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A b s t r a c t  

We describe the main features of tabu search, emphasizing a perspective for guiding 
a user to understand basic implementation principles for solving combinatorial or nonlinear 
problems. We also identify recent developments and extensions that have contributed 
to increasing the efficiency of the method. One of the useful aspects of tabu search is 
the ability to adapt a rudimentary prototype implementation to encompass additional 
model elements, such as new types of constraints and objective functions. Similarly, the 
method itself can be evolved to varying levels of sophistication. We provide several 
examples of discrete optimization problems to illustrate the strategic concerns of tabu 
search, and to show how they may be exploited in various contexts. Our presentation 
is motivated by the emergence of an extensive literature of computational results, which 
demonstrates that a well-tuned implementation makes it possible to obtain solutions of 
high quality for difficult problems, yielding outcomes in some settings that have not 
been matched by other known techniques. 
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1. In troduc t ion  

The  abundance  o f  di f f icul t  opt imizat ion problems encountered  in practical  
set t ings (e.g. te lecommunica t ions ,  logistics,  f inancial  p lanning,  t ranspor ta t ion and 
product ion)  has mot ivated a prol iferat ion o f  opt imizat ion techniques.  

Researchers  have adapted ideas from many  areas in the quest  to develop more  
ef f ic ient  procedures.  Ne twork  f low methods,  for  example ,  share a her i tage wi th  
models  exploi t ing ideas f rom electr ici ty and hydraul ics .  Simulated anneal ing is 
based on a physical  process in metal lurgy,  while  so called genetic methods  seek to 
imitate the biological  phenomenon  o f  evolut ionary reproduction.  
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In this vein, the Tabu Search (TS) method elaborated in this paper may be 
regarded as a technique based on selected concepts from artificial intelligence. TS 
is a general heuristic procedure for guiding search to obtain good solutions in 
complex solution spaces. Its rules are sufficiently broad that it is often used to direct 
the operations of other heuristic procedures. 

One of the main components of TS is its use of  f lexible (adaptive) memory, 
which plays an essential role in the search process. Discoveries of more refined 
ways to exploit this memory, and of more effective ways to apply it to special 
problem settings, provide one of the key research thrusts of the discipline and 
account for its growing success in treating hard problems. 

The organization of this paper is as follows. First, we give a general presentation 
of TS in the next section. Then we describe some of the features that increase the 
efficiency of the technique in section 3. Finally, concluding observations are provided 
in section 4. The goal of our development is to disclose the applicability of TS as 
a general tool which may be adapted to a wide range of problems. As demonstrated 
in the literature, performance levels are achieved for the problem domains studied 
that frequently surpass those of the procedures previously established to be best. 

We stress, however, that this paper is not intended as an exhaustive 
characterization of the elements of TS, but as a first introduction to the nonspecialist 
and as a foundation to suggest useful directions for advanced study. Our goal is to 
provide a basic understanding of the procedure that may permit its principles to be 
applied more easily to the solution of hard problems, and to give a glimpse of 
additional developments that lie ahead. 

2. What is tabu search? 

With roots going back to the late 1960's and early 1970's, TS was proposed 
in its present form a few years ago by Glover (see, e.g. [13]), and has now become 
an established optimization approach that is rapidly spreading to many new fields. 
The basic ideas of TS have also been sketched by Hansen [20]. Together with 
simulated annealing and genetic algorithms, TS has been singled out by the Committee 
on the Next Decade of Operations Research [3] as "extremely promising" for the 
future treatment of practical applications. 

We begin by sketching the elements of TS in rough terms. The method can 
be viewed as an iterative technique which explores a set of problem solutions, 
denoted by .~ by repeatedly making moves from one solution s to another 
solution s' located in the neighborhood N(s) of s. 

These moves are performed with the aim of efficiently reaching a solution 
that qualifies as "good" (optimal or near-optimal) by the evaluation of some objective 
function f (s)  to be minimized. 

As an initial point of departure, we may contrast TS with a simple descent 
method, which may be formulated as follows: 
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(a) 

Repeat: 
(b) 

Choose an initial solution s in X 

stop: = false 

Generate a sample V* of solutions in N(s). 

Find a best s' in V* (i.e. such that 

f ( s ' )  < f(Y)  for any ~ in V*). 

i f f ( s ' )  >f(s) then stop: = true 
else s := s' (2.1) 

Until stop 

By narrowing the choice of s" to a best element of V" we are restricting the 
class of descent methods to a proper subset of the larger collection sometimes called 
"improving methods"-  a restriction that has important consequences for the goal 
of restructuring this approach by tabu search. 

First note that the most straightforward implementation of the preceding 
approach is to take V* = N(s), i.e. to scan the entire neighborhood of s. In some 
circumstances, however, such a process is impractical because it is too time-consuming. 
Therefore, in such cases we stipulate that a set V* c N(s) with I V*I "~ I N(s) I be 
scanned. In the extreme, one may take i V*I = 1, thereby eliminating a direct comparison 
among elements, and dissolving the distinction between a best element and an 
arbitrary member of V*. This latter form of sampling in fact underlies the policy 
adopted by simulated annealing (which also may be viewed as a way of restricting 
a descent method), employing rejection criteria that may result in generating a 
number of sets with 1 V'I= 1. 

Stepping beyond the case where I V'I = 1, the preceding descent technique 
can be given an added dimension of refinement by considering its implicit reliance 
on solving a local optimization problem (either by itemization or more intricate 
means), to find an s' that yields min{f(s ' )  Is" ~ V* ~ N(s)}, possibly in an approximate 
way. Building on this viewpoint, a key concept of tabu search is to constrain the 
definition of this local optimization problem in a strategic way - making systematic 
use of memory to exploit knowledge beyond that contained in the functionf(s) and 
the neighborhood N(s). This also leads to a general orientation whereby the set V* 
is to be generated strategically rather than randomly, with the goal of allowing the 
minimum o f f ( s ' )  over V* to be more nearly representative of the minimum over 
N(s), subject to the special restructuring of N(s) derived by reliance on memory. In 
this sense, we may call the method a metaheuristic, since at each step it uses a 
heuristic to move from one solution to the next, guiding the search in X. 

Why should such a search be guided? If the descent approach is applied as 
described in (2.1) it will (at best) lead to a local minimum o f f  where it will be 
trapped. This is the first type of difficulty that can arise with standard heuristic 
descent techniques. 
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To circumvent such an outcome, a guidance procedure must be able to accept 
a move from s to s' (in V*) even i f f ( s ' )  >f(s). But when a solution s" worse than 
s may be accepted, cycling may occur, causing the process again to be trapped by 
returning repeatedly to the same solution (perhaps after some interval of intermediate 
solutions). Simulated annealing attempts to provide guidance by accepting a 
disimproving s' (if it happens to be the one currently sampled) with a certain 
probability that depends uponf(s), f (s ' )  and a parameter identified with temperature. 
The tabu search approach, by contrast, seeks to counter the danger of entrapment 
by incorporating a memory structure that forbids or penalizes certain moves that 
would retum to a recently visited solution. The variant called probabilistic tabu 
search creates probabilities for accepting moves as a monotonic function of evaluations 
created by a penalty of the method. 

The notion of using memory to forbid certain moves (i.e. to render them tabu) 
can be formalized in general by saying that the solution neighborhood depends on 
the time stream, hence on the iteration number k. That is, instead of N(s) we may 
refer to a neighborhood denoted N(s, k). (More precise notation would indicate that 
N(s,k) depends on solutions and neighborhoods encountered on iterations prior 
to k.) For instance, suppose memory is employed that recalls solution transitions 
over some time horizon, and creates N(s,k) by deleting from N(s) each solution that 
was an immediate predecessor of s in one of these transitions. We may express the 
form of the procedure that uses the modified (tabu) neighborhoods as follows. 

(a) Choose an initial solution s in X 

s*:=s and k:= 1 

(b) While the stopping condition is not met do 

k : = k +  l 

Generate V* ~ N(s, k) 

Choose the best s' in V* 

S : = S  p 

i f f ( s ' )  <f(s*), then s* := s' (2.2) 
end while 

There may be several possible stopping conditions, but simplest is some logical 
combination of the following: 

• An optimal solution is found. 
• N ( s , k + l ) = O .  
• k is greater than the maximum number of iterations allowed. 
• The number of iterations performed since s • last changed is greater than a 

specified maximum number of iterations. 

It is to be emphasized again that a nontrivial, strategically generated sample 
solution neighborhood is examined at each step, and a best element from the of the 
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sample is selected (subject to avoiding moves that are classified tabu). The goal is 
therefore to make improving moves to the fullest extent allowed by the structure 
of  N(s, k), balancing trade-offs between solution quality and computational effort in 
examining larger samples. 

Characterized in this way, TS may be viewed as a variable neighborhood 
method: each step redefines the neighborhood from which the next solution will be 
drawn, based on the conditions that classify certain moves as tabu. 

A crucial aspect of  the procedure involves the choice of  an appropriate 
definition of  N(s, k). Due to the exploitation of  memory, N(s, k) depends upon the 
trajectory followed in moving from one solution to the next. As a starting point, 
consider a form of  memory embodied in a tabu list T that records the I TI solutions 
most recently visited, yielding N(s,k) = N(s) - T. 

Such a recency based memory approach will prevent cycles of  length less 
than or equal ITI from occurring in the trajectory. This formulation normally has 
only a theoretical interest, since keeping track of the I TI most recent solutions may 
be extremely space  consuming. (It also represents a relatively limited form of  
recency based memory.) 

As a basis for identifying a more practical and effective type of  memory 
structure, we may amend our definition of T by defining the neighborhood N(s) in 
terms of moves for transforming the solution s into new solutions. Specifically, for 
each solution s consider a set M(s) of legal moves m which can be applied to s in 
order to obtain a new solution s' = s (9 m. Then we have N(s) = {s'l 3 m ~ M(s) with 
s' = s (9 m}. Generally in TS it is useful to employ a set of  moves M(s) that is 
reversible, i.e. Vm ~ M(s), 3 m -1 ~ M(M(s)) such that (s (9 m) (9 m -1 = s. With this 
stipulation, T may consist of  the last ITI "reverse moves" associated with the moves 
actually performed. 

Instead of a single tabu list T it may be more convenient to use several lists 
Ti. Then a tabu status is assigned to some constituents T~ of  m (or of s) to indicate 
that these are currently forbidden for composing a move. In general, the tabu status 
of  a move is a function of the tabu status of  attributes that change in going from 
the current solution to the next (such as variables that change values, or elements 
that exchange positions, or items that are transferred from one set to another). 

This leads to a collection of tabu conditions of the form 

t i (m,  s)  e T~ (i = 1 . . . . .  p ) .  (2.3) 

A move m applied to the current solutions will then be a tabu move (i.e. implicitly 
a member of  the list T) if all conditions (2.3) are satisfied. 

We now briefly illustrate some of  the preceding concepts with a simple 
example [42] where TS has produced very good solutions; the quadratic assignment 
problem (QAP). Subsequently, we will use this example to motivate the discussion 
of  additional elements fundamental to tabu search. 
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QAP FORMULATION 

N items (workshops of a factory) have to be assigned to N different locations. 
The distance aij between locations i and j is given as well as the value bpq of a flow 
(circulation of parts) between the items p and q. 

An assignment of the items to the locations is sought that minimizes the sum 
of the products of distances and associated flow values. Mathematically, the problem 
consists in finding a permutation ¢ of { 1 . . . . .  N} to minimize 

f(q~) = Z Z aijb¢(i)~(J) • (2.4) 

For a complete formulation and some applications the reader is referred to 
Burkard [1]. Applying our previous notation, in this problem, X consists of the N! 
permutations of { 1 . . . . .  N}; a move m in M(~) may consist of the exchange of two 
items p and q. The permutation ~r obtained from ~ by move m then is given by 

= ~(Dm 1 
u ( i )  = 

~(p) = ~ (q ) |  

~(q) = ¢(p)J  

for all i#:p,q.  

The differencef(~) (9 m) -f(~)) can be computed easily, permitting exploration 
of the entire neighborhood N(~) in time O(N 2) (see Finke et al. [7]). 

One possibility for creating a recency based memory is to identify attributes 
of a move by the unordered pair of items (p, q). The attribute pair that must be 
forbidden in order to prevent the reverse move likewise is (p, q) (disallowing these 
two items to be exchanged again, noting that an immediate exchange of this type 
would revisit the solution just left). Making this attribute pair the basis of a tabu 
restriction permits each ofp and q independently to be exchanged at once with other 
items. Unfortunately, however, this type of restriction does not satisfy the property 
of forbidding a return to solutions already visited, since the sequence of moves (q, r) 
(p,s) (q,s) (p,r) (p,q) (r,s) does not change anything. 

Another way of identifying attributes of an exchange move is to introduce 
additional information, referring not only to items exchanged but to positions occupied 
by these items at the time of exchange. To do this without the memory burden of 
introducing 4-element vectors, we conceive a move to be composed of two half- 
moves (p, 4)(q)), the first placing item p in locationf(q) and the second placing item 
q in location ~(p). The reverse move is prevented by disallowing the two attribute 
pairs (p, ~(p)) and (q, ~(q)) from occurring simultaneously, and it is these two pairs 
that are stored in the tabu list of our TS implementation for QAP. 

More precisely, we define a move m (exchange of items p and q) to be tabu 
if it sends both p and q to locations they occupied within the last t iterations. This 
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tabu condition admits some moves prevented by the previously illustrated condition, 
and also forbids some moves permitted by the previous condition, hence is neither 
uniformly more restrictive or less restrictive, 

The current restriction has the appeal of  being based not only on attributes 
of  solutions (corresponding to items located in specified positions). In addition, we 
allow the size t of  the primary tabu list, consisting of (item, location) pairs, to be 
changed during the solution process. 

We now return to a discussion of  general TS features before completing the 
QAP illustration. 

2.1. ADDITIONAL TABU SEARCH ELEMENTS: ASPIRATION CRITERIA 

It is not difficult to realize that tabu conditions based on selected attributes 
of  moves and solutions may be too drastic in the sense that they may also forbid 
moves leading to unvisited solutions, and in particular to unvisited solutions that 
may be attractive. It is therefore necessary to overrule the tabu status of  moves in 
certain situations. This is performed by means of  aspiration level conditions. 

As an example, consider a tabu move m; if this move gives a new solution 
which is better than the best found so far, then one would be tempted to drop the 
tabu status of  m and accept the move. This can be done by saying that m (applied 
to s) may be accepted if it has a level of aspiration a(s,m) which is better than a 
threshold value A(s,m). More generally, we may conceive of A(s,m) as defining a 
set of  preferred values (for elements) for a function (or mapping) a(s,m), and 
aspiration may be represented in the form 

a i(s,m) ~ A i(s,m) (i = 1 . . . . .  I). (2.5) 

Then the tabu status of  a move m will be rendered inoperative if at least one (or 
a specified number) of  the conditions (2.5) is satisfied. If many aspiration conditions 
are simultaneously satisfied by more than one move, rules of  choice must be defined. 

In the QAP illustration, we use the simple type of  aspiration criterion that 
accepts a tabu move if it produces a new best solution. Notationally, this corresponds 
to defining a(s,m) =f(s  • m) and letting A(s,m) be the interval of  values smaller 
than f(s*), where s* is the best solution found so far. In addition, for types of  
problems where the entries (bpq) of  the flow matrix span a large sample of  numerical 
values, we use a second type of  aspiration condition which may be denoted by 
a'(s, m ) ~  A'(s,m). Under this condition, a tabu move m that sends item p to 
location j and item q to location i is accepted (no matter what the value o f f ( s  • m) 
may be) if  p was not at j and q was not at i within the last u iterations. In such 
a case, A'(s, m) contains every move (or "pair of  half moves") that has not been 
performed during the preceding u iterations, and a'(s, m) = m. Obviously, the value 
of  u has to be set at a value larger than the size of  the neighborhood; for example, 
it turns out that a value of  ten times the size of  the neighborhood is convenient for 
most QAP instances. 
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2.2. INTENSIHCATION AND DIVERSIFICATION 

Besides the above described components, TS requires a few additional ingredients 
in order to behave as an intelligent search technique. The use of a memory up to 
now has been limited to a short term horizon: TS remembers the most recently 
performed steps in order to avoid coming back to a solution visited earlier, or to 
one of a class of solutions visited earlier, where the class is implicitly determined 
by attributes used to define tabu status. 

Memory is also used in TS in a kind of learning process: having visited 
several solutions, it is deemed worthwhile to observe whether the good solutions 
visited so far have some common properties (such as the presence or absence of 
certain elements). This generates an intensification scheme for the search. At some 
stage the neighborhood N(s,k) is restricted (or the criteria for evaluating moves are 
altered) to favor solutions with properties that occurred often in good solutions 
previously visited, or more generally in subsets of good solutions differentiated by 
clustering criteria. This form of bias can be used either to "structure" the current 
solution to satisfy such properties (as by a partial restart procedure), and then to 
discourage the properties from being violated, or can simply be used to encourage 
such properties to become incorporated as the method progresses. Some of the 
relevant considerations are discussed in the context of consistent and strongly determined 
variables in [12]. 

These ideas are lately finding favor in other procedures, and may provide a 
bridge for integrating components of tabu search with components of other 
methodologies. For example, a first level strategy to reinforce the incorporation of 
consistent elements from high quality solutions (without undertaking differentiation 
by clustered subsets) has proved beneficial in genetic algorithms. In the setting of 
the traveling salesman problem, where ingenuity makes it possible to identify 
"crossover" operations that preserve shared structures [45], these ideas have produced 
very good results. In particular, Muhlenbein [33] has noted the relevance of genetic 
algorithms of this type for classes of traveling salesman problems that satisfy a 
building block property, in which optimal (or exceedingly good) tours can be pieced 
together from segments of logically optimal tours. In this case, by augmenting a 
genetic algorithm approach with local optimization, and applying a "maximal edge- 
preserving crossover", impressive outcomes are achieved for a number of classical 
test problems. Similar uses of such ideas by Ulder et al. [43] and Kohlen and Pesch 
[27] have also produced very attractive results for these problems. 

The effectiveness of such a special instance of the intensification strategy in 
the TSP context suggests that broader forms of the strategy deserve to be examined 
more closely in other settings, where the building block phenomenon may not 
apply. Approaches to reinforce elements of elite solutions based on clustering 
and statistical discrimination (e.g. incorporating frequency based memory over 
attribute groupings), illustrate natural foundations for such a strategy. From a more 
specialized perspective, approaches such as the use of scatter search and structured 
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combinations [17] provide an opportunity to establish links with genetic algorithms, 
while permitting the space of solutions to be exploited in ways unavailable to 
genetic crossover, and may prove useful in this context. 

Intensification by itself is insufficient to yield the best outcomes for general 
classes of optimization problems. The complementary notion of diversification must 
be invoked to allow the most effective search over the set X. Strategic pursuit of 
solutions with varying characteristics provides an essential counterbalance to the 
intensification component of tabu search. 

Thus, over the longer term, tabu search induces an altemation between sequences 
of steps that intensify the search in a promising region and steps that diversify the 
search across contrasting regions. One way to do this is by designing N(s,k)  to 
incorporate solutions that are separated by a specified degree from solutions visited 
before. An evident form of diversification results by modifying the objective function 
to decrease f for solutions "far from s" and to increase f for solutions "close to s". 
When s is replaced by a set S of previously generated solutions, the meanings of 
"far from" and "close to" become more subtle, and typically involve references to 
frequency based memory as well as recency based memory. Several specific ways 
of realizing diversification are discussed with the applications that follow. 

The preceding elements summarize the basic ingredients needed to design a 
TS procedure. To derive a highly efficient metaheuristic, special issues of design 
and implementation must be addressed. We discuss some of these issues in the next 
section. 

3. Refinements of TS 

In considering refinements to obtain good solutions more efficiently than by 
an elementary TS procedure, we focus on easy-to-implement methods that have 
proved their merit, in the spirit of favoring techniques that are both easy to program 
and capable of achieving effective outcomes. Our illustrated adaptations to the QAP 
(introduced in section 2) provides a useful basis for exemplifying some of these 
features. The method succeeds in obtaining some of the best outcomes in the QAP 
literature by means of a Pascal program of approximately 2 pages! 

We have already mentioned two diversification techniques that also tum out 
to be valuable in the QAP application. First is a simple strategy of varying the tabu 
list size. Second is an approach of variably penalizing the objective function to 
destroy the structure of the local minima one wants to escape, subsequently called 
the shifting penalty approach. 

In general, an effective implementation of TS may be achieved by focusing 
on three levels: 

(1) tactical, 

(2) technical, 

(3) computational. 
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The tactical level seeks to embed greater intelligence in the search process. 
The technical and computational levels are chiefly concerned with limiting the 
possibility of cycling and with speeding-up the iterative computation of the 
search. 

Ways to introduce improvements in each of the areas will be reviewed in the 
next sub-sections. 

3.1. TACTICAL IMPROVEMENTS 

The first question to ask in designing an iterative search procedure is related 
to the quality of the chosen neighborhood: "Are the defined moves good?" Frequently, 
the answer to this question must be based on intuitive good sense, and on practical 
experimentation with alternatives. However, the tools of statistical analysis and 
graphical simulation can be highly useful in this quest. 

Simple statistics may disclose significant information about the nature of the 
moves performed by the search. For example, if the amplitude of objective function 
changes produced by the moves is very small, then it is reasonable to think that the 
search will have some trouble discovering good trajectories for escaping from local 
minima (since many trajectories look the same). On the other hand, if this amplitude 
is quite high, the search may have some difficulty finding local minima whose 
quality is close to that of a global minimum. 

When both problem type and move type are susceptible to graphical visualization, 
exhibiting the solutions generated by the search can help to establish the appropriateness 
(or inappropriateness) of the neighborhood used to define admissible moves. This 
is relevant even where relatively simple moves are used as a foundation of a search 
procedure. While simple moves can be valuable for developing a method without 
a heavy investment of human time and resources (particularly for problems that 
have not been extensively studied, and whose subtleties are unknown), they are also 
susceptible to weaknesses that make it important to identify special "adjunct moves" 
that periodically can be invoked to counter these weaknesses. Such adjunct moves 
then fulfil the role of a diversification strategy, altering the terrain visited in a way 
that is unlikely to occur by applying the simple moves alone. 

We give an example for the Euclidean traveling salesman problem, where 
graphical simulation led to identifying a useful diversification move as an adjunct 
to a rudimentary move structure (see Fiechter [6]). (Subsequently we identify additional 
ways to generate more powerful alternatives.) The problem in this case is defined 
to a collection of randomly placed cities on a unit square, where the goal is to obtain 
a shortest tour, that is, a closed path that passes exactly once through every city 
before returning to the first city visited. 

A highly popular and very simple move for the traveling salesman problem 
is the "2-opt" move (see fig. 1), which is applied iteratively to transform an initial 
tour into one that is locally optimal (i.e. that cannot be further improved by such 
moves). 



i 

e~
 

r.~
 

g
: 

g~
 

Fi
g.

 1
.2

-o
pt

 m
ov

e.
 



14 F. Glover et al., A user's guide to tabu search 

Such 2-opt moves make it possible to quickly find reasonably good local 
optima of the problem. However, a number of other moves, requiring more effort 
to implement, are known to be stronger. A TS method based on 2-opt moves is 
partly affected by their short-sightedness, and typically will "cross" two short 
edges when it initiates a retreat from a local minimum. (Crossed edges are known 
to be undesirable in Euclidean traveling salesman problems.) If the tabu list size 
is too small (which implies that more of the small 2-opt changes are required to 
escape the basin of attraction than the size of the list), the search will cycle around 
a local minimum, successively creating and removing small crosses. Conversely, if 
the size of the list is somewhat larger, moves that allow escape from a local 
minimum will indeed be performed, but the tabu restrictions may render it 
impossible (without knowledge of an appropriate aspiration condition) to remove 
the small crosses previously created. Under these circumstances, 2-opt moves 
by themselves evidently do not define a sufficiently rich neighborhood to 
obtain very good results. 

Using graphical representations of relatively small problems not only disclosed 
this phenomenon, but also disclosed a way to create a type of diversifying move 
to counter it. Specifically, comparing solutions obtained by a "2-opt neighborhood 
version" of TS with known optimal solutions, a relevant diversifying move was 
discovered to have the form shown in fig. 2. 

The new move usefully modifies and expands the search alternatives at the 
local level, leading to configurations that are unlikely to be visited by a search 
based on 2-opt moves (since three 2-opt moves are needed to achieve the same 
outcome as one of the new moves, and one of the component moves may have a 
very high cost). 

Once the diversification effect of the new move is achieved, the simpler 2- 
opt moves are used to refine the outcome by progressing to a good local optimum. 
Sequences of 2-opt moves leading to local optima are therefore alternated with 
sequences of diversifying moves to escape from these local optima. 

It should be noted that, among more advanced moves that are incorporated 
into heuristics for TSPs, a class of compound moves due to Lin and Kernighan [30] 
has long been known for its effectiveness, and has been incorporated into a highly 
efficient procedure by Johnson [24]. Also, a new class of "generalized insert" 
moves recently has been proposed by Gendreau et al. [10] which shows considerable 
promise. At this writing, neither of these types of moves has been embedded in a 
tabu search procedure for TSPs, but gains may be expected by doing so, and a 
similar application of graphical analysis may offer the possibility to enhance such 
potential implementations. 

3.1.1. Discovering improvements by target analysis 

Although graphical simulation is admittedly helpful, many types of optimization 
problems do not lend themselves readily to its use. Can anything be done to determine 
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the nature of improved strategies for these problems? Fortunately, the answer to this 
question is yes. 

A learning approach called target analysis is conveniently suited for designing 
improved implementations of tabu search. To begin, target analysis launches an 
extensive effort to obtain optimal or very high quality solutions to sample problems 
from the class to be solved. This effort is based on investing greater solution time 
than normally would be appropriate, and may incorporate a variety of schemes to 
obtain the best outcomes currently possible. A set consisting of one or more of the 
best solutions generated for each problem during this initial phase provides the 
targets to be sought during the next phase of the approach. 

The second phase re-solves each sample problem with the goal of collecting 
information to determine what rules will make the "right choices" to guide successive 
current solutions to a best solution (e.g. a target solution closest to the current one). 
Provisional rules are designed as parameterizations of the information collected. To 
focus on identifying relevant information about preferred solution trajectories, choices 
may be made during this second phase based on "illegitimate" information derived from 
hindsight, permitting uniformly good moves to be selected for approaching a target 
solution, although possibly no currently known rules would prescribe these choices. 

The third phase consists of characterizing evaluation functions to give a 
master decision rule, based on establishing specific combinations and parameter 
values for the provisional rules of the second phase. Two useful ways to link the 
information of the second phase to the master decision rule of the third phase are 
by discriminant analysis [19] and the creation of move scores [29]. 

Move scores, which identify how moves preferably should be evaluated, in 
contrast to how they actually are evaluated, have provided a useful discovery for 
scheduling problems that appears potentially relevant for solving other kinds of 
problems. Tabu search evaluations using standard rules were shown on average to 
produce high scoring (good) moves when improving moves were unavailable, and 
to produce medium to low scoring moves when only non-improving moves were 
available. This phenomenon was exploited by using frequency based memory in a 
simple diversification approach that penalized frequently occurring solution attributes, 
activating the penalties precisely during the absence of admissible improving moves. 
Significant solution improvements resulted for the scheduling problems studied. 

To date, these strategies have not yet been applied to develop methods for 
most other types of problems. A useful extension of target analysis in this context 
would be to subdivide its operation to develop different classes of rules according 
to whether the goal is intensification or diversification (e.g. focusing on reaching 
closest elite solutions during intensification, and on jumping from the vicinity of 
one elite solution to that of another during diversification). 

3.1.2. Shifting penalty approach 

The shifting penalty tactic for diversifying the search is illustrated by the 
procedure of Hertz and de Werra [23] and Costa [4] for solving time table planning 
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problems. The goal of these problems is to find a feasible course schedule subject 
to numerous constraints belonging to several categories. 

The shifting penalty tactic is applied in these instances to guide the search 
to discover a feasible solution. First, to define the problem objective, a penalty 
function is created for every constraint based on the degree to which it is violated 
for any given schedule. The global objective function then is expressed as a weighted 
sum of the penalty functions. An important constraint is given a higher weight than 
another of less importance. 

At the beginning of the search, the procedure is driven to satisfy the most 
important constraints because this will provide the greatest improvements in the 
objective function. After that, the search undertakes to satisfy constraints 
associated with lower weights. In order to diversify the search, the shifting 
penalty tactic dramatically decreases the highest weights after a given number of 
iterations, and then maintains the decreased values for some number of iterations 
before reinstating the original values. This standardly causes the new solution to 
have a different structure than exhibited by the solutions visited before the 
diversification. 

Gendreau et al. [11] have created an adaptation of TS for the vehicle routing 
problem that automates a rule to change the weights associated with each relaxed 
constraint. At the beginning of the search, every weight is set to 1. Then, after every 
10 iterations, a weight associated with a constraint that was always violated during 
the past 10 iterations is multiplied by 2; a weight associated with a constraint that 
was never violated during these 10 iterations is divided by 2, and otherwise the 
weights stay unchanged. 

3.1.3. Strategic oscillation and the principle of  proximate optimality 

The shifting penalty tactic is an instance of a procedure called strategic 
oscillation, which represents one of the basic diversification approaches for tabu 
search [12]. The idea is to drive the search toward and away from selected boundaries 
of feasibility (or selected functional values), either by manipulating the objective 
function (e.g. with penalties and incentives) or simply by compelling the choice of 
moves that lead in specified directions. The oscillation may cross the boundary and 
penetrate to selected depths on either side, or may always approach and retreat from 
the same side. A common implementation is to alternate a series of constructive (or 
incrementing) moves with a series of destructive (or decrementing) moves. Recent 
applications of strategic oscillation have proved beneficial in solving graph partitioning 
problems [36] and course scheduling problems [32]. 

In certain settings, strategic oscillation also acquires additional power by an 
implementation linked to a concept called the Proximate Optimality Principle (POP). 
This principle stipulates that good solutions at one level are likely to be found close 
to good solutions at an adjacent level. The term "level" can refer to a stage of a 
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constructive or destructive process (such as incorporating a specified number of 
nodes, edges, or variables into a partial solution at that stage), or can refer to a given 
measure of distance from a specified boundary. 

The POP notion is exploited in tabu search by remaining at each successive 
level for a chosen number of iterations, and then incorporating the best solution 
found (for the conditions defining the level) to initiate a move to the next level. For 
example, a level may be characterized by compelling values of a function to fall 
in a given range, or by requiring a given number of elements to be included in a 
partial construction. Then the process can be controlled to remain at a specified 
level by employing a neighborhood whose moves maintain the functional values (or 
numbers of elements) within the specified limits. This type of approach is sufficiently 
general to be applied in a TS branching algorithm for mixed integer programming 
problems [16]. An application of the method by Kelly et al. [25] demonstrates its 
ability to achieve outcomes that are significantly better than found with alternative 
procedures for a class of difficult confidentiality problems. 

Interesting similarities and contrasts exist between the POP concept of "level" 
and the simulated annealing notion of "temperature". Each refers to a succession 
of  adjacent states. However, temperature is a measure of energy, as reflected in an 
objective function change, and the SA mechanism for incorporating this measure 
is to bias acceptance criteria to favor moves that limit "negative change", according 
to the temperature value. The SA mechanism also does not seek to maintain a 
construction at a given level with a design for isolating and carrying forward best 
solutions to an adjacent level. The types of levels encompassed by the POP notion 
cover a wide range of strategic alternatives (by comparison to temperature, for 
example), as derived in reference to numbers of variables or constraints, parametric 
representations of costs or requirements, hierarchies of aggregation or disaggregation, 
and so forth. 

The POP concept may be viewed as a heuristic counterpart of the so called 
principle of optimality in dynamic programming. However, it does not entail the 
associated curse ofdimensionality manifested in the explosion of state variables that 
normally occurs when dynamic programming is applied to combinatorial problems. 
If the premise underlying this concept is valid, it suggests that systematic exploration 
of effective definitions of "levels" and "closeness", and the design of move 
neighborhoods for exploiting them, may disclose classes of strategies that usefully 
enlarge the options currently employed. 

3.2. TECHNICAL IMPROVEMENTS OF THE SEARCH 

From now on, we suppose that the types of moves and the criteria for 
evaluating them are fixed, that other constituents of TS are to be improved. We 
examine the issues of appropriate neighborhood sizes, tabu list structures and aspiration 
conditions. 
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3.2.1. Neighborhood sizes and candidate lists 

A complete neighborhood examination with TS provides generally high quality 
solutions (see [37,40-42]) but may be very expensive in terms of CPU-time. For 
this reason, it is often important to apply TS in conjunction with a strategy that 
isolates regions of the neighborhood containing moves with desirable features, 
putting these moves on a list of candidates for current examination. A few prominent 
strategies of this type that have found successful application with TS are as follows. 

Neighborhood decomposition strategies. A useful candidate list approach is 
to decompose the neighborhood into coordinated subsets at each iteration. A TS 
aspiration threshold, or means of linking the examination of subsets, commonly is 
applied to limit the frequency of selecting moves from subsets whose current altematives 
are gauged less attractive. This strategy generally makes it possible both to speed 
up the computation time and to generate some diversity in the search. Laguna et 
al. [28] have used this approach to limit the domains of jobs that are shifted in 
machine scheduling and Fiechter [6] has applied such a decomposition to limit 
exchanges in traveling salesman problems. More recently, in a practical vehicle 
routing application, Semet and Taillard [38] have succeeded in cutting down 
computation times by a factor of 3 while simultaneously obtaining better solutions, 
applying such a decomposition approach to cyclically scan about one fourth of all 
possible moves at each iteration. 

Elite evaluation candidate lists. Another technique for scanning a subset of 
the neighborhood is to store a collection of the most promising, or "elite" (highest 
evaluation) moves on the candidate list. At a given iteration, the moves belonging 
to the candidate list are examined first, followed by a subset of the regular neighborhood, 
gradually replacing candidate list moves that are no longer attractive. Periodically, 
after a specified number of iterations or when the quality of moves on the candidate 
list deteriorates below a chosen threshold, a significantly larger portion of the 
current neighborhood is examined to reconstruct the candidate list. This technique 
is motivated by the assumption that a good move, if not performed at the present 
iteration, will still be a good move for some number of iterations. (More precisely, 
after an iteration is performed, the nature of a recorded move implicitly may be 
transformed. The assumption is that a useful proportion of these transformed moves 
will inherit attractive propertied from their antecedents.) 

A simplified variant of this strategy is to perform every move on the elite 
candidate list in succession, provided the move remains valid when its turn arrives. 
This approach, applied to TSPs in [6], permits a large number of moves to be 
performed scanning new neighborhoods and rebuilding the list, although at some 
risk of making less desirable moves. The approach may be improved by introducing 
an aspiration level threshold that moves must satisfy to be selected (see, e.g. [18]). 

Preferred attribute candidate lists. In some applications it can be advantageous 
to isolate certain attributes of moves that are expected also to be attributes of good 
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solutions, and to limit consideration to those moves whose composition includes 
some portion of  these "preferred" attributes. For example, in traveling salesman 
problems it often happens that good solutions are primarily composed of  edges that 
are among the 10 or 20 shortest edges meeting one of  their endpoints. Some studies 
have attempted to limit consideration entirely to tours constructed from such a 
collection of  edges. 

A preferred attribute candidate list, by contrast, seeks to organize moves 
so that they do not have to be composed entirely of such special elements. 
However, one or more of these elements are required to be incorporated in a "key 
segment" of a move, so that all moves containing such a segment can be generated 
very efficiently. This approach has been used by Gendreau et al. [10] and by 
Johnson [24] in application to TSPs without reference to TS. More recently, Gendreau 
et al. [11] have made an effective adaptation of  this approach in the TS context for 
VRP problems. Related advances for VRPs are reported in the study of  Osman [34]. 

Sequential fan candidate lists. A type of candidate list that is highly exploitable 
by parallel processing is a sequential fan candidate list. The basic idea is to generate 
some p best altemative moves at a given step, and then to create a fan of  solution 
streams, one for each alternative. The several best available moves for each stream 
are again examined, and only the p best moves overall (where many or no moves 
may be contributed by a given stream) provide the p new streams at the next step. 

In the setting of  tree search methods such a sequential farming process is 
sometimes called beam search. A useful refinement called filtered beam search has 
been proposed and studied by Ow and Morton [35] and other refinements 
(beyond the tree search setting) have been suggested by Glover [15]. A recent 
implementation for QAP problems that appears highly promising has been carried 
out by Gavish [9]. For use in the tabu search framework, it is to be noted that TS 
memory and restrictions can be carried forward with each stream and hence "inherited" 
in the selected continuations. In this case, a relevant variation is to permit the search 
of  each stream to continue for some number of  iterations until reaching a new local 
optimum. Then a subset of  these can be selected and carried forward. Since a 
chosen solution can be assigned to more than one new stream, different streams can 
embody different missions in TS, as by giving different emphasis to intensification 
and diversification. It may be noted that the type of staging involved in successive 
solution runs of  each stream may be viewed as a means of defining levels in the 
context of  the Proximate Optimality Principle, and hence this way of implementing 
a parallel solution method may also give another approach for exploiting the POP 
notion. 

3.2.2. Tabu list types 

The choice of appropriate types of tabu lists depends on the problem. Although 
no single type of list is uniformly best for all applications, some guidelines are 
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possible. If the size of the neighborhood is small enough to store an item of 
information for each move attribute used to define a tabu restriction, it is generally 
worthwhile to store the iteration number that identifies when the tabu restriction 
associated with such an attribute may be discarded. This makes it possible to test 
the tabu status of a move in constant time (by reference to whether the move 
embodies a "tabu attribute"), and the necessary memory space depends on the 
neighborhood size and not on the "tabu list size" (i.e. the number of elements that 
might otherwise be recorded, one attribute group for each iteration, to cover the 
number of iterations that determine tabu status). 

In a general way, it appears that tabu lists designed to insure the elimination 
of cycles of length proportional to the tabu list size provide very good results. (For 
reasons not mathematically identified, this "worst case" insurance translates into an 
empirical phenomenon where repeated cycles disappear entirely once the tabu list 
size achieves a critical length.) In the tabu list types used for very large problems 
(or complex attribute definitions), as in the TSP implementation of [6], it may not 
be possible to store an item of information for each (reverse) move. In this case 
attributes of moves may be stored in sequential tabu lists. In the indicated TSP 
study, every edge added to the current solution by a move was incorporated in a 
list Tin and every deleted edge was incorporated in a list Tou t. A move was defined 
tabu if both the incoming edges belonged to Tout and the outgoing edges belonged 
to Tin. In another study using a different type of candidate list strategy [26], it 
appeared preferable to store only the shorter of the two added edges on Tin and the 
longer of the two deleted edges on Tout. In both studies I Toutl was set to a larger 
value than ITml, based on the fact that a TSP tour has O(N) edges and the total 
number of edges is in O(N2). 

We now discuss the value to be given to the parameter t that embodies the 
tabu list size. 

3.2.3. Tabu list size 

Empirically, tabu list sizes that provide good results often grow with the size 
of the problem. However, no single rule (even an empirical one) gives good sizes 
for all classes of problems. This is partly because an appropriate list size depends 
on the strength of the tabu restrictions employed (where stronger restrictions are 
generally coupled with smaller sizes). The way to identify a good tabu size for a 
given problem class and choice of tabu restrictions is simply to watch for the 
occurrence of cycling when the size is too small and the deterioration in solution 
quality when the size is too large (caused by forbidding too many moves). Best 
sizes lie in an intermediate range between these extremes. In fact, the best approach 
is to allow the size in this intermediate range to vary. 

These considerations may be clarified by our illustrated adaptation of TS for 
the QAP: in fig. 3 we plot the value of the best solution found and the mean cost 
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Fig. 3. Influence of  tabu list size. 

of the visited solution during a search with a given number of iterations. These 
values are plotted as functions of the tabu list size. We see that both curves decrease 
for small sizes and then increase as the size grows. However, the minima are 
reached for a smaller size for the mean cost than for the best cost. This translates 
into the fact that a small tabu list size is preferable for exploring the solution near 
a local optimum and a larger tabu list size is preferable for breaking free of the 
vicinity of this local minimum. 

Varying the tabu list size during the search provides one way to take advantage 
of this effect. For the QAP, the approach of Taillard [42] selects this size randomly 
from an interval ranging from train =/0.9N.] to the value tma x =[1.1N'] (where N is 
the dimension of the problem). The chosen size is maintained constant for 2tm~x 
iterations, and then a new size is selected by the same process. 

Other simple types of dynamic tabu list approaches include systematically 
varying the list sizes over three different ranges (small, medium and large), as 
applied to telecommunications bandwidth packing problems by Laguna and Glover 
[29], and introducing "moving tabu gaps" as in the QAP approaches of Skorin- 
Kapov [39] and Chakrapani and Skorin-Kapov [2]. In each of these cases, the 
dynamic tabu list approach proved superior to using a static list of fixed size. 
Further improvements were obtained in these studies by incorporating a longer term 
frequency based memory as well as the short term recency based memory of the 
tabu list. We sketch how these improvements were obtained subsequently. 

Finally, we note the relevance of two additional forms of dynamic tabu list 
strategies, one based on uses of hashing functions, as suggested by Hansen and 
Jaumard [21] and as explored in detail by Woodruff and Zemel [46], and the other 
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based on sequential logic, as proposed by Glover [16] and as studied in comparative 
implementations by Dammeyer and Voss [5]. 

3.2.4. Aspiration criteria 

In most applications, an aspiration criterion takes the form: a tabu m is 
available (or compelled) to be selected if it can reach a solution Sk ~ m better than 
the best solution sT, obtained up to iteration k, i.e. if 

f(s*k) > f ( s k  • m). (3.1) 

It can also be useful to apply aspiration criteria differently at different 
phases of search. Such an approach is particularly motivated by findings involving 
the use of frequency based long term memory in solving machine scheduling 
problems [29], alluded to earlier in the discussion of target analysis. In this case 
the memory records the number of times move attributes (or solution attributes) 
occur over the search history - specifically, the number of times a job was moved 
to occupy a particular position for processing. The frequency counts are then weighted 
to penalize moves whose attributes have higher associated frequencies, applying the 
findings of target analysis by activating the penalties only after the search began 
to slow its rate of producing improved solutions, and then only in situations where 
no admissible (non-tabu) improving moves existed. 

A surprising aspect of this implementation was that the best tabu list size did 
not appear to grow with problem size, and that a variable list size also became less 
important. Overall, the solutions obtained were considerably superior to those that 
did not incorporate the longer term memory activated in restricted non-improving 
phases. 

The use of such an approach that penalizes frequently performed moves can 
be implemented as follows. First, one counts the number of times each move rn is 
performed, in order to compute its frequency fm.  Then, a penalty pm is associated 
with each move: 

0 i f  m meets an aspiration criterion; 
pm = w.  f m  otherwise, (3.2) 

where w is a constant. Then the value of a move is: 

f ( x  + m) - f ( x )  + pm.  (3.3) 

The weight w depends on the problem, on the move type and on the neighborhood. 
However, in several applications (VRP, QAP, electrical network design) we observed 
that this weight is approximately proportional to the square root of the size of the 
neighborhood multiplied by the standard deviation of the value (without penalty) 
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of every move tried during the search. In addition, such a frequency based memory 
is almost unaffected by the tabu list size; this means that a good weight w may be 
found by optimizing this parameter independently. 

The asymmetry between improving and nonimproving search phases underlying 
the exploitation of such penalties suggests the merit of aspiration criteria that permit 
tabu status to be disregarded during improving phases, provided this status was 
created by a move which was also an improving move (or by an improving move 
of the current improving phase). Otherwise, tabu status is implemented in the usual 
manner during the improvement phase, subject to a secondary aspiration criterion. 
This criterion allows tabu moves to be selected if they are the only improving 
moves available (once an improving phase is in progress). The move then is chosen 
by selecting a "least tabu" or "most improving" tabu move, or by a varying mix of 
these criteria. Once a local optimum is reached, such an approach then shifts to a 
more rigid "better than best" aspiration criterion (e.g. accompanied by frequency 
based memory as previously indicated), and this criterion is maintained until a new 
improving phase is launched. 

The application of such a strategy, and of related differential phase strategies 
that combine recency based and frequency based memory in more sophisticated 
ways, provide a means of exploiting aspiration levels with a considerable degree 
of adaptiveness, and constitute another area warranting fuller investigation. 

3.3. COMPUTATIONAL IMPROVEMENTS 

We now focus on the issue of speeding up the execution of each iteration of 
the search. A fundamental tactic, when it can be executed, is to replace the double 
evaluation of the objective function f(sk) and f(sk @ m), needed to determine the 
attractiveness of move m applied to solution sk, by the evaluation of the function 
A(sk, rn) defined as the simplified algebraic expression f ( s k ~  m)- f ( sk ) .  If the size 
of the neighborhood is small enough to store A(sk, m) for every move m, then it is 
often advantageous to express A(sk, m) as a function of A(sk_ l, m) and the move 
mk_ 1 performed at the previous iteration. In other words, information computed at 
one step may help to accelerate the computation required at the next step. Computational 
simplification of the types have provided significant speed-ups for a number of 
applications, including the machine scheduling study of Laguna et al. [28] and the 
QAP study of Taillard [42] previously discussed. In the QAP study the refined 
objective function evaluation cut down the computation of the neighborhood from 
O(N a) to O(N 3) and the stored evaluations further reduced the computations to O(N2). 

Sometimes such simplifications are not feasible, and other approaches must 
be sought to speed up the search. The use of a profi ler-a program that analyzes 
the time spent in the procedures and lines of an application-can be helpful in this 
regard. 

In a practical vehicle routing problem [38], the search was accelerated by a 
factor of 1000 by isolating the most expensive routine with such an analysis, and 
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then significantly reducing the number of times the routine was invoked (by a 
combined strategy of algebraic simplification, partial neighborhood examination 
and a relaxed objective function computation). A similar approach has also proved 
useful in accelerating the solution of scheduling problems in [40]. 

3.3.1. Parallel processing 

ParaUelization methods provide the ultimate means of speeding up the search. 
At equivalent costs, distributed computers are potentially more powerful than sequential 
ones. Concurrent examination of different moves from the neighborhood often 
makes it possible to reach a speed-up factor close to the ideal one 

ideal speed-up = T,, + T u (3.4) 
Tn/p + Z , '  

where p is the number of processors, Tn is the sequential time to perform the 
computation to be paraUelized and Tu is the time associated with the non-parallelizable 
part of the algorithm. For example, Tn may correspond to the time spent to evaluate 
the neighborhood and Tu may correspond to the update of the information structure 
when a move is performed. 

Using such a technique, significant speed-up can be achieved for many problems. 
Assuming that the problem and the type of move are adapted to perform many 
moves in parallel, such a technique may be useful where a great quantity of moves 
must be performed and where obtaining the global minimum is not a prime necessity. 
This may be illustrated in our traveling salesman example with the type of diversification 
move described previously. As noted, after such a move is executed, a series of 2- 
opt moves is performed to reach a new local optimum. The structure of the problem 
suggests that appropriate tour modifications will probably occur on portions of the 
tour that are near the edges modified by the new move (see fig. 4). If the end points 
of the four paths to be reoptimized are fixed, every path may be optimized 
simultaneously. 

It has been found advantageous to perform several diversifying moves 
successively using an elite evaluation candidate list. As a result, there are many 
places where the tour has been optimized again. This fact is exploited in [6] by 
cutting the tour into subpaths having about the same number of vertices-approximately 
50-and optimizing every subpath in parallel. Then, another way of cutting the tour 
is selected, repeating until improvements become negligible. 

Unfortunately, the assumptions needed to be able to perform parallel moves 
based on such an implicit decomposition are extremely strong and are met only for 
a few problems. A quite natural and less restricted parallelization process, that 
works for every problem where we have undertaken to apply it, is to perform many 
independent searches at a time, each starting with a different initial solution or/and 
using a different set of parameters. 
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Fig. 4. Parts of the tour that probably have to 
be reoptimized after a new diversifying move. 

Surprisingly, this straightforward type of paraUelization is very efficient for 
a number of processors not exceeding a few dozen. It is also easy to implement, 
and may be efficient even when simulated on a sequential computer (as for example 
where the parameters and structuring of the method are not optimally tuned). Results 
from applying this type of parallel implementation may be found in [40-42]. We 
also recall that the type of parallel processing approach discussed in connection 
with sequential fan candidate lists merits fuller consideration. 

4. Concluding remarks 

We have undertaken to present the main features of tabu search and to sketch 
some of  the improvements that can be obtained by various refinements. Experiments 
have shown that TS is able to obtain results that match or surpass the best known 
outcomes in a variety of optimization settings. Nevertheless, our understanding of 
TS is not complete. New implementations continue to teach us new lessons and to 
suggest new refinements. 

At the same time, mathematical analysis to explain (and ultimately enhance) 
the performance of tabu search is an area open for examination. Evidently, such an 
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analysis will embody elements of artificial intelligence (conceming integrated uses 
of memory) and likely will call upon concepts of probabilistic reasoning. In addition, 
graph theoretic arguments may prove relevant, based on representing solutions as 
nodes and moves as arcs-with the goal of determining why trajectories guided by 
certain forms of memory (in solution spaces with particular structures) tum out to 
be more effective than others. Finally, connections between TS and heuristic elaborations 
of dynamic programming (as embodied, for example in the POP notion and strategic 
oscillation) may provide a fruitful avenue for exploration. The present gap between 
empirical efficiency and mathematical demonstration invites an effort to bring these 
realms into closer harmony, with the possibility of creating a foundation for the 
"next generation" of tabu search. 
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