems consistently from different random starting points. 

4.2. PARALLEL IMPLEMENTATION OF TABU SEARCH 

As in parallel simulated annealing, each processor executes a process which is a 
tabu search algorithm with different tabu conditions and parameters. Here also, 
the child processes are stopped after a specified interval of time, the results 
compared and then restarted with a good solution. 

Each tabu process takes a different path because of the different parameter set 
it is given causing a wider area to be searched. After a swap, bad areas of the 
solution space are eliminated and exploration of promising regions is carried out. 
The child processes are restarted with empty tabu lists as it is pointless to apply 
previous restrictions and penalize a different tour. 

The long term memory function was removed as it interfered with swapped 
data. Any call to long term memory function would nullify the new swapped tour, 
whereas, any swap would nullify the tour obtained by calling long term memory 
function. Long term memory might be useful for very large problems whose time 
interval between swaps is large. 

5. TSP experiments 

5.1. PARALLEL ENVIRONMENT 

Our parallel computation environment consists of a Sequent Balance 8000 
computer running the DYNIX 3 operating system, a version of UNIX 4.2 bsd 4. 

3 DYNIX is a trademark of Sequent Computer, Inc. 
4 UNIX 4.2bsd is a Berkely Software Distribution version of UNIX, UNIX is a trademark of 

AT&T. 
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The Sequent Balance 8000 is a multiprocessor computer consisting of ten homo- 
geneous 32-bit processors. All of our programs are written in PPL (Parallel 
Program Language) [13], which is a set of extensions to the C programming 
language [14]. PPL is used for the ease of access to the parallel processing features 
of the Sequent Balance 8000. 

The objective in our experimentation is a comparison of the execution time 
and cost of simulated annealing and tabu search algorithms. The experiments are 
presented in four parts: simulated annealing, parallel simulated annealing, tabu 
search, and parallel tabu search. In each part we are interested in achieving 
reasonable execution time and cost, not necessarily optimal solutions. From the 
results of these experiments we make comparisons and draw conclusions. 

5.2. SIMULATED ANNEALING 

Each execution of the simulated annealing algorithm takes as input parameters 
the number of iterations to approximate equilibrium, the starting temperature, 
and the cooling rate a. These input parameters allow the algorithm to be tuned 
for a specific problem. Experiments were performed for the 25, 33, 42, 57 and 100 
city problems with proven optimum solution and for 50 and 75 city problems 
where only best solutions to date are known [3]. 

For each problem the first step in the experimentation was to execute the 
program several times, changing the input parameters in a tuning process in order 
to obtain a set of input parameters which give the most reasonable execution time 
and cost. Initially, each execution was performed on the same starting tour. These 
parameters were then tested against several starting tours. The results were used 
to determine if more tuning was necessary. 

During tuning of the algorithm we varied the input parameters throughout a 
wide range. The number of iterations to simulate equilibrium ranged from 4 to 
20. The starting temperatures varied from 10 all the way up to 10000. o~ values of 
0.98 down to 0.50 were tried. For each of these problems a different input 
parameter set was chosen from the tuning process. 

The 25 city problem was easily solved with our simulated annealing algorithm. 
The published optimum solution of 1711 miles was reached in every case from 
each of our randomly generated starting tours. The best input parameters 
obtained from tuning the algorithm resulted in execution time of 55 seconds. 
Results from applying our simulated annealing algorithm on the 33 city problem 
was nearly as good. Only once did the algorithm fail to find the published 
optimum of 10861 miles. The time required for execution of the problem was 115 
seconds. 

The process of tuning the algorithm for the 42 city problem resulted in several 
input parameter sets reaching the same minimum cost solution. The parameter set 
which found the minimum cost in shortest time took 185 seconds to execute. 
Using this input parameter set, resulting tour costs ranged from 699 miles to 705 
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miles. Roughly half of the results had a tour cost of 699 miles for our set of 
randomly generated starting tours. 

The optimal solution to the 42 city problem is published to be 699 miles [5]. 
We observed this tour to be (0 1 2 . . .  40 41). Ordinarily the simulated annealing 
algorithm is expected to result in the best tour at the end of the algorithm's 
execution. But we noticed, by using a monitor to record the best tour during a 
given run, that sometimes a better solution is found earlier than the final one. 
Exploring this phenomenon further we observed a good example of what was 
happening. As the algorithm reached a low temperature the optimal solution of 
699 miles was found. However, the algorithm then accepted a move which 
resulted in a cost increase of 10 miles even though the probability of acceptance 
was only 0.0007. The resulting tour was (0 1 2 . . .  11 12 14 13 15 16. . .  40 41). The 
next move found which decreased the cost resulted in the tour 
(0 1 2 . . .  11 12 16 15 13 14 17 18. . .  40 41) with a cost of 701 miles. After this set 
of moves, it requires the reverse set of moves to return to the optimal solution. 
But the uphill step needed had only a 0.07% chance of being accepted. In fact the 
algorithm remained stuck with a final tour cost of 701 miles. Also note the 
resulting tour had three edges which are not a part of the optimal solution. We 
therefore feel the edge exchange of the 3-opt heuristic may have overcome these 
problems. 

The 57 city problem proved to be more difficult. The best result achieved 
during tuning of the algorithm for this problem had a tour cost of 12955 miles. 
The shortest time to find this cost was 673 seconds. Using these parameters and 
applying the algorithm to random starting tours resulted in the same best tour 
about 15% of the time. The published optimum tour cost for this problem is in 
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fact 12955 miles [4]. Although reaching the optimum 15% of the time may seem 
small, attempting to reach it more often would require large increases in time. 
Besides, all non-optimal results were within less than one percent of optimum. 
Resulting tour costs found ranged from 12955 n~es  to 13042 miles. 

Figure 5 shows graphically how the simulated annealing algorithm progressed 
on the 57 city problem for an example starting tour. Each point on the graph 
represents the tour cost at an equilibrium point and the time it was reached. 
Notice that even equilibrium points later in time (smaller temperature) can have 
higher cost. Figure 6 contains an enlargement of a portion of fig. 5 to provide 
better detail. 

The 100 city problem was the most difficult. The published optimal solution is 
21282 miles when the problem is executed using floating point numbers. This 
corresponds to a tour cost of 21247 miles when the elements of the cost matrix 
are truncated, as we did in our experiments for the 100 city problem, for the same 
tour. While tuning our algorithm for this problem we chose cooling schedules 
which took up to 10 hours to complete. However, we never reached the optimal 
solution. The cooling schedule we finally choose required 4900 seconds to 
execute. Using this schedule our results ranged from 21267 miles to 21356 miles 
on our randomly generated set of starting tours. 

The final two problems we considered have no proven optimal solutions. The 
best published solution to the 50 city problem is 430 miles and 553 miles for the 
75 city problem. Executing our simulated annealing algorithm on the 50 city 
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problem resulted in two solutions better than the best published for our randomly 
generated starting tours. Our results ranged from 425 miles to 438 miles, 
including solutions of 425 miles and 429 miles. The time to execute our algorithm 
on this problem was 280 seconds. 

For the 75 city problem our algorithm resulted in 4 out of 6 solutions of better 
quality than the best published on our set of randomly generated starting tours. 
The two remaining solutions included one which equalled the best published, and 
one two miles longer. The solutions beating the best published had tour costs of 
541, 542, 542, and 550 miles. The time to execute our algorithm on this problem 
was 315 seconds. 

5.3. PARALLEL SIMULATED ANNEALING 

The next part of our experiments dealt with parallel implementat ion of 
simulated annealing. Recall the basic algorithm for our implementat ion was to 
execute several simulated annealing processes in parallel on multiple processors 
and periodically compare the results. Each time the results are compared all 
processes continue with a common tour. The period at which results are com- 
pared is based on time. However, all processes must be at equilibrium. Each 
process executes a simulated annealing algorithm with different input  parameters. 
In our experiments we attempted three strategies for implementing the cooling 
schedule for our parallel simulated annealing algorithm. 

The first strategy for the cooling schedule was simply to continue with the 
schedule from the point from which it was interrupted for tour comparisons. 
Each process had its own cooling schedule which corresponded to a reasonable 
schedule for a serial implementation. Experimentation with this strategy provided 
unsatisfactory results. Our first impression ,was that the temperature of each 
process when applied to the new tour, was not representative of the state of the 
new tour. 

Our next strategy was to update the current temperature each time tours were 
compared by some proportional amount  based on the new tour cost. In other 
words, each time a process stopped for the tour comparisons, not only did the 
process get a new tour to continue with, but  it also updated its current tempera- 
ture in proportion to the change in cost of the two tours. This added a new 
variable to the algorithm which set the proportion at which the temperature was 
updated. Unfortunately, our experiments failed to find results which were satis- 
factory. Not  surprisingly, we observed at this point  that the simulated annealing 
cooling strategy was very sensitive to being disturbed. 

Finally, we decided to let the cooling schedule complete before comparing 
results. The cooling schedule in this strategy was chosen differently than the 
previous two. In this case, the cooling rate of each schedule was selected such that 
it could be repeated several times in the same time period that a reasonable serial 
implementation required. The strategy was to allow each process to  complete a 
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different abbreviated schedule, compare results, and repeat the annealing process 
on the resulting new tour. Although abbreviating the cooling schedule is believed 
to be contrary to the theory of simulated annealing, experimentation with this 
strategy demonstrated promising results. This departure from the framework of 
simulated annealing might be viewed as a variation of probabilistic tabu search 
[2] in a relaxed form. 

Our experiments were conducted by giving one process a very high starting 
temperature, a small number of iterations, and a small value for a. Each 
additional process was given a progressively smaller starting temperature, larger 
number of iterations, and larger a. The input parameters for each process were 
chosen so that all processes required about the same amount of time to complete 
their cooling schedule. The intuitive idea was to have processes choosing the 
lowest energy side of different size energy barriers. 

Our implementation of parallel simulated annealing gave optimal results for 
the 25 city problem for every randomly generated starting point. Not only was 
the optimal tour found, but it was found on the first iteration, before any tour 
exchange was performed. This implies that even though the algorithm took 58 
seconds to execute five iterations, only one 12 second iteration was needed. The 
33 city problem proved to be very similar. For this problem the optimal solution 
of 10861 miles was found for each of our starting tours. This optimum solution 
was reached on the first or second iteration for each execution. The time required 
to execute the algorithms' five iterations was 72 seconds, while the optimum was 
always reached within 27 seconds. 

Our parallel simulated annealing algorithm gave optimum results for the 42 
city problem for all but one randomly generated starting points. The" one 
execution which failed to produce the optimal solution found a tour of 701 miles. 
The time required to execute the algorithm was 210 seconds, a little longer than 
required by the serial algorithm. However, confidence of reaching the optimal 
solution has increased significantly for the parallel implementation. 

For the 57 city problem our parallel simulated annealing algorithm executed in 
225 seconds while the serial implementation required 673 seconds, about one 
third of the time. In fact the optimal solution was reached in as little as 94 
seconds, eight times faster than the serial version with only four processors! 

Figure 7 shows graphically how our parallel simulated annealing algorithm 
progressed on the 57 city problem for an example starting tour. As in the serial 
version, each point represents the tour cost at an equilibrium point and the time it 
was reached. Figure 8 contains an enlargement of a portion of fig. 7 to provide 
better detail. 

As in our serial simulated annealing algorithm, the 100 city problem was the 
most difficult for parallel simulated annealing algorithm. For this problem we 
allowed our algorithm to execute 15 iterations. This still required only 900 
seconds, compared to 4900 seconds for the serial version. The quality of solution 
is nearly the same for both techniques. 
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Fig. 7. Tour cost versus execution time for 57 city problem using parallel simulated annealing. 

The difficulty of the 100 city problem brings out some very interesting ideas of 
comparison. It has become obvious that the harder the problem, the more 
advantageous the parallel simulated annealing algorithm is. In fig. 9 we have 
plotted the speed up of our parallel simulated annealing algorithm versus the 
number of processors. In this graph, speedup is defined to be the ratio of time for 
the serial simulated annealing algorithm execution to the time for the parallel 
simulated annealing algorithm execution. Notice that the speedup for two 
processor system was 11 times. Intuitively this phenomenal speedup could be 
attributed to the fact that each processor uses an abbreviated and different 
cooling schedule. Figure 10 shows a family of curves giving solution quality 
versus time the parallel simulated annealing algorithm is allowed to execute. Each 
curve is for a given number of processors. Each point represents the cost of the 
best solution the algorithm has considered at a given time. These points are taken 
at the tour exchange times for the algorithm. 
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Solutions from execution of our parallel simulated annealing algorithm on the 
50 city problem ranged from 427 miles to 435 miles. The best published solution 
of 430 miles was surpassed in 50% of our set of starting points. The time for 
execution of 5 iterations was 258 seconds, slightly better than the serial version. 
The average quality of solution is also a little bit better for the parallel version. 

Execution of the 75 city problem resulted in the solutions better than the best 
published in all but one of our set of starting tours. The best tour cost obtained 
was 540 miles compared to the previously published best tour cost of 553 miles. 
As in the 50 city problem, the time to execute the parallel algorithm was slightly 
less than the serial algorithm while improving the average quality of result. 

5.4.  T A B U  S E A R C H  

The first stage in developing the tabu search algorithm was the implementation 
of the hill climbing heuristic. The hill climbing algorithm was then transformed 
into the tabu search algorithm using the nine different tabu conditions discussed 
earlier. The tabu search process has the following input parameters: 

• tabu condition, 
• tabu list size and 
• total number of iterations. 

The tabu condition and the tabu list size are two interdependant parameters and 
the algorithm is very sensitive to both of them. A smaller tabu list size for a 
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Fig. 11. Tour cost versus execution time for 57 city problem using tabu search algorithm. 

weaker tabu condition will result in cycling, whereas, a larger tabu list size for a 
stronger tabu condition could drive the search process away from the global 
optimum. A compromise had to bo reached and experiments were conducted for 
all the nine tabu conditions to find out a reasonable range of tabu list sizes for 
each of these conditions. Generally, tabu list sizes from one-fourth to one-third 
the number of cities for conditions 4 and 7, and about one-fifth for conditions 5, 
8 and 9 gave the best results for the problems tested. Conditions 1, 2, 3 and 6 
required tabu list sizes in the vicinity of the problem size. On an average, tabu 
conditions 4 and 7 produced better results in a shorter time than the other 
conditions. 

The next step was to include the long term memory function. This function 
requires the tuning of an additional input parameter- the number of iterations in 
tabu search before generating a new starting tour. The algorithm must be given 
sufficient search time in its current path before generating a totally different 
starting tour. The performance of the algorithm with long term memory function 
was compared with the original tabu search algorithm by making the total 
number of iterations and the starting points identical for both versions. For every 
run, the algorithm with the memory function outperformed the simpler version in 
both computation time and the quality of the solution. 

Figure 11 shows the search process of the tabu algorithm for a particular 
starting instance of the 57 city problem. Each point in the graph indicates the 
tour cost after the best swap was made by the algorithm. The peaks in the graph 
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Fig.  12. M a g n i f i e d  g r a p h  o f  a sec t ion  o f  fig. 11. 

indicate the new starting points in the search process generated by the long term 
memory function. Figure 12, an enlargement of a portion of fig. 11, clearly shows 
the tabu search process escaping the local optima by accepting uphill moves and 
as shown in fig. 11, finding the global optimum. 

On the 25, 33 and 42 city problems, the tabu search algorithm produced the 
published optimal results of 1711, 10861 and 699 miles respectively from each of 
the randomly selected starting tours. The number of iterations required to 
produce the optimum result for the 25 city problem ranged from 18 to 38 for a 
total run time of less than 12 seconds in each case. For the 33 city problem, the 
range was from 29 to 271 iterations taking about 30 seconds. For the 42 city 
problem, the optimum was attained in less than 30 seconds in each run with the 
number of iterations ranging from 33 to 117. 

The 57 city problem proved to be more difficult with the optimum of 12955 
miles attained twice with six randomly selected starting tours. But, the worst tour 
cost in these runs was only 13067 miles. The number of iterations for these 
random starting tours to reach the best tour varied from 73 to 897 iterations 
requiring a maximum of 262 seconds. The best solution found by tabu search for 
the 100 city problem was 21317 miles taking 1193 iterations (about 16 minutes). 

For the 50 and 75 city problems whose optimal solutions are unknown, tabu 
search easily beat the best previously published results. The best solution for the 
50 city problem had a tour length of 426 miles and tabu search equalled or 
bettered the best previously known solution of 431 miles in 7 out of 12 runs 
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conducted. The average time at which the best solution was found in each run 
was 54 seconds. Tabu search superceded the previous best result of 553 miles for 
the 75 city problem in 11 out of 12 runs. The best solution had a tour length of 
537 miles and the average time taken to reach the best solution in each run was 
112 seconds. 

5.5. PARALLEL TABU SEARCH 

In the parallel implementation, the parameters of each tabu search process 
were chosen differently to ensure that their search space did not overlap. In 
addition, the long term memory function was removed because of its interference 
with the swapped data. Since the main process compares the results of the child 
processes and decides on a good starting tour, the call to the long term memory 
function would nullify the decision made by the main process. 

All the experiments were conducted with one main process and four child 
processes running different tabu conditions in parallel. For the 25, 33 and 42 city 
problems, the speedup due to parallelism was not  very noticeable because of the 
small run times and the relative ease with which the serial algorithm produces 
op t imum results. For the 57 city problem, the optimal result was obtained more 
consistently and in a shorter time period. Eight out of twelve runs produced the 
opt imum taking an average of about 56 seconds. The parallel search process 
produced a better tour length of 425 miles for the 50 city problem. The speedup 
was not very noticeable in this case also. On an average the quality of the 
solutions were better than the se3-ial algorithm. The parallel algorithm also 
obtained a superior solution in the 75 city problem with a tour length of 535 
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Fig. 13. Plot of the best 50 city tour, tour cost = 425 miles. 
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Fig. 14. Plot of the best 50 city tour, tour cost = 426 miles. 

miles in 132 seconds. Every run with a different random starting tour beat the 
best result published with an average run time of 140 seconds. The best tour for 
the 50 city problem obtained during our experimentation is plotted in fig. 13. 
Figure 14 shows the tour that is only one mile longer. Observe that there is a 
substantial difference between these tours despite only one mile difference in the 
tour cost. Furthermore, in fig. 15 the best tour for a 75 city problem is depicted. 
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Fig. 15. Plot of the best 75 city tour, tour cost = 535 miles. 
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Figure 16 shows graphically how the parallel tabu algorithm progressed on the 
57 city problem for an example starting tour. The vertical dashed lines represent 
the instances at which the main process compares the intermediate results of the 
child processes and supplies them with the common starting tour. 

6. Comparative analysis and conclusions 

We have implemented simulated annealing and tabu search algorithms for the 
traveling salesman problem to compare their performance with respect to time 
and tour cost. Both serial and parallel implementations produced many interest- 
hag results that can be compared in four ways as follows. 

1. First, we observed significant improvement, in both execution time and tour 
cost, of parallel implementation of simulated annealing over serial one. In 
fact, surprisingly, the speedup (ratio of serial execution time to parallel 
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execution time to obtain best result) ranged from two to sixteen times on a 
two to seven processor implementation for a given set of randomly gener- 
ated initial tours. In fact for a 100 city problem we have achieved an 
incredible speedup of 11 times on a two processor system! Intuitively, this 
phenomenon could be attributed to the abbreviated and different cooling 
schedules. Furthermore, tour cost was consistently better for a parallel 
implementation. Figure 17 shows the comparison of execution times for the 
serial and parallel implementations of simulated annealing for six randomly 
generated starting tours of the 57 city problem. 

2. Parallel tabu search implementation not only outperformed the serial one 
with respect to both time and cost, but also consistently produced results 
comparable and in some instances better than the parallel implementation 
of simulated annealing. For the 50 and 75 city problems, the parallel tabu 
search produced better than the best published to date tour lengths. 

3. In our experimentation with simulated annealing and tabu search, we also 
observe that tabu search outperformed simulated annealing in terms of 
execution time and cost in serial implementation of these algorithms. Figure 
18 provides a graphical comparison for the performance of the two al- 
gorithms. For the 42 city problem our data indicates that in general, tabu 
search finds better results in about one-ninth of the execution time. Tabu 
search also gave optimum solutions consistently. Similar comparisons of our 
data for the 57 city problem indicate that the time taken by tabu search to 
reach comparable results had a speed-up ranging from 5 to 26 over that of 
simulated annealing. 
As shown in the above examples, the tabu search pretty consistently 
outperforms simulated annealing with respect to execution time and cost. 
On the other hand, simulated annealing parameters, once determined, are 
pretty stable for a wide range of applications while tabu search parameters 
might need to be adjusted depending on problem size and application. Tabu 
search is still in its infancy, leaving many research issues unexplored. 

4. While serial implementation of tabu search consistently outperforms serial 
simulated annealing in terms of time and cost, the performance of parallel 
incarnations of these algorithms appears to be comparable with respect to 
cost, but, tabu search is much faster. Further research is needed to reach 
definite conclusions on this matter. 

Parallel computing has created a new environment in which better results can 
be obtained in shorter time for many algorithms. The traveling salesman problem 
example is shown in this study. A lot of research is needed to explore different 
ways of executing algorithms in parallel and many experiments are required to 
confirm effectiveness of paraUelization methods. One of the ways is a new 
method of combining algorithms, which we call a hybrid algorithm technique. 
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Initial results of applying this technique to the traveling salesman problem are 
reported in [15]. 
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