
Annals of Operations Research, 21 (1989) 59-84 59

SERIAL AND PARALLEL SIMULATED ANNEALING AND TABU SEARCH
ALGORITHMS FOR THE TRAVELING SALESMAN P R O B L E M

Miroslaw MALEK, Mohan GURUSWAMY, Mihix PANDYA

Department of Electrical and Computer Engineerin~ The University of Texas at Austin, Austin,
Texas 78712, U.S.A.

and

Howard OWENS

Microcomputer Division, Motorola lnc.

Abstract

This paper describes serial and parallel implementations of two different search techniques
applied to the traveling salesman problem. A novel approach has been taken to parallelize
simulated annealing and the results are compared with the traditional annealing algorithm.
This approach uses abbreviated cooling schedule and achieves a superlinear speedup. Also a
new search technique, called tabu search, has been adapted to execute in a parallel computing
environment. Comparison between simulated annealing and tabu search indicate that tabu
search consistently outperforms simulated annealing with respect to computation time while
giving comparable solutions. F, xamples include 25, 33, 42, 50, 57, 75 and 100 city problems.

1. Introduction

The Traveling Salesman Problem (TSP) is a classic problem in combinatorial
optimization research. This is because it is easily defined, and improved al-
gorithms to find optimized solutions to this problem can be adapted to an entire
class of NP-complete problems.

Our objective is to implement combinatorial optimization algorithms such that
they may execute in parallel and exchange data periodically. The goal is to study
the potential performance improvements as compared to a single processor
implementation of the traveling salesman problem.

In particular, we are interested in comparing the time efficiency and cost of
simulated annealing [1] and tabu search [2] algorithms. Each of these algorithms
have the ability to avoid or escape local minima in searching for the global
optimal solution. However, the method of reaching the optimal solution is very
different as will be described later. These tmiversal search algorithms are tested
on a specific heuristic used for the TSP problem.

The traveling salesman problem consists of finding the shortest Hamiltonian
circuit in a complete graph where the nodes represent cities. The weights on the

© J.C. Baltzer A.G. Scientific Publishing Company

60 M. Malek et al. / Algorithms for TSP

0

5 ~ J 6

7

COMPUTER REPRESENTATION OF TOURS:

[0 2 4 6 7 5 3 1]

[0 2 4 3 5 7 6 1]

Fig. 1. A 2-opt move.

edges represent the distance between cities. The cost of the tour is the total
distance covered in traversing all the cities. Although we did not consider the
possibility of two cities not having a direct route this can be accounted for by
assigning the distance as some arbitrarily large value. Experiments were con-
ducted on seven well-known problems from the literature [3], namely, the 25 city
[2], 33 city [4], 42 city [5], 50 city [6], 57 city [4], 75 city [6] and 100 city [7]
problems. Other algorithms and problems for the TSP are described in [9] and
[10l.

Each of the algorithms we will present takes an arbitrary starting solution and
makes incremental changes to it to search for a better solution. We use moves of
the 2-opt heuristic [8] to make these incremental changes in the tours. Basically,
2-opt move (exchange) is the swap of two non-adjacent edges.

In fig. 1 we have a tour on eight nodes. As an example we delete the edges
between nodes 4 and 6 and between nodes 3 and 1. We replace them with edges
between nodes 6 and 1 and between nodes 3 and 4. These two edges are the only
ones which will maintain a Hamiltonian circuit. Our computer algorithms repre-
sent a tour as an array of cities such that the index into the array corresponds to
the position in the tour. The 2-opt swap can then be performed simply by
reversing the order of all the cities in the tour from node 6 to node 3. The result
of the 2-opt swap is subtracting the cost of two edges from the original tour cost
and adding the cost of the two new edges to the tour cost. This edge exchange is
very economical in terms of computation time.

M. Malek et al. / Algorithms for TSP 61

2. Description of algorithms

2.1. SIMULATED ANNEALING

2.1. I. Physical analogy
Simulated annealing uses the analogy of annealing to guide the use of moves

which increase cost. Annealing is a process which finds a low energy state of a
metal by melting it and then cooling it slowly. Temperature is the controlling
variable in the annealing process and determines how random the energy state is.
Let's take a simple intuitive account of why simulated annealing works. Consider
an energy landscape as shown in fig. 2 [11]. The energy barrier equally divides the
energy landscape into the two local minima A and B. A ball placed at random on
the landscape and allowed to only travel downhill has an equal chance of ending
up in A as in B.

To increase the probability of the ball ending in B let us use shaking to
simulate temperature in the annealing process. Due to a smaller energy barrier
shaking is more likely to cause the ball to cross the energy barrier from A to B.
Also, the harder we shake the more likely the ball will cross the energy barrier in
either direction. We should therefore shake hard at first and then slowly decrease
the intensity of shaking. As we decrease the intensity of shaking, we also decrease
the probability of crossing the barrier in any direction. However, the ratio of
probabilities of crossing from A to B versus from B to A is increased. Finally, the
result is the ball stays on the side of the barrier which offers the lowest energy
state.

2.1.2. Simulated annealing algorithm
The main body of the algorithm consists of two loops, where the inner loop is

nested within an outer loop. The inner loop

WHILE (equilibrium not reached)
Generate-next-move()
IF (Accept(Temperature 1, change-in-cost))

Update-tour()
ENDWHILE

runs till an equilibrium is reached. In this loop, a possible move is generated
using the 2-opt exchange and the decision of accepting the chosen move is made
using an accept function. If the move is accepted, it is applied to the current tour
to generate the next tour state. Equilibrium is reached when large swings in
average energy (miles) no longer occur at this temperature.

I Temperature, by analogy to physical annealing process, represents the control variable for
accepting uphill moves.

62 M. Malek et aL / Algorithms for TSP

B

Fig. 2. Energy landscape.

The outer loop

WHILE (stopping criterion not met)
INNER LOOP
Calculate-new-temperature()

ENDWHILE

checks for the stopping condition to be met. Each time the inner loop is
completed, the temperature (T) is updated using an update temperature function
and the stopping criterion is checked again. This continues until the stopping
criterion is met.

The accept function

IF (AC < 0) RETURN (TRUE)
ELSEIF (e-aC/r > random(O, 1)) RETURN(TRUE)
ELSE RETURN(FALSE)

assigns a probability of accepting a move based on the current temperature and
the change in cost (AC) which would result in the tour if the move is accepted. If
AC is negative, meaning the cost would go down, a probability of one is assigned
to acceptance. Otherwise the probability of acceptance is assigned the value

probability of acceptance = exp(- AC/T).

- d C / T
e

Fig. 3. Probability function for annealing process.

M. Malek et al. / Algorithms for TSP 63

A randomly generated number is used to test whether the move is accepted. The
probability function takes the shape shown in fig. 3. Notice at high temperatures
most uphill moves are accepted with a high probability regardless of the increase
in cost. Eventually, as temperature decreases, only downhill moves will be
accepted.

2.2. T A B U S E A R C H

Tabu search is an optimization technique for solving permutat ion problems [2].
In this technique, we start with an arbitrary permutat ion and make a succession
of moves to transform this permutation into an optimal one (or as close to the
op t imum as possible). In this particular setting, it is equivalent to starting with a
randomly generated tour and making a succession of edge swaps trying to reduce
the cost of the tour until we can find the min imum cost. As in simulated
annealing, we use the 2-opt exchange as the basic move.

2.2.1. The algorithm
The hill climbing heuristic is greedy and gets stuck at local optima. But, this

can be avoided by forming a simple tabu search procedure. Now, in order to
guide this hill climbing process out of the local op t imum and to continue
exploration, we have to identify the swap attributes that will be used to create a
tabu classification. The attributes could be one of the following:

• the cities involved in the swap, or
• the positions they occupy,before/af ter the swap, or
• the direction in which the cities move in the swap.

The tour of the cities is represented in a one-dimensional array format, with the
array index denoting the position of the city in the tour. If the city moves from a
lower index to a higher index during a swap, then it is said to move right.
Conversely, if it moves from a higher index to a lower one, then it is said to move
left.

We also need to identify the tabu classifications based on the attributes so that
we can specify a set of moves as tabu. These attributes are discussed in detail in
the next section. Figure 4 shows the tabu strategy superimposed on the hill
climbing heuristic.

The main distinction comes in the decision making stage of the inner loop. The
algorithm examines all the swaps of the current tour and keeps track of the
best-swap-value, however, those that are classified as tabu are rejected if they do
not satisfy the aspiration criteria 2. In other words, we restrict the set of available
swaps. The tabu status of the move is overridden and the move is accepted if the
swap-value satisfies the aspiration level. The best-swap among all the available

2 This is a concept based on the observation that it may be advantageous to override a tabu
restriction if it promises a better solution or a new search space.

64 M. Malek et at / Algorithms for TSP

no swaps left

i
UPDATE tour cost
tour-cost -- tour-cost

+ Best-swap-value
Execute Best-swap:

(Best-I, Best-J)

1 !

Update TABU List t
Update Aspiration I level

No

GENERATE STARTING
T O U R ' S '

Best-tour-cost=cost(S)

1
INITIALIZE
Best-swap-value=99999..

1 !

GO THROUGH ALL [Examine next swap
SWAPS (I,J) one at a F time

J IS ~ RECORD this swap as
J Iv r~ " r A ~ No the Best-swap.

~ . ~ J ~ Best-swap-value
~ J = swap(U);

Best-I -- I ; Best-J = J ;

~ ~ Yes

I N n ,,

IMPROVEDsoLUTION I [Stopping rule based
Best-tour-cost I ~ on total number of

/ iterations or = current tour-cost) l__/total time elapsed
Update Best-tour

Fig. 4. Tabu search.

proceed to examine swaps for new
current solution

swaps for the current tour is obtained at the exit of the inner loop. In the hill
climbing method, the best-swap-value is usually negative indicating a reduction of
the current tour cost. When it becomes positive, the process has reached its
terminating condition.

In tabu search, the best-swap is executed regardless of the sign of the
best-swap-value. The best swap from the inner loop is accepted even if it results

M. Malek et al. / Algorithms for TSP 65

in a higher tour cost. This helps the process to climb out of local optima. The
outer loop keeps track of the best-tour and its cost. The tabu list is also suitably
updated by including the current move made. The stopping criteria is usually a
fixed set of iterations or a fixed computation time specified in the input.

2.2.2. Tabu conditions
This section presents examples of the move attributes and the tabu restrictions

based on these attributes. In our implementation we select only one tabu
condition for a specific tabu search process.

1. Vector (I, J, POSITION(I) , POSITION(J)) -
this vector is maintained to prevent any swap in the future from resulting in
a tour with city I and city J occupying POSITION(I) and POSITION(J)
respectively.

2. Vector (I , J, POSITION(I) , P O S I T I O N (J)) -
the same vector to prevent a swap resulting in city I occupying POSITION(I)
or city J occupying POSITION(J).

3. Vector (I , POSITION(/))-
to prevent city I from returning to POSITION(l) .

4. City l -
to prevent city I from moving left of current position.

5. City l -
to prevent I from moving in any direction.

6. Vector (J, POSITION(J)) -
to prevent city J from returning to POSITION(J).

7. City J -
to prevent city J from moving right of current position.

8. City J -
to prevent J from moving in any direction.

9. Cities I and J -
to prevent both from moving.

Conditions 3 through 9 have been established by assuming that cities I and J
are identified such that POSITION(I) < POSITION(J). It is obvious that condi-
tion 1 is the least restrictive and 9 is the most restrictive. Conditions 3, 4 and 5
have increasing restrictiveness.

3. Serial and parallel implementation of simulated annealing

3.1. IMPLEMENTATION OF SIMULATED ANNEALING

To implement the simulated annealing algorithm, as described earlier, requires
specifying the stopping and equilibrium criteria, and the update temperature rule.
The stopping criteria chosen for the algorithm is for the temperature to reach a

66 M. Malek et al. / Algorithms for TSP

specified value. This stopping temperature is chosen such that the probability of
accepting an uphill move is very close to 0. We make the typical assumption that
the equilibrium is reached after a fixed number of iterations. The update
temperature rule is

new-temperature = a * temperature,

where a is a constant less than one.
The consequence of choosing these parameters to be simple constants is some

increase in computation time. The simulated annealing algorithm implemented
has as inputs the initial temperature, the number of iterations to simulate
equilibrium, and ix.

3.2. PARALLEL IMPLEMENTATION OF SIMULATED ANNEALING

There are several approaches to parallelization of algorithms. The most com-
mon one is based on dividing (partitioning) the problem such that several
partitions could be run in parallel and then merged. This method has good
potential if the traveling salesman problem is based on real cartographical map.
Then the probabilistic technique, as suggested by Held and Karp [12] could be
implemented in parallel. Since this approach is not general for the traveling
salesman problem and is efficient only for TSP problems with at least hundreds
of cities due to interprocessor communication overhead, we still need another
approach to solve each partition or the entire problem. Our basic idea is to run
several processes, for the entire problem, in parallel and periodically compare the
results. The search is then continued by all the processes from a common good
solution.

First, a main process is generated which reads in the problem definition. Then
it creates a set of child processes on separate processors, each running an
annealing algorithm with different parameters (starting temperature, a, number
of iterations to equilibrium). After specified time intervals, the child processes are
halted and the main process compares their results. It selects a good solution for
the child process to continue with. A good solution might be the one with the
least cost. To prevent cycling, an alternative tour is passed back if the tour is
repetitive.

During the parallel search, a process may start off with an entirely different
tour after the previous results have been compared. This tour might not corre-
spond to the current annealing temperature. The following strategies for updating
the temperature have been considered:
1. Continue with the same temperature after swapping.
2. Update temperatures in proportion to change in cost.
3. Reset temperature to starting value.
After some experimentation, it was found that the first two strategies did not lead
to good solutions, while a modification of the third strategy turned out to be very
effective. In this case, each process is annealed at a faster rate by keeping a small

M. Malek et al. / Algorithms for TSP 67

and reducing the number of iterations to reach equilibrium. This in turn allows
each process to complete its annealing schedule before swapping the results. The
temperature is reset to the starting value after the swap and this causes the
annealing process to begin all over again from the new tour. A memory function
assures this new tour is not repetitive.

4. Serial and parallel implementation of tabu search

4.1. IMPLEMENTATION OF TABU SEARCH

4.1.1. Data structures
In order to determine the tabu status of a move and update the tabu list

efficiently, we need well-designed data structures. As an example, the tabu
identification and tabu-fist update for one of the tabu conditions (condition-4) is
described below.

There are two fists, tabu-left and tabu-list. The first fist, tabu-left, indicates
which cities are prevented from moving left of their current position. The second
fist, tabu-list, contains a fixed number of cities that had been moved to the right
in the last k iterations (k is the tabu-list size which is an input parameter).

Updating the tabu-fist with a new city i which was moved right is done by
incrementing an index (ring-index) to the tabu-fist and overwriting the city i at
this new index position. This automatically removes the tabu status of the city
which was residing in the new position of the index. In order for the index to stay
in range of the fist, the incremen0ng is done using a mod operator: new-ring
index = (ring-index + 1) mod tabu-size. Similar data structures have been imple-
mented for other tabu conditions.

4.1.2. Aspiration criterion
The aspiration criterion we have used is straightforward. Any tabu move that

reduces the current tour-cost to a value below the best-tour-cost obtained by the
process so far is accepted. When the move results in a tour-cost lower than the
best-tour-cost, it indicates a new path not previously visited and so the move can
no longer be termed as tabu. This simple aspiration criterion is:
tour-cost + swap-value(I, J) < best-tour-cost

4.1.3. Tabu list size
This parameter needs experimental tuning. It can be observed that for highly

restrictive tabu conditions the tabu fist size has to be smaller than for lesser
restrictive conditions. If the tabu fist size is small, cycling phenomena will be
evident, whereas, if it is large, the process might be driven away from the vicinity
of global optimum. The optimum tabu fist size will be the one which is long
enough to prevent cycling but small enough to explore a continuum of solution
space. Experimental results with the 42 and 57 city problems have shown that for

68 M. Malek et al. / Algorithms for TSP

tabu conditions 1, 2, 3 and 6, list sizes of the order of the size of the problem is
good. For conditions 4, 5, 7 and 8, the list size ranging from 7 to 30 gave us good
results.

4.1.4. Long term memory
This is a function designed to enable the process to explore new areas of the

solution state space. Applying tabu search from several different starting points is
more likely to perform better than exploring from one starting point. Instead of
starting at randomly chosen starting points, if we can provide a purposeful
alternate starting point for search, we might be able to reach the op t imum faster.
In our approach for an alternate starting point, we use a long term history
function that maintains the edges visited by the process and generates a starting
point consisting of edges that have been visited the least. We maintain a two
dimensional array of occurrence of each edge. After each 2-opt move, the entries
corresponding to all the edges in the new tour are incremented. After a specified
number of iterations, a new starting tour is generated based on the edges that
occur least frequently. The results obtained using this memory function are very
encouraging. We were able to reach the op t imum results for the 42 and 57 city
problems consistently from different random starting points.

4.2. PARALLEL IMPLEMENTATION OF TABU SEARCH

As in parallel simulated annealing, each processor executes a process which is a
tabu search algorithm with different tabu conditions and parameters. Here also,
the child processes are stopped after a specified interval of time, the results
compared and then restarted with a good solution.

Each tabu process takes a different path because of the different parameter set
it is given causing a wider area to be searched. After a swap, bad areas of the
solution space are eliminated and exploration of promising regions is carried out.
The child processes are restarted with empty tabu lists as it is pointless to apply
previous restrictions and penalize a different tour.

The long term memory function was removed as it interfered with swapped
data. Any call to long term memory function would nullify the new swapped tour,
whereas, any swap would nullify the tour obtained by calling long term memory
function. Long term memory might be useful for very large problems whose time
interval between swaps is large.

5. TSP experiments

5.1. PARALLEL ENVIRONMENT

Our parallel computation environment consists of a Sequent Balance 8000
computer running the DYNIX 3 operating system, a version of UNIX 4.2 bsd 4.

3 DYNIX is a trademark of Sequent Computer, Inc.
4 UNIX 4.2bsd is a Berkely Software Distribution version of UNIX, UNIX is a trademark of

AT&T.

M. Malek et al. / Algorithms for TSP 69

The Sequent Balance 8000 is a multiprocessor computer consisting of ten homo-
geneous 32-bit processors. All of our programs are written in PPL (Parallel
Program Language) [13], which is a set of extensions to the C programming
language [14]. PPL is used for the ease of access to the parallel processing features
of the Sequent Balance 8000.

The objective in our experimentation is a comparison of the execution time
and cost of simulated annealing and tabu search algorithms. The experiments are
presented in four parts: simulated annealing, parallel simulated annealing, tabu
search, and parallel tabu search. In each part we are interested in achieving
reasonable execution time and cost, not necessarily optimal solutions. From the
results of these experiments we make comparisons and draw conclusions.

5.2. SIMULATED ANNEALING

Each execution of the simulated annealing algorithm takes as input parameters
the number of iterations to approximate equilibrium, the starting temperature,
and the cooling rate a. These input parameters allow the algorithm to be tuned
for a specific problem. Experiments were performed for the 25, 33, 42, 57 and 100
city problems with proven optimum solution and for 50 and 75 city problems
where only best solutions to date are known [3].

For each problem the first step in the experimentation was to execute the
program several times, changing the input parameters in a tuning process in order
to obtain a set of input parameters which give the most reasonable execution time
and cost. Initially, each execution was performed on the same starting tour. These
parameters were then tested against several starting tours. The results were used
to determine if more tuning was necessary.

During tuning of the algorithm we varied the input parameters throughout a
wide range. The number of iterations to simulate equilibrium ranged from 4 to
20. The starting temperatures varied from 10 all the way up to 10000. o~ values of
0.98 down to 0.50 were tried. For each of these problems a different input
parameter set was chosen from the tuning process.

The 25 city problem was easily solved with our simulated annealing algorithm.
The published optimum solution of 1711 miles was reached in every case from
each of our randomly generated starting tours. The best input parameters
obtained from tuning the algorithm resulted in execution time of 55 seconds.
Results from applying our simulated annealing algorithm on the 33 city problem
was nearly as good. Only once did the algorithm fail to find the published
optimum of 10861 miles. The time required for execution of the problem was 115
seconds.

The process of tuning the algorithm for the 42 city problem resulted in several
input parameter sets reaching the same minimum cost solution. The parameter set
which found the minimum cost in shortest time took 185 seconds to execute.
Using this input parameter set, resulting tour costs ranged from 699 miles to 705

70 M. Malek et al. / Algorithms for TSP

miles. Roughly half of the results had a tour cost of 699 miles for our set of
randomly generated starting tours.

The optimal solution to the 42 city problem is published to be 699 miles [5].
We observed this tour to be (0 1 2 . . . 40 41). Ordinarily the simulated annealing
algorithm is expected to result in the best tour at the end of the algorithm's
execution. But we noticed, by using a monitor to record the best tour during a
given run, that sometimes a better solution is found earlier than the final one.
Exploring this phenomenon further we observed a good example of what was
happening. As the algorithm reached a low temperature the optimal solution of
699 miles was found. However, the algorithm then accepted a move which
resulted in a cost increase of 10 miles even though the probability of acceptance
was only 0.0007. The resulting tour was (0 1 2 . . . 11 12 14 13 15 16. . . 40 41). The
next move found which decreased the cost resulted in the tour
(0 1 2 . . . 11 12 16 15 13 14 17 18. . . 40 41) with a cost of 701 miles. After this set
of moves, it requires the reverse set of moves to return to the optimal solution.
But the uphill step needed had only a 0.07% chance of being accepted. In fact the
algorithm remained stuck with a final tour cost of 701 miles. Also note the
resulting tour had three edges which are not a part of the optimal solution. We
therefore feel the edge exchange of the 3-opt heuristic may have overcome these
problems.

The 57 city problem proved to be more difficult. The best result achieved
during tuning of the algorithm for this problem had a tour cost of 12955 miles.
The shortest time to find this cost was 673 seconds. Using these parameters and
applying the algorithm to random starting tours resulted in the same best tour
about 15% of the time. The published optimum tour cost for this problem is in

70000-

60000-

50000-

Tour Cost

40000-
(miles)

30000-

12955

I
0

Ma~ifl~ m Fig. 6

l I I I l I I
1~ 200 300 4~ 5~ 600 7~

Ex~ufion T~e (soc~

Fig. 5. Tour cost versus execution time for 57 city problem using simulated annealing.

M. Malek et al. / Algorithms for TSP 71

2 0 0 0 0 -

18000 -

1 4 0 0 0 -

12955 .

Tour Cost
16000-

(miles)

12000 -

I I I I I I I I I
0 50 100 150 200 250 300 350 400

Execution Time (secs)

Fig. 6, Magnification of a section of fig. 5.

fact 12955 miles [4]. Although reaching the optimum 15% of the time may seem
small, attempting to reach it more often would require large increases in time.
Besides, all non-optimal results were within less than one percent of optimum.
Resulting tour costs found ranged from 12955 n~es to 13042 miles.

Figure 5 shows graphically how the simulated annealing algorithm progressed
on the 57 city problem for an example starting tour. Each point on the graph
represents the tour cost at an equilibrium point and the time it was reached.
Notice that even equilibrium points later in time (smaller temperature) can have
higher cost. Figure 6 contains an enlargement of a portion of fig. 5 to provide
better detail.

The 100 city problem was the most difficult. The published optimal solution is
21282 miles when the problem is executed using floating point numbers. This
corresponds to a tour cost of 21247 miles when the elements of the cost matrix
are truncated, as we did in our experiments for the 100 city problem, for the same
tour. While tuning our algorithm for this problem we chose cooling schedules
which took up to 10 hours to complete. However, we never reached the optimal
solution. The cooling schedule we finally choose required 4900 seconds to
execute. Using this schedule our results ranged from 21267 miles to 21356 miles
on our randomly generated set of starting tours.

The final two problems we considered have no proven optimal solutions. The
best published solution to the 50 city problem is 430 miles and 553 miles for the
75 city problem. Executing our simulated annealing algorithm on the 50 city

72 M. Malek et al. / Algorithms for TSP

problem resulted in two solutions better than the best published for our randomly
generated starting tours. Our results ranged from 425 miles to 438 miles,
including solutions of 425 miles and 429 miles. The time to execute our algorithm
on this problem was 280 seconds.

For the 75 city problem our algorithm resulted in 4 out of 6 solutions of better
quality than the best published on our set of randomly generated starting tours.
The two remaining solutions included one which equalled the best published, and
one two miles longer. The solutions beating the best published had tour costs of
541, 542, 542, and 550 miles. The time to execute our algorithm on this problem
was 315 seconds.

5.3. PARALLEL SIMULATED ANNEALING

The next part of our experiments dealt with parallel implementat ion of
simulated annealing. Recall the basic algorithm for our implementat ion was to
execute several simulated annealing processes in parallel on multiple processors
and periodically compare the results. Each time the results are compared all
processes continue with a common tour. The period at which results are com-
pared is based on time. However, all processes must be at equilibrium. Each
process executes a simulated annealing algorithm with different input parameters.
In our experiments we attempted three strategies for implementing the cooling
schedule for our parallel simulated annealing algorithm.

The first strategy for the cooling schedule was simply to continue with the
schedule from the point from which it was interrupted for tour comparisons.
Each process had its own cooling schedule which corresponded to a reasonable
schedule for a serial implementation. Experimentation with this strategy provided
unsatisfactory results. Our first impression ,was that the temperature of each
process when applied to the new tour, was not representative of the state of the
new tour.

Our next strategy was to update the current temperature each time tours were
compared by some proportional amount based on the new tour cost. In other
words, each time a process stopped for the tour comparisons, not only did the
process get a new tour to continue with, but it also updated its current tempera-
ture in proportion to the change in cost of the two tours. This added a new
variable to the algorithm which set the proportion at which the temperature was
updated. Unfortunately, our experiments failed to find results which were satis-
factory. Not surprisingly, we observed at this point that the simulated annealing
cooling strategy was very sensitive to being disturbed.

Finally, we decided to let the cooling schedule complete before comparing
results. The cooling schedule in this strategy was chosen differently than the
previous two. In this case, the cooling rate of each schedule was selected such that
it could be repeated several times in the same time period that a reasonable serial
implementation required. The strategy was to allow each process to complete a

M. Malek et al. /Algorithms for TSP 73

different abbreviated schedule, compare results, and repeat the annealing process
on the resulting new tour. Although abbreviating the cooling schedule is believed
to be contrary to the theory of simulated annealing, experimentation with this
strategy demonstrated promising results. This departure from the framework of
simulated annealing might be viewed as a variation of probabilistic tabu search
[2] in a relaxed form.

Our experiments were conducted by giving one process a very high starting
temperature, a small number of iterations, and a small value for a. Each
additional process was given a progressively smaller starting temperature, larger
number of iterations, and larger a. The input parameters for each process were
chosen so that all processes required about the same amount of time to complete
their cooling schedule. The intuitive idea was to have processes choosing the
lowest energy side of different size energy barriers.

Our implementation of parallel simulated annealing gave optimal results for
the 25 city problem for every randomly generated starting point. Not only was
the optimal tour found, but it was found on the first iteration, before any tour
exchange was performed. This implies that even though the algorithm took 58
seconds to execute five iterations, only one 12 second iteration was needed. The
33 city problem proved to be very similar. For this problem the optimal solution
of 10861 miles was found for each of our starting tours. This optimum solution
was reached on the first or second iteration for each execution. The time required
to execute the algorithms' five iterations was 72 seconds, while the optimum was
always reached within 27 seconds.

Our parallel simulated annealing algorithm gave optimum results for the 42
city problem for all but one randomly generated starting points. The" one
execution which failed to produce the optimal solution found a tour of 701 miles.
The time required to execute the algorithm was 210 seconds, a little longer than
required by the serial algorithm. However, confidence of reaching the optimal
solution has increased significantly for the parallel implementation.

For the 57 city problem our parallel simulated annealing algorithm executed in
225 seconds while the serial implementation required 673 seconds, about one
third of the time. In fact the optimal solution was reached in as little as 94
seconds, eight times faster than the serial version with only four processors!

Figure 7 shows graphically how our parallel simulated annealing algorithm
progressed on the 57 city problem for an example starting tour. As in the serial
version, each point represents the tour cost at an equilibrium point and the time it
was reached. Figure 8 contains an enlargement of a portion of fig. 7 to provide
better detail.

As in our serial simulated annealing algorithm, the 100 city problem was the
most difficult for parallel simulated annealing algorithm. For this problem we
allowed our algorithm to execute 15 iterations. This still required only 900
seconds, compared to 4900 seconds for the serial version. The quality of solution
is nearly the same for both techniques.

74 M. Malek et al. / Algorithms for TSP

Instances of Comparison

2

24000-

T o u r C o s t

(miles)

12000 -

I I I
I I I

miffed ~ i I
P ! I t
! 1

I I i I I I ~ I I

50 100 150 200 250
Execution Time (s~s)

Fig. 7. Tour cost versus execution time for 57 city problem using parallel simulated annealing.

The difficulty of the 100 city problem brings out some very interesting ideas of
comparison. It has become obvious that the harder the problem, the more
advantageous the parallel simulated annealing algorithm is. In fig. 9 we have
plotted the speed up of our parallel simulated annealing algorithm versus the
number of processors. In this graph, speedup is defined to be the ratio of time for
the serial simulated annealing algorithm execution to the time for the parallel
simulated annealing algorithm execution. Notice that the speedup for two
processor system was 11 times. Intuitively this phenomenal speedup could be
attributed to the fact that each processor uses an abbreviated and different
cooling schedule. Figure 10 shows a family of curves giving solution quality
versus time the parallel simulated annealing algorithm is allowed to execute. Each
curve is for a given number of processors. Each point represents the cost of the
best solution the algorithm has considered at a given time. These points are taken
at the tour exchange times for the algorithm.

1 4 0 0 0 -

13500 -

Tour Cost
(miles)

13000 -

12500 -

12000 -

15

"-. ~..,.x~ ...~....~ ' \ ~ ' , - ~ ~ , ~ ,

. ""U-._'~_~--.-.~ \ " f : ." ~ . : - - - ~ _.

I I I I

50 70 90 110
Execution Time (secs)

Fig. 8. Magnif ica t ion of a sect ion of fig. 7.

5 -

lO-

Speed-up

0 -

• IO W Oel~ 9~0 I l i t OeaQO IOOmOO OOQ I° 46g O

. . . ' "

M. Malek et al. / Algorithms for TSP 75

I I I I
0 2 4 6

Number of processors

Fig. 9. Spe~d-up vs. n u m b e r of processors.

76 M. Malek et at / Algorithms for TSP

21900 -

21700 -

Tour Cost
(miles)

21500 -

21300 -

7 processors
5 processors
3 processors

v

"M. %%

I I I I
0 200 400 600 800

Execution Time (sees)

Fig. 10. Q u a l i t y o f s o l u t i o n s as a f u n c t i o n of n u m b e r of p r o c e s s o r s .

Solutions from execution of our parallel simulated annealing algorithm on the
50 city problem ranged from 427 miles to 435 miles. The best published solution
of 430 miles was surpassed in 50% of our set of starting points. The time for
execution of 5 iterations was 258 seconds, slightly better than the serial version.
The average quality of solution is also a little bit better for the parallel version.

Execution of the 75 city problem resulted in the solutions better than the best
published in all but one of our set of starting tours. The best tour cost obtained
was 540 miles compared to the previously published best tour cost of 553 miles.
As in the 50 city problem, the time to execute the parallel algorithm was slightly
less than the serial algorithm while improving the average quality of result.

5.4. T A B U S E A R C H

The first stage in developing the tabu search algorithm was the implementation
of the hill climbing heuristic. The hill climbing algorithm was then transformed
into the tabu search algorithm using the nine different tabu conditions discussed
earlier. The tabu search process has the following input parameters:

• tabu condition,
• tabu list size and
• total number of iterations.

The tabu condition and the tabu list size are two interdependant parameters and
the algorithm is very sensitive to both of them. A smaller tabu list size for a

M. Malek et a L / Algorithms for TSP 77

60000 ~

50000-

40000-

Tour Cost
(miles)

30000-

12955
10000-

I I I I I I
0 40 80 120 160 200

Execution Time (secs)

Fig. 11. Tour cost versus execution time for 57 city problem using tabu search algorithm.

weaker tabu condition will result in cycling, whereas, a larger tabu list size for a
stronger tabu condition could drive the search process away from the global
optimum. A compromise had to bo reached and experiments were conducted for
all the nine tabu conditions to find out a reasonable range of tabu list sizes for
each of these conditions. Generally, tabu list sizes from one-fourth to one-third
the number of cities for conditions 4 and 7, and about one-fifth for conditions 5,
8 and 9 gave the best results for the problems tested. Conditions 1, 2, 3 and 6
required tabu list sizes in the vicinity of the problem size. On an average, tabu
conditions 4 and 7 produced better results in a shorter time than the other
conditions.

The next step was to include the long term memory function. This function
requires the tuning of an additional input parameter- the number of iterations in
tabu search before generating a new starting tour. The algorithm must be given
sufficient search time in its current path before generating a totally different
starting tour. The performance of the algorithm with long term memory function
was compared with the original tabu search algorithm by making the total
number of iterations and the starting points identical for both versions. For every
run, the algorithm with the memory function outperformed the simpler version in
both computation time and the quality of the solution.

Figure 11 shows the search process of the tabu algorithm for a particular
starting instance of the 57 city problem. Each point in the graph indicates the
tour cost after the best swap was made by the algorithm. The peaks in the graph

78 M. Malek et al. I Algorithms for TSP

14500 -

Tour Cost
(miles)

13500 -

12955 -

12500 -

I I I I I I I
100 105 110 115 120 125 130

Execution Time (sees)

Fig. 12. M a g n i f i e d g r a p h o f a sec t ion o f fig. 11.

indicate the new starting points in the search process generated by the long term
memory function. Figure 12, an enlargement of a portion of fig. 11, clearly shows
the tabu search process escaping the local optima by accepting uphill moves and
as shown in fig. 11, finding the global optimum.

On the 25, 33 and 42 city problems, the tabu search algorithm produced the
published optimal results of 1711, 10861 and 699 miles respectively from each of
the randomly selected starting tours. The number of iterations required to
produce the optimum result for the 25 city problem ranged from 18 to 38 for a
total run time of less than 12 seconds in each case. For the 33 city problem, the
range was from 29 to 271 iterations taking about 30 seconds. For the 42 city
problem, the optimum was attained in less than 30 seconds in each run with the
number of iterations ranging from 33 to 117.

The 57 city problem proved to be more difficult with the optimum of 12955
miles attained twice with six randomly selected starting tours. But, the worst tour
cost in these runs was only 13067 miles. The number of iterations for these
random starting tours to reach the best tour varied from 73 to 897 iterations
requiring a maximum of 262 seconds. The best solution found by tabu search for
the 100 city problem was 21317 miles taking 1193 iterations (about 16 minutes).

For the 50 and 75 city problems whose optimal solutions are unknown, tabu
search easily beat the best previously published results. The best solution for the
50 city problem had a tour length of 426 miles and tabu search equalled or
bettered the best previously known solution of 431 miles in 7 out of 12 runs

M. Malek et al. / Algorithms for TSP 79

conducted. The average time at which the best solution was found in each run
was 54 seconds. Tabu search superceded the previous best result of 553 miles for
the 75 city problem in 11 out of 12 runs. The best solution had a tour length of
537 miles and the average time taken to reach the best solution in each run was
112 seconds.

5.5. PARALLEL TABU SEARCH

In the parallel implementation, the parameters of each tabu search process
were chosen differently to ensure that their search space did not overlap. In
addition, the long term memory function was removed because of its interference
with the swapped data. Since the main process compares the results of the child
processes and decides on a good starting tour, the call to the long term memory
function would nullify the decision made by the main process.

All the experiments were conducted with one main process and four child
processes running different tabu conditions in parallel. For the 25, 33 and 42 city
problems, the speedup due to parallelism was not very noticeable because of the
small run times and the relative ease with which the serial algorithm produces
op t imum results. For the 57 city problem, the optimal result was obtained more
consistently and in a shorter time period. Eight out of twelve runs produced the
opt imum taking an average of about 56 seconds. The parallel search process
produced a better tour length of 425 miles for the 50 city problem. The speedup
was not very noticeable in this case also. On an average the quality of the
solutions were better than the se3-ial algorithm. The parallel algorithm also
obtained a superior solution in the 75 city problem with a tour length of 535

42 7 6 25 3027 f5

Y co-ordina30 _

10 - 3 ~ 8

0-
I I I I I' I I I
0 I0 20 30 40 50 60 70

x co-ordinate

Fig. 13. Plot of the best 50 city tour, tour cost = 425 miles.

80 M. Malek et al. /Algorithms for TSP

70- 25__~3o 27 a5
6

50- \ I

4 0 - - ~ ~ ~ 8 5 9~
y co-ordinate

30-

I 0 - 3 ~ -

0 -

I I I I I I I I
0 10 20 30 40 50 60 70

x co-ordinate

Fig. 14. Plot of the best 50 city tour, tour cost = 426 miles.

miles in 132 seconds. Every run with a different random starting tour beat the
best result published with an average run time of 140 seconds. The best tour for
the 50 city problem obtained during our experimentation is plotted in fig. 13.
Figure 14 shows the tour that is only one mile longer. Observe that there is a
substantial difference between these tours despite only one mile difference in the
tour cost. Furthermore, in fig. 15 the best tour for a 75 city problem is depicted.

80

7O

6O

5 0 -

y co-ordinate 40-

30-

20-

10-

0 -

30

I I I t I I I I I
0 10 20 30 40 50 60 70 80

x co-ordinate

Fig. 15. Plot of the best 75 city tour, tour cost = 535 miles.

M. Malek et al. / Algorithms for TSP 81

16000 -

15500 -

15000 -

14500 -

Tour Cost
(miles)

14000 -

13500 -

13000 -

12500 -

12000 -

I n s t ances of Comparison

2

A : " : I •
I i1" .

J, • i I' % I I I
, / \ , ,

! I

I I I I I I
0 50 ' 100 150 200 250

Execution Time (sees)

Fig. 16. T o u r cos t versus execu t ion t ime for 57 city p r o b l e m us ing para l le l t abu search .

Figure 16 shows graphically how the parallel tabu algorithm progressed on the
57 city problem for an example starting tour. The vertical dashed lines represent
the instances at which the main process compares the intermediate results of the
child processes and supplies them with the common starting tour.

6. Comparative analysis and conclusions

We have implemented simulated annealing and tabu search algorithms for the
traveling salesman problem to compare their performance with respect to time
and tour cost. Both serial and parallel implementations produced many interest-
hag results that can be compared in four ways as follows.

1. First, we observed significant improvement, in both execution time and tour
cost, of parallel implementation of simulated annealing over serial one. In
fact, surprisingly, the speedup (ratio of serial execution time to parallel

82 M. Malek et aL / Algorithms for TSP

execution time to obtain best result) ranged from two to sixteen times on a
two to seven processor implementation for a given set of randomly gener-
ated initial tours. In fact for a 100 city problem we have achieved an
incredible speedup of 11 times on a two processor system! Intuitively, this
phenomenon could be attributed to the abbreviated and different cooling
schedules. Furthermore, tour cost was consistently better for a parallel
implementation. Figure 17 shows the comparison of execution times for the
serial and parallel implementations of simulated annealing for six randomly
generated starting tours of the 57 city problem.

2. Parallel tabu search implementation not only outperformed the serial one
with respect to both time and cost, but also consistently produced results
comparable and in some instances better than the parallel implementation
of simulated annealing. For the 50 and 75 city problems, the parallel tabu
search produced better than the best published to date tour lengths.

3. In our experimentation with simulated annealing and tabu search, we also
observe that tabu search outperformed simulated annealing in terms of
execution time and cost in serial implementation of these algorithms. Figure
18 provides a graphical comparison for the performance of the two al-
gorithms. For the 42 city problem our data indicates that in general, tabu
search finds better results in about one-ninth of the execution time. Tabu
search also gave optimum solutions consistently. Similar comparisons of our
data for the 57 city problem indicate that the time taken by tabu search to
reach comparable results had a speed-up ranging from 5 to 26 over that of
simulated annealing.
As shown in the above examples, the tabu search pretty consistently
outperforms simulated annealing with respect to execution time and cost.
On the other hand, simulated annealing parameters, once determined, are
pretty stable for a wide range of applications while tabu search parameters
might need to be adjusted depending on problem size and application. Tabu
search is still in its infancy, leaving many research issues unexplored.

4. While serial implementation of tabu search consistently outperforms serial
simulated annealing in terms of time and cost, the performance of parallel
incarnations of these algorithms appears to be comparable with respect to
cost, but, tabu search is much faster. Further research is needed to reach
definite conclusions on this matter.

Parallel computing has created a new environment in which better results can
be obtained in shorter time for many algorithms. The traveling salesman problem
example is shown in this study. A lot of research is needed to explore different
ways of executing algorithms in parallel and many experiments are required to
confirm effectiveness of paraUelization methods. One of the ways is a new
method of combining algorithms, which we call a hybrid algorithm technique.

M. Malek et al. / Algorithms for TSP 83

600-

400- Execution Time for Best
Solution (sees)

200-

serial

I I

i I

X i i

• I I

t
t

~ parallel

.... I ~' I I I I I

! 2 3 4 5 6

Run Number

Fig. 17. Comparison of serial and parallel simulated annealing.

60000 w

50000-

40000-
Tour Cost
(miles)

30000-

20000-

12955 -
10000-

tabu search
simulated annealing

. _ ~ - _L_~_---_--.7_~.. -, ~=_-._-~ _

Fig. 18. Comparison of serial simulated ~nncaling and tabu search.

I I I I I I I I I I
0 50 100 150 200 250 300 350 400 450

Execution Time (sccs)

84 M. Malek et al. / Algorithms for TSP

Initial results of applying this technique to the traveling salesman problem are
reported in [15].

Acknowledgement

We would like to express our appreciation to Dr. Fred Glover for helpful
discussions and insightful comments on the earlier versions of this paper.

This research was supported in part by the Office of Naval Research under
Grants Nos. N00014-86-K-0554 and N00014-88-K-0543.

References

[1] S. Kirkpatrick, C.D. Gelatt and M.P. Vechi, Optimization by simulated annealing, Science 220
(May 13, 1983) Number 4598.

[2] F. Glover, Tabu search, Center for Applied Artificial Intelligence, Graduate School of
Business, University of Colorado, Boulder, 1988.

[3] E.L. Lawler, J.K. Lenstra and A.H.G. Rimnooy Kan, eds., The Traveling Salesman Problem
(North-Holland, 1985).

[4] R.L. Karg and G.L.'Thompson, A heuristic approach to solving travelling-salesman problems,
Management Science 10 (1964) 225-247.

[5] G.B. Dantzig, D.R. Fulkerson and S.M. Johnson, Solution of a large-scale travelling-salesman
problem, Operations Research 2 (1954) 393-410.

[6] N. Christofides and S. Eilon, An algorithm for vehicle dispatching problem, Operational Res.
Q. 20 (1969) 309-318.

[7] P. Krolak, W. Felts and G. Marble, A man-machine approach towards solving the travelling
salesman problem, Communications of the Association for Computing Machinery 14 (1971)
327-334.

[8] S. Lin and B.W. Kernighan, An effective heuristic algorithm for the traveling salesman
problem, Oper. Res. 21 (1973) 495-516.

[9] R.G. Parker and R.L. Rardin, The traveling salesman problem: an update of research, Naval
Research Logistics Quarterly 30 (1983) 69-96.

[10] M. Padberg and G. Rinaldi, Optimization of a 532-city symmetric traveling salesman problem
by branch and cut, Operations Research Letters 6, no. 1 (1987) 1-7.

[11] G.E. Hinton and T.J. Sejnowski, Learning and relearning in Boltzmarm machines, in: Parallel
Distributed Processing, Vol. 1 (MIT Press, 1986).

[12] M. Held and R.M. Karp, The travelling salesman problem and minimum spanning trees, part
I, Operations Research 18 (1970) 1138-1162; Part II, Mathematical Programming 1 (1971)
6-26.

[13] H. Schwetman, PPL Reference Manual, version 1.1 (Microelectronics and Computer Technol-
ogy Corporation, 1985).

[14] B.W. Kernighan and D.M. Ritchie, The C Programming Language (Prentice-Hall, 1978).
[15] M. Malek, M. Guruswamy, H. Owens and M. Pandya, A hybrid algorithm technique,

Technical Report, Dept. of Computer Sciences, The University of Texas at Austin, TR-89-06,
1989.

