
Genetic algorithms
provide an alternative

to traditional
optimization

techniques by using
directed random
searches to locate

optimal solutions in
complex landscapes.

This article traces
GA research.

Genetic
Algorithms:
A Survey

M. Srinivas, Motorola India Electronics Ltd.

Lalit M. Patnaik, Indian Institute of Science

n the last five years, genetic algorithms have emerged as practical, robust op-
timization and search methods. Diverse areas such as music generation, ge-
netic synthesis, VLSI technology, strategy planning, and machine learning

have profited from these methods. The popularity of genetic algorithms is reflected
in three biennial conferences, a new international journal, and an ever-increasing
mass of literature devoted to the theory, practice, and applications of such techniques
(see the sidebar “To learn more”).

Genetic algorithm search methods are rooted in the mechanisms of evolution and
natural genetics. The interest in heuristic search algorithms with underpinnings in
natural and physical processes began as early as the 1970s, when Holland’ first pro-
posed genetic algorithms. This interest was rekindled by Kirkpatrick, Gelatt, and
Vecchi’s simulated annealing technique in 1983.2 Simulated annealing is based on
thermodynamic considerations, with annealing interpreted as an optimization pro-
cedure. Evolutionary ~ t r a t e g i e s ~ . ~ and genetic algorithm^,^.'^ on the other hand,
draw inspiration from the natural search and selection processes leading to the sur-
vival of the fittest individuals. Simulated annealing, genetic algorithms, and evolu-
tionary strategies are similar in their use of a probabilistic search mechanism di-
rected toward decreasing cost or increasing payoff. These three methods have a
high probability of locating the global solution optimally in a multimodal search
landscape. (A multimodal cost function has several locally optimal solutions as well.)
However, each method has a significantly different mode of operation.

Simulated annealing probabilistically generates a sequence of states based on a
cooling schedule to ultimately converge to the global optimum. Evolutionary strate-
gies use mutations as search mechanisms and selection to direct the search toward the
prospective regions in the search space. Genetic algorithms generate a sequence of
populations by using a selection mechanism, and use crossover and mutation as search
mechanisms. The principal difference between genetic algorithms and evolutionary
strategies is that genetic algorithms rely on crossover, a mechanism of probabilistic
and useful exchange of information among solutions, to locate better solutions, while
evolutionary strategies use mutation as the primary search mechanism. Although

simulated annealing, evolutionary strate-
gies, and genetic algorithms have basi-
cally different approaches. several hy-
brids of these techniques that narrow the
distinctions among them have been pro-
posed in recent literature. Other opti-
mization algorithms derived from the
evolutionary paradigm have also demon-
strated considerable success.

In this article we introduce the art and
science of genetic algorithms and survey
current issues in G A theory and practice.
We do not present a detailed study, since
several wonderful texts on GAS already
e~is t . ’ .~ . ’ ‘ . ’~ Instead, we offer a quick
guide into the labyrinth of G A research.
To start, we draw the analogy between
genetic algorithms and the search pro-
cesses in nature. Then we describe the
genetic algorithm that Holland intro-
duced in 1975 and the workings of GAS.
After a survey of techniques proposed
as improvements to Holland’s G A and
of some radically different approaches,
we survey the advances in G A theory re-
lated to modeling. dynamics, and decep-
tion.

Genetic algorithms
and natural
selection

In nature. individuals best suited to
competition for scanty resources survive.
Adapting to a changing environment is

essential for the survival of individuals of
each species. While the various features
that uniquely characterize an individual
determine its survival capacity. the fea-
tures in turn are determined by the indi-
vidual’s genetic content. Specifically,
each feature is controlled by a basic unit
called a gene. The sets of genes control-
ling features form the chromosomes, the
“keys” to the survival of the individual in
a competitive environment.

Although evolution manifests itself as
a succession of changes in species’ fea-
tures, it is the changes in the species’ ge-
netic material that form the essence of
evolution. Specifically, evolution’s driv-
ing force is the joint action of natural se-
lection and the recombination of genetic
material that occurs during reproduc-
tion.

In nature, competition among individ-
uals for scant resources such as food and
space and for mates results in the fittest
individuals dominating over weaker ones.
Only the fittest individuals survive and
reproduce, a natural phenomenon called
“the survival of the fittest.” Hence, the
genes of the fittest survive, while the
genes of weaker individuals die out. Nat-
ural selection leads to the survival of the
fittest individuals, but it also implicitly
leads to the survival of the fittest genes.

The reproduction process generates di-
versity in the gene pool. Evolution is ini-
tiated when the genetic material (chro-
mosomes) from two parents recombines
during reproduction. New combinations

To learn more

Readers wishing to pursue information on genetic algorithms may be inter-
ested in the following materials.

nd Applications, Lawrence E

of genes are generated from previous
ones; a new gene pool is created. Specif-
ically, the exchange of genetic material
among chromosomes is called crossover.
Segments of the two parent chromo-
somes are exchanged during crossover,
creating the possibility of the “right”
combination of genes for better individ-
uals. Repeated selection and crossover
cause the continuous evolution of the
gene pool and the generation of individ-
uals that survive better in a competitive
environment.

Holland’ proposed genetic algorithms
in the early 1970s as computer programs
that mimic the evolutionary processes in
nature. Genetic algorithms manipulate
a population of potential solutions to an
optimization (or search) problem. Spe-
cifically, they operate on encoded repre-
sentations of the solutions, equivalent to
the genetic material of individuals in na-
ture, and not directly on the solutions
themselves. Holland’s genetic algorithm
encodes the solutions as strings of bits
from a binary alphabet. As in nature, se-
lection provides the necessary driving
mechanism for better solutions to sur-
vive. Each solution is associated with a
fitness vulue that reflects how good it is,
compared with other solutions in the
population. The higher the fitness value
of an individual, the higher its chances
of survival and reproduction and the
larger its representation in the subse-
quent generation. Recombination of ge-
netic material in genetic algorithms is
simulated through a crossover mecha-
nism that exchanges portions between
strings. Another operation, called muta-
tion, causes sporadic and random alter-
ation of the bits of strings. Mutation too
has a direct analogy from nature and
plays the role of regenerating lost genetic
material.

A simple genetic
algorithm

In the literature, Holland’s genetic al-
gorithm is commonly called the Simple
Genetic Algorithm or SGA. Essential to
the SGA’s working is a population of bi-
nary strings. Each string of Os and Is is
the encoded version of a solution to the
optimization problem. Using genetic op-
erators - crossover and mutation -the
algorithm creates the subsequent gener-
ation from the strings of the current pop-
ulation. This generational cycle is re-

18 COMPUTER

peated until a desired termination crite-
rion is reached (for example. a prede-
fined number of generations are pro-
cessed).

Figure 1 summarizes the working of
the SGA. which has the following com-
ponents:

0 a population of binary strings,
control parameters.
a fitness function,

0 genetic operators (crossover and mu-

a selection mechanism, and
0 a mechanism to encode the solutions

tation),

as binary strings.

Encoding mechanism. Fundamental to
the G A structure is the encoding mecha-
nism for representing the optimization
problem's variables. The encoding mech-
anism depends on the nature of the
problem variables. For example. when
solving for the optimal flows in a trans-
portation problem. the variables (flows
in different channels) assume continuous
values, while the variables in a traveling-
salesman problem are binary quantities
representing the inclusion or exclusion of
an edge in the Hamiltonian circuit. In
each case the encoding mechanism
should map each solution to a unique bi-
nary string.

A large number of optimization prob-
lems have real-valued continuous vari-
ables. A common method of encoding
them uses their integer representation.
Each variable is first linearly mapped to
an integer defined in a specified range,
and the integer is encoded using a fixed
number of binary bits. The binary codes
of all the variables are then concatenated
to obtain a binary string. For example,
consider a continuous variable defined in
a range from -1.28 to 1.28. We could en-
code this continuous variable with an ac-
curacy of two decimal places by multi-
plying its real value by 100 and then
discarding the decimal portion of the
product. Thus the value that the variable
attains is linearly mapped to integers in
the range [-128, 1281. The binary code
corresponding to each integer can be eas-
ily computed.

Fitness function. The objective func-
tion, the function to be optimized, pro-
vides the mechanism for evaluating each
string. However. its range of values varies
from problem to problem. To maintain
uniformity over various problem do-
mains, we use thefitness function to nor-

malize the objective function to
a convenient range of 0 to 1. The
normalized value of the objective
function is thefitness of the string,
which the selection mechanism
uses to evaluate the strings of the
population.

Selection. Selection models na-
ture's survival-of-the-fittest mech-
anism. Fitter solutions survive
while weaker ones perish. In the
SGA, a fitter string receives a
higher number of offspring and
thus has a higher chance of sur-
viving in the subsequent genera-
tion. In the proportionate selec-
tion scheme, a string with fitness
value f - is allocated fb'f offspring,

Simple Genetic Algorithm ()

initialize population;
evaluate population;

[

wherefis the average fitness value of the
population. A string with a fitness value
higher than the average is allocated more
than one offspring, while a string with a
fitness value less than the average is allo-
cated less than one offspring.

The proportionate selection scheme al-
locates fractional numbers of offspring to
strings. Hence the numberfb'frepresents
the string's expected number of offspring.
Since in the final allocation some strings
have to receive a higher number of off-
spring thanfi/'and some less than fb'f, al-
location methods include some random-
ization to remove methodical allocation
biases toward any particular set of strings.
The allocation technique controls the ex-
tent to which the actual allocation of off-
spring to strings matches the expected
number of offspringfi/'.

The SGA uses the roulette wheel se-
lection scheme' to implement propor-
tionate selection. Each string is allocated
a sector (slot) of a roulette wheel with
the angle subtended by the sector at the
center of the wheel equaling 2x fi@. A
string is allocated an offspring if a ran-
domly generated number in the range 0
to 2x falls in the sector corresponding to
the string. The algorithm selects strings
in this fashion until it has generated the
entire population of the next generation.
Roulette wheel selection could generate
large sampling errors in the sense that
the final number of offspring allocated
to a string might vary significantly from
the expected number. The allocated
number of offspring approaches the ex-
pected number only for very large pop-
ulation sizes.

Figure 1. Simple Genetic Algorithm structure.

Crossover. After selection comes
crossover, SGA's crucial operation. Pairs

of strings are picked at random from the
population to be subjected to crossover.
The SGA uses the simplest approach -
single-point crossover. Assuming that 1 is
the string length, it randomly chooses a
crossover point that can assume values in
the range 1 to 1 - 1. The portions of the
two strings beyond this crossover point
are exchanged to form two new strings.
The crossover point may assume any of
the 1 - 1 possible values with equal prob-
ability. Further, crossover is not always
effected. After choosing a pair of strings,
the algorithm invokes crossover only if a
randomly generated number in the range
0 to 1 is greater than pc , the crossover
rate. (In G A literature, the term cross-
over rate is also used to denote the prob-
ability of crossover.) Otherwise the
strings remain unaltered. The value ofp,.
lies in the range from 0 to 1. In a large
population,p, gives the fraction of strings
actually crossed.

Mutation. After crossover. strings are
subjected to mutation. Mutation of a bit
involves flipping it: changing a 0 to 1 or
vice versa. Just asp, controls the proba-
bility of a crossover, another parameter.
P , , ~ (the mutation rate), gives the proba-
bility that a bit will be flipped. The bits of
a string are independently mutated -
that is, the mutation of a bit does not af-
fect the probability of mutation of other
bits. The SGA treats mutation only as a
secondary operator with the role of
restoring lost genetic material. For ex-
ample, suppose all the strings in a popu-
lation have converged to a 0 at a given
position and the optimal solution has a 1
at that position. Then crossover cannot
regenerate a 1 at that position. while a
mutation could.

June 1994 19

Population P1:

String Fitness value
0 0 0 0 0 1 1 1 0 0 0.3
1 0 0 0 0 1 1 1 1 1 0.6
0 1 10101011 0.6
1 1 1 1 1 1 1 0 1 1 0.9

Population P2 : After selection

String Fitness value
1000011111 0.6
0 1 1 0 1 0 1 0 1 1 0.6
1 1 1 1 1 1 1 0 1 1 0.9
1 1 1 1 1 1 1 0 1 1 0.9

Population P3 : After crossover

String Fitness value
100001 11 01 1 0.5
0110101011 0.6
1111111011 0.9
11111111111 1.0

Population P4 : After mutation

String

crossed, while the other pair of strings is
left intact. The crossover point falls be-
tween the fifth and sixth bits of the
strings, and portions of strings 1 and 4 be-
yond the fifth bit are swapped. Popula-
tion P3 represents the set of strings after
crossover. The action of mutation on
population P3 can be seen in population
P4 on the sixth bit of string 2 and the first
bit of string 4: Only two bits out of 40
have been mutated, representing an ef-
fective mutation rate of 0.05. Population
P4 represents the next generation. (In ef-
fect, P1 and P4 are the populations, while
P2 and P3 represent intermediate stages
in the generational cycle.)

The example in Figure 2 is only for il-
lustration. Typically the SGA uses a pop-
ulation size of 30 to 200, crossover rates
from 0.5 to 1.0, and mutation rates from
0.001 to 0.05. These parameters - the
population size, mutation rate, and
crossover rate - are together referred
to as the control parameters of the SGA
and must be specified before its execu-
tion.

To terminate execution of the SGA.
we must specify a stopping criterion. It
could be terminated after a fixed num-
ber of generations, after a string with a
certain high fitness value is located, or af-
ter all the strings in the population have
attained a certain degree of homogeneity
(a large number of strings have identical
bits at most positions).

Figure 2. A generational cycle of the
Simple Genetic Algorithm.

How do genetic
algorithms work?

Generational cycle. Figure 2 shows a
generational cycle of the genetic algo-
rithm with a population (P l) of four
strings with 10 bits each. In the example,
the objective function, which can assume
values in the range 0 to 10, gives the num-
ber of Is in the string. The fitness function
performs a “divide by 10” operation to
normalize the objective function to the
range 0 to 1. The four strings thus have
fitness values of 0.3,0.6,0.6, and 0.9. Ide-
ally, the proportional selection scheme
should allocate 0.5, 1.0. 1.0 and 1.5 off-
spring to the strings. However, in this
case, the final allocation of offspring is 0,
1.1, and 2. In Figure 2 the population P2
represents this selected set of strings.
Next, the four strings are paired ran-
domly for crossover. Strings 1 and 4 form
one pair, while strings 2 and 3 form the
other pair. At a crossover rate of 0.5, only
the pair of strings 1 and 4 is actually

Despite successful use of GAS in a
large number of optimization problems.
progress on the theoretical front has been
rather slow. A very clear picture of the
workings of GAS has not yet emerged,
but the schemu theory and the building-
block hypothesis of Holland and Gold-
berg’.7 capture the essence of GA me-
chanics.

Similarity template. A schema is a sim-
ilarity template describing a subset of
strings with similarities at certain posi-
t i o n ~ . ’ , ~ In other words, a schema repre-
sents a subset of all possible strings that
have the same bits at certain string posi-
tions. As an example, consider strings with
five bits. A schema **000 represents
strings with 0s in the last three positions:
the set of strings 00000,01000,10000, and
11000. Similarly, a schema 1*00* repre-

sents the strings 10000, 10001,11000, and
11001. Each string represented by a
schema is called an instance of the schema.
Because the symbol * signifies that a 0 or
a 1 could occur at the corresponding string
position, the schema ***** represents all
possible strings of five bits. The fixed po-
sifions of a schema are the string positions
that have a 0 or a 1: in **000, the third,
fourth. and fifth positions. The number of
fixed positions of a schema is its order:
**000 is of order 3. A schema’s defining
length is the distance between the outer-
most fixed positions. Hence, the defining
length of **000 is 2, while the defining
length of 1 *00* is 3. Any specific string is
simultaneously an instance of 2‘schemata
(I is the string length).

Since a schema represents a subset of
strings, we can associate a fitness value
with a schema: the average fitness o f the
schema. In a given population, this is de-
termined by the average fitness of in-
stances of the schema. Hence, a schema’s
average fitness value varies with the pop-
ulation’s composition from one genera-
tion to another.

Competition. Why are schemata im-
portant? Consider a schema with k fixed
positions. There are 2k - 1 other sche-
mata with the same fixed positions that
can be obtained by considering all per-
mutations of 0s and Is at these k posi-
tions. Altogether, for k fixed positions,
there are 2h distinct schemata that gen-
erate a partitioning of all possible strings.
Each such set of k fixed positions gener-
ates a schema competition, a survival
competition among the 2k schemata.
Since there are 2’ possible combinations
of fixed positions, 2‘distinct schema com-
petitions are possible. The execution of
the GA thus generates 2‘ simultaneous
schema competitions. The GA simulta-
neously, though not independently, at-
tempts to solve all the 2‘ schema compe-
titions and locate the best schema for
each set of fixed positions.

We can visualize the GA’s search for
the optimal string as a simultaneous com-
petition among schemata to increase the
number of their instances in the popula-
tion. If we describe the optimal string as
the juxtaposition of schemata with short
defining lengths and high average fitness
values, then the winners of the individ-
ual schema competitions could poten-
tially form the optimal string. Such
schemata with high fitness values and
small defining lengths are appropriately
called building blocks. The notion that

20 COMPUTER

strings with high fitness values can be lo-
cated by sampling building blocks with
high fitness values and combining the
building blocks effectively is called the
building-block hypothesis.’.’

Building blocks. The genetic operators
- crossover and mutation - generate,
promote, and juxtapose building blocks
to form optimal strings. Crossover tends
to conserve the genetic information pre-
sent in the strings to be crossed. Thus,
when the strings to be crossed are similar,
its capacity to generate new building
blocks diminishes. Mutation is not a con-
servative operator and can generate rad-
ically new building blocks. Selection pro-
vides the favorable bias toward building
blocks with higher fitness values and en-
sures that they increase in representation
from generation to generation. GAS’ cru-
cial and unique operation is the juxtapo-
sition of building blocks achieved during
crossover, and this is the cornerstone of
CA mechanics.

The building-block hypothesis assumes
that the juxtaposition of good building
blocks yields good strings. This is not al-
ways true. Depending on the nature of
the objective function, very bad strings
can be generated when good building
blocks are combined. Such objective
functions are referred to as CA-decep-
tive functions, and they have been studied
extensively. (We discuss them in more
detail in a later section.)

Schema theorem. When we consider
the effects of selection. crossover, and
mutation on the rate at which instances of
a schema increase from generation to
generation. we see that proportionate se-
lection increases or decreases the num-
ber in relation to the average fitness value
of the schema. Neglecting crossover, a
schema with a high average fitness value
grows exponentially to win its relevant
schema competition. However, a high av-
erage fitness value alone is not sufficient
for a high growth rate. A schema must
have a short defining length too. Because
crossover is disruptive, the higher the
defining length of a schema, the higher
the probability that the crossover point
will fall between its fixed positions and
an instance will be destroyed. Thus,
schemata with high fitness values and
small defining lengths grow exponentially
with time. This is the essence of the
schema theorem, first proposed by Hol-
land as the “fundamental theorem ofge-
netic algorithms.”’ (See the sidebar.)

The following equation is a formal statement of the schema theorem:

where
f(h, t) : average fitness value of schema h in generation t
f c t) : average fitness value of the population in generation t
pc: crossover probability
pm: mutation probability
F(h): defining length of the schema
o(h): order of the schema h
N(h, t) : expected number of instances of schema h in generation t
I: the number of bit positions in a string

The factor:

gives the probability that an instance of
the schema h is disrupted by crossover,
andp,,o(h) gives the probability that an
instance is disrupted by mutation.’

The C A samples the building blocks
at a very high rate. In a single genera-
tional cycle the C A processes only P
strings (P is the population size), but it
implicitly evaluates approximately P’
schemata.’ This capacity of GAS to si-
multaneously process a large number of
schemata, called implicit parallelism,
arises from the fact that a string simul-
taneously represents 2‘ different sche-
mata.

Modifications to
the SGA

Over the last decade, considerable re-
search has focused on improving G A per-
formance. Efficient implementations of
the proportionate selection scheme such
as the stochastic remainder technique and
the stochastic universal sampling tech-
nique have been proposed to reduce sam-
pling errors. Selection mechanisms such
as rank-based selection, elitist strategies,
steady-state selection, and tournament se-
lection have been proposed as alterna-
tives to proportional selection. Crossover
mechanisms such as two-point, multi-

point. and uniform have been proposed
as improvements on the traditional sin-
gle-point crossover technique. Gray codes
and dynamic encoding have overcome
some problems associated with fixed-
point integer encoding. Departing from
the traditional policy of static control pa-
rameters for the GA, adaptive techniques
dynamically vary the control parameters
(crossover and mutation rates). Signifi-
cant innovations include the distributed
genetic algorithms and parallel genetic al-
gorithms. The rest of this section surveys
these developments.

Selection mechanisms and scaling.
The proportionate selection scheme al-
locates offspring based on the ratio of a
string’s fitness value to the population’s
average fitness value. In the initial gen-
erations of the C A , the population typ-
ically has a low average fitness value.
The presence of a few strings with rela-
tively high fitness values causes the pro-
portionate selection scheme to allocate
a large number of offspring to these “su-
perstrings,” and they take over the pop-
ulation, causing premature convergence.
A different problem arises in the later
stages of the C A when the population
has converged and the variance in string
fitness values becomes small. The pro-
portionate selection scheme allocates
approximately equal numbers of off-
spring to all strings, thereby depleting
the driving force that promotes better
strings. Scaling mechanisms and rank-
based selection schemes overcome these
two problems.

June 1994 21

Scaling of fitness values involves read-
justment of string fitness values. Linear
scaling computes the scaled fitness value
as

f = a f + b

wherefis the fitness value, f is the scaled
fitness value, and a and b are suitably
chosen constants. Here a and b are cal-
culated in each generation to ensure that
the maximum value of the scaled fitness
value is a small number, say 1.5 or 2.0
times the average fitness value of the pop-
ulation. Then the maximum number of
offspring allocated to a string is 1.5 or 2.0.
Sometimes the scaled fitness values may
become negative for strings that have fit-
ness values far smaller than the average
fitness of the population. In such cases,
we must recompute a and b appropriately
to avoid negative fitness values.

One way to overcome the problem of
negative scaled fitness values is simply to
remove these “troublemakers” from the
competition. The sigma truncation
scheme does exactly this by considering
the standard deviation of fitness values
before scaling them. Hence the fitness
values of strings are determined as fol-
lows:

f = f - & c o)

wherefis the average fitness value of the
population, CJ is the standard deviation of
fitness values in the population, and c is a
small constant typically ranging from 1
to 3.

Strings whose fitness values are less
than c standard deviations from the aver-
age fitness value are discarded. This ap-
proach ensures that most strings in the
population (those whose fitness values are
within c standard deviations of the aver-
age) are considered for selection, but a few
strings that could potentially cause nega-
tive scaled fitness values are discarded.

An alternate way to avoid the twin
problems that plague proportional selec-
tion is rank-based selection, which uses a
fitness value-based rank of strings to allo-
cate offspring. The scaled fitness values
typically vary linearly with the rank of the
string. The absolute fitness value of the
string does not directly control the number
of its offspring. To associate each string
with a unique rank, this approach sorts the
strings according to their fitness values, in-
troducing the drawback of additional
overhead in the GA computation.

Another mechanism is tournament se-

lection. For selection, a string must win a
competition with a randomly selected set
of strings. In a k-ary tournament, the best
of k strings is selected for the next gener-
ation.

In either proportionate selection (with
or without scaling) or rank-based selec-
tion, the expected number of offspring is
not an integer, although only integer
numbers of offspring may be allocated to
strings. Researchers have proposed sev-
eral implementations to achieve a distri-
bution of offspring very close to the ex-
pected numbers of offspring.

Considerable research
has focused on
improving GA
performance.

Innovations include
distributed and
parallel GAS.

The stochastic remainder technique de-
terministically assigns offspring to strings
based on the integer part of the expected
number of offspring. It allocates the frac-
tional parts in a roulette wheel selection
(stochastic selection) to the remaining
offspring, thus restricting randomness to
only the fractional parts of the expected
numbers of offspring.

Each iteration of the simple G A cre-
ates an entirely new population from an
existing population. GAS that replace
the entire population are called genera-
tional GAS. GAS that replace only a
small fraction of strings at a time are
called steady-state GAS. Typically, new
strings created through recombination
replace the worst strings (strings with
the lowest fitness values). Functionally,
steady-state GAS differ from genera-
tional GAS in their use of populational
elitism (preservation of the best strings),
large population sizes, and high proba-
bilities of crossover and mutation. The
elitist selection strategy balances the dis-
ruptive effects of high crossover and mu-
tation rates.

Crossover mechanisms. Because of
their importance to G A functioning,

much of the literature has been devoted
to different crossover techniques and
their analysis. This section discusses the
important techniques.

Traditionally, GA researchers set the
number of crossover points at one or two.
In the two-point crossover scheme, two
crossover points are randomly chosen
and segments of the strings between them
are exchanged. Two-point crossover
eliminates the single-point crossover bias
toward bits at the ends of strings.

An extension of the two-point scheme,
the multipoint crossover, treats each
string as a ring of bits divided by k
crossover points into k segments. One set
of alternate segments is exchanged be-
tween the pair of strings to be crossed.

Uniform crossover exchanges bits of a
string rather than segments. At each
string position, the bits are probabilisti-
cally exchanged with some fixed proba-
bility. The exchange of bits at one string
position is independent of the exchange
at other positions.

Recent G A literature has compared
various techniques, particularly single-
point and two-point crossover on the one
hand, and uniform crossover on the
other. To classify techniques, we can use
the notions of positional and distribu-
tional biases. A crossover operator has
positional bias if the probability that a
bit is swapped depends on its position in
the string. Distributional bias is related
to the number of bits exchanged by the
crossover operator. If the distribution of
the number is nonuniform, the crossover
operator has a distributional bias.
Among the various crossover operators,
single-point crossover exhibits the max-
imum positional bias and the least dis-
tributional bias. Uniform crossover, at
the other end of the spectrum, has max-
imal distributional bias and minimal po-
sitional bias.

Empirical and theoretical studies have
compared the merits of various crossover
operators, particularly two-point and uni-
form crossover. At one end, uniform
crossover swaps bits irrespective of their
position, but its higher disruptive nature
often becomes a drawback. Two-point
and single-point crossover preserve
schemata because of their low disruption
rates, but they become less exploratory
when the population becomes homoge-
neous.

A related issue is the interplay between
the population size and the type of
crossover. Empirical evidence suggests
that uniform crossover is more suitable

22

--

COMPUTER

for small populations, while for larger
populations, the less disruptive two-point
crossover is better. Uniform crossover’s
disruptiveness helps sustain a highly ex-
plorative search in small populations.
The inherent diversity in larger popula-
tions reduces the need for exploration
and makes two-point crossover more
suitable.

A rather controversial issue strikes at
the heart of G A workings: Is crossover
an essential search mechanism, or is mu-
tation alone sufficient for efficient
search? Experimental evidence shows
that for some objective functions muta-
tion alone can locate the optimal solu-

Increasing the population size in-
creases its diversity and reduces the
probability that the GA will prema-
turely converge to a local optimum,
but it also increases the time required
for the population to converge to the
optimal regions in the search space.

We cannot choose control parameters
until we consider the interactions be-
tween the genetic operators. Because
they cannot be determined indepen-
dently, the choice of the control parame-
ters itself can be a complex nonlinear op-

Encodings. Critical to G A perfor-
mance is the choice of the underlying en-
coding for solutions of the optimization
problem. Traditionally, binary encodings
have been used because they are easy to
implement and maximize the number of
schemata processed. The crossover and
mutation operators described in the pre-
vious sections are specific only to binary
encodings. When alphabets other than
[OJ] are used, the crossover and muta-
tion operators must be tailored appro-
priately.

A large number of optimization prob-
lems have continuous variables that as-
sume real values. A common technique

tions, while for objective functions in- for encoding continuous variables in the
volving high epistaticity (nonlinear binary alphabet uses a fixed-point inte-
interactions among the bits of the ger encoding - each variable is encoded
strings), crossover performs a faster Nontraditional using a fixed number of binary bits. The
search than mutation. On the other hand, techniques including binary codes of all the variables are con-
crossover has long been accepted as more catenated to obtain the strings of the
useful when optimal solutions can be con- dynamic and population. A drawback of encoding
structed by combining building blocks adaptive strategies variables as binary strings is the presence

of Hamming cliffs: large Hamming dis-
tances between the binary codes of adja-

(schemata with short defining lengths and
high average fitness values), indicating
which requires linear interactions among proposed to improve cent integers. For example, 01111 and
the string bits. The question is whether performance. lo000 are the integer representations of
the experimental evidence and the gen- 15 and 16, respectively, and have a Ham-
era1 consensus about the utility of ming distance of 5. For the G A to im-

have also been

crossover are contradictory. Or is cross-
over beneficial in most objective func-
tions that have either linear or nonlinear
interactions? These questions are far
from being resolved, and considerable
theoretical and empirical evidence must
be gathered before any definite conclu-
sions can be drawn.

Control parameters. We can visualize
the functioning of GAS as a balanced
combination of exploration of new re-
gions in the search space and exploita-
tion of already sampled regions. This bal-
ance, which critically controls the
performance of GAS, is determined by
the right choice of control parameters:
the crossover and mutation rates and the
population size.

The choice of the optimal control pa-
rameters has been debated in both ana-
lytical and empirical investigations. Here
we point out the trade-offs that arise:

Increasing the crossover probability
increases recombination of building
blocks, but it also increases the dis-
ruption of good strings.
Increasing the mutation probability
tends to transform the genetic search
into a random search, but it also helps
reintroduce lost genetic material.

timization problem. Further, it is
becoming evident that the optimal con-
trol parameters critically depend on the
nature of the objective function.

Although the choice of optimal con-
trol parameters largely remains an open
issue, several researchers have proposed
control parameter sets that guarantee
good performance on carefully chosen
testbeds of objective functions. Two dis-
tinct parameter sets have emerged: One
has a small population size and relatively
large mutation and crossover probabili-
ties, while the other has a larger popula-
tion size, but much smaller crossover and
mutation probabilities. Typical of these
two categories are

crossover rate: 0.6, mutation rate:

crossover rate: 0.9, mutation rate:
0.001, population size: and

0.01, population size: 30.8

The first set of parameters clearly gives
mutation a secondary role, while the sec-
ond makes it more significant. The high
crossover rate of 0.9 in the second set
also indicates that a high level of string
disruption is desirable in small popula-
tions.

prove the code of 15 to that of 16, it must
alter all bits simultaneously. Such Ham-
ming cliffs present a problem for the GA,
as both mutation and crossover cannot
overcome them easily. Gray codes sug-
gested to alleviate the problem ensure
that the codes for adjacent integers al-
ways have a Hamming distance of l.
However, the Hamming distance does
not monotonously increase with the dif-
ference in integer values, and this phe-
nomenon introduces Hamming cliffs at
other levels.

Nontraditional techniques in GAS. The
previous sections described selection and
crossover techniques developed as natu-
ral extensions of the simple GA. Hence
the techniques still have the traditional
mold: binary encodings, statically defined
control parameters, and fixed-length en-
codings. Recently, a wide spectrum of
variants has broken away from the tradi-
tional setup. The motivation has been the
performance criterion: to achieve better
G A performance on a wide range of ap-
plication problems. We refer to these as
nontraditional techniques.

Dynamic and adaptive strategies. In
practical situations, the static configura-
tions of control parameters and encod-

June 1994 ’ 23

1

ings in GAS have some drawbacks. Pa-
rameter settings optimal in the earlier
stages of the search typically become in-
efficient during the later stages. Similarly,
encodings become too coarse as the
search progresses, and the fraction of the
search space that the G A focuses its
search on becomes progressively smaller.
To overcome these drawbacks, several
dynamic and adaptive strategies for vary-
ing the control parameters and encodings
have been proposed. One strategy expo-
nentially decreases mutation rates with
increasing numbers of generations, to
gradually decrease the search rate and
disruption of strings as the population
converges in the search space. Another
approach considers dynamically modify-
ing the rates at which the various genetic
operators are used, based on their per-
formance. Each operator is evaluated for
the fitness values of strings it generates in
subsequent generations.

Very often, after a large fraction of the
population has converged (the strings
have become homogeneous), crossover
becomes ineffective in searching for bet-
ter strings. Typically, low mutation rates
(0.001 to 0.01) are inadequate for contin-
uing exploration. In such a situation, a
dynamic approach for varying mutation
rates based on the Hamming distance be-
tween strings to be crossed can be useful.
The mutation rate increases as the Ham-
ming distance between strings decreases.
As the strings to be crossed resemble
each other to a greater extent, the capac-
ity of crossover to generate new strings
decreases, but the increased mutation
rate sustains the search.

The dynamic encoding of variables in
several implementations (DPE, Argot,
and Delta Encoding) increases the search
resolution as the G A converges. While
strings are encoded using the same num-
ber of bits, the size of the search space in
which strings are sampled is progressively
reduced to achieve a higher search reso-
lution.

Another adaptive strategy of encoding
(“messy” GAS) explicitly searches low-
order, high-fitness value schemata in the
initial stages and then juxtaposes the
building blocks with a splicing operator to
form optimal strings. This technique has
successfully optimized deceptive func-
tions, which can cause the Simple G A to
converge to local optima.

Distributed and parallel GAS. Dis-
tributed GAS and parallel GAS decen-
tralize the processing of strings. Although

they sound similar, the two approaches
are basically different. Distributed GAS
have a number of weakly interacting sub-
populations, and each carries out an in-
dependent search. Parallel GAS are par-
allel implementations of the “sequential”
G A on several computation engines to
speed execution.

Distributed GAS distribute a large
population into several smaller subpop-
ulations that evolve independently. Thus,

Researchers are
developing models

of GA dynamics,
analyzing problems

difficult for GAS,
and studying how

GAS work.

the exploration arising from a large pop-
ulation is evident, but the convergence
rates of the subpopulations are also high.
To ensure global competition among
strings, the best strings of the subpopula-
tions are exchanged. A distributed GA
can be implemented on a single compu-
tation engine or in parallel with each sub-
population processed by a different en-
gine.

Parallel GAS have emerged primarily
to enable execution on parallel comput-
ers. Issues such as local and global com-
munication, synchronization, and efficacy
of parallel computation have led to mod-
ifications of the G A structure. Tech-
niques such as local-neighborhood selec-
tion have been introduced to increase
computation speed.

Advances in theory
The emergence of new G A implemen-

tations for better performance has been
accompanied by considerable theoretical
research, especially in developing models
of G A dynamics, analyzing problems that
are hard for GAS, and, most important,
gaining a deeper understanding of how
GAS work.

To analyze the working of the simple
GA, Holland compared it with the k-

armed bandit problem.’ This problem
discusses the optimal allocation of trials
among k alternatives, each of which has
a different payoff, to maximize the total
payoff in a fixed number of trials. The
payoff of each alternative is treated as a
random variable. The distribution of pay-
offs from the different alternatives is not
known a priori and must be character-
ized based on the payoffs observed dur-
ing the trials. Holland demonstrated that
the GA simultaneously solves a number
of such k-armed bandit problems.

Consider the competition among
schemata of order m that have the same
fixed positions. There are 2m competing
schemata, and the G A allocates trials to
them to locate the fittest. Totally, there
are 2‘ (I is the string length) such compe-
titions occurring in parallel, with the G A
attempting to solve all simultaneously.
The exponential allocation of trials to the
fittest strings by the GA is a near optimal
allocation strategy, as it resembles the op-
timal solution to the k-armed bandit
p r ~ b l e m . ~

The schema theorem’ calculates a
lower bound on the expected number of
schemata under the action of selection,
crossover, and mutation. Although the
schema theorem captures the essence of
the GA mechanism, its applicability in
estimating the proportions of various
schemata in the population is limited. At-
tempts to refine the schema theorem
model the effects of crossover between
instances of the same schema. To make
the schema theorem more useful, ex-
pressions for the percentage of schema
instances generated by crossover and mu-
tation have been derived. The additional
terms have extended the inequality of the
schema theorem into an equation. How-
ever, the abstract nature of the calcula-
tions involved in computing these terms
reduces the applicability of the schema
“equation.”

A generalization of schemata defined
by Holland has been proposed. It views
as a predicate the condition for a string
to be included as an instance of a schema.
This general definition allows

22‘

predicates to exist, compared with the 3‘
Holland schemata for strings of length 1.
While the schema theorem remains valid
for these generalized predicates, we can
study several new interesting properties
regarding their stability and dominance
under the action of the genetic operators.

24 COMPUTER

I

GA dynamics. The GA’s population
dynamics are controlled by the parame-
ters population size, mutation rate, and
crossover rate. Characterizing the dy-
namics - not a simple task - is impor-
tant for understanding the conditions un-
der which the G A converges to the global
optimum.

Most work related to the dynamics of
GAS looks at convergence results from
one of two perspectives:

(1) finite versus infinite population re-

(2) homogeneous versus inhomoge-
sults, or

neous convergence results.

The first classification is self-explanatory.
The second arises from the state-transi-
tion probabilities of the Markov pro-
cesses that model the GA. If the state-
transition probabilities are invariant over
generations, we have a homogeneous
Markov chain.

For the finite population case, we can
consider each distinct population as a
possible state of a Markov chain, with the
state-transition matrix indicating the
probabilities of transitions between the
populations due to the genetic operators.
When the mutation probability is not
zero, every population can be reached
from every other population with some
nonzero probability. This property guar-
antees the existence of a unique fixed
point (a limiting distribution) for the dis-
tribution of populations. For a zero mu-
tation probability (with only selection
and crossover), any population consist-
ing of multiple copies of a single string is
a possible fixed point of the random pro-
cess modeling the GA.

Consider a nonstandard replacement
operator after crossover that ensures the
following property: For every bit position
i there exist strings in the population hav-
ing a 0 and a 1 at the position i . With this
we can show that every population is
reachable in a finite number of genera-
tions. The replacement operator substi-
tutes one of the strings in the population
with another string so the population sat-
isfies the defined property. Further, the
property also guarantees convergence of
the G A to the global optimum with the
probability of 1.0.

While these results summarize the ho-
mogeneous case, the main inhomoge-
neous result for finite populations is the
demonstration of an exponential an-
nealing schedule that guarantees con-
vergence of the G A to one of the fixed

points of the homogeneous case without
mutation. However, this does not mean
that the population corresponding to this
fixed point contains only the global op-
timum. Empirical evidence suggests that
as the population size increases, the
probability mass of the limit distributions
is concentrated at the optimal popula-
tions.

In infinite populations, we need model
only the proportions of strings. We can
model the evolution of populations as the

We are faced
with an

important question:
what problems
mislead GAS to
local optima?

interleaving of a quadratic operator rep-
resenting crossover and mutation, and a
linear operator representing selection.
When only selection and crossover are
considered, all limit points of the proba-
bility distribution have mass only at the
most fit strings. With mutation and uni-
form selection, the uniform distribution is
the unique fixed point.

Although it is important to establish
the global convergence of GAS, it is
equally important to have GAS with good
rates of convergence to the global opti-
mum. We believe that a major direction
for future research on the dynamics of
GAS is the establishment of bounds on
the convergence rates of the G A under
various conditions.

Deception. An important control on the
dynamics of GAS is the nature of the
search landscape. We are immediately
confronted with a question: What features
in search landscapes can GAS exploit effi-
ciently? Or more to the point: What prob-
lems mislead GAS to local optima?

GAS work by recombining low-order,
short schemata with above-average fit-
ness values to form high-order schemata.
If the low-order schemata contain the
globally optimal solution, then the G A
can potentially locate it. However, with
functions for which the low-order high-

fitness value schemata do not contain the
optimal string as an instance, the G A
could converge to suboptimal strings.
Such functions are called decep t i~e .~ Re-
cently, considerable research has focused
on the analysis and design of deceptive
functions.

The simplest deceptive function is the
minimaf deceptive problem, a two-bit
function. Assuming that the string “11”
represents the optimal solution, the fol-
lowing conditions characterize this prob-
lem:

The lower order schemata O* or *O do not
contain the optimal string 11 as an in-
stance and lead the G A away from 11.
The minimal deceptive problem is a par-
tially deceptive function, as both condi-
tions of Equation 2 are not satisfied
simultaneously. In a fully deceptiveprob-
lem, all the lower order schemata that
contain the optimal string have lower av-
erage fitness values than their competi-
tors (other schemata with the same fixed
positions).

The minimal deceptive problem can
easily be extended to higher string
lengths. GA literature abounds with anal-
yses of deceptive functions, conditions
for problems to be deceptive, and ways of
transforming deceptive functions into
nondeceptive ones.

Some recent studies have investigated
the implications of GA deceptiveness in
the context of problems that are hard -
that is, difficult for GAS to optimize. While
it appears that a deceptive objective func-
tion offers some measure of difficulty for
GAS, there has been some recent consen-
sus that deception is neither a sufficient
nor a necessary condition for a problem
to be hard. At the heart of this argument
is the observation that the definition of de-
ception in GAS derives from a static hy-
perplane analysis which does not account
for the potential difference of GAS’ dy-
namic behavior from static predictions.
Empirical work shows that some nonde-
ceptive functions cannot be optimized eas-
ily by GAS, while other deceptive func-
tions are easily optimized. Essentially,
other features such as improper problem
representations, the disruptive nature of
crossover and mutation, finite population
sizes, and multimodal landscapes could be
potential causes of hardness.

June 1994 25

1

nvented in the early 1970s, genetic
algorithms only recently have
gained considerable popularity as

general-purpose robust optimization and
search techniques. The failure of tradi-
tional optimization techniques in search-
ing complex, uncharted and vast-payoff
landscapes riddled with multimodality
and complex constraints has generated
interest in alternate approaches. Genetic
algorithms are particularly attractive be-
cause instead of a naive “search and se-
lect” mechanism they use crossover to
exchange information among existing so-
lutions to locate better solutions.

Despite the algorithms’ success, some
open issues remain:

the choice of control parameters,
the exact roles of crossover and mu-
tation,
the characterization of search land-
scapes amenable to optimization, and
convergence properties.

Limited empirical evidence points to the
efficacy of distributed and parallel GAS
and the adaptive strategies for varying
control parameters. However, more ex-
perimental evidence is needed before we
draw any definite conclusions about com-
parative performance.

GAS are emerging as an independent
discipline, but they demand considerable
work in the practical and theoretical do-
mains before they will be accepted at
large as alternatives to traditional opti-
mization techniques. We hope this article
stimulates interest in GAS and helps in
their establishment as an independent ap-
proach for optimization and search. W

References

1. J.H. Holland, Adaptation in Natural and
Artificial Systems, Univ. of Michigan Press,
Ann Arbor, Mich., 1975.

2. S. Kirkpatrick, C.D. Gelatt, and M.P. Vec-
chi, “Optimization by Simulated Anneal-
ing,” Science, Vol. 220, No. 4598, May
1983, pp. 671-681.

3. I. Rechenberg, Evolutionsstrategie:
Optimierung technischer Systeme nach
Prinzipien der biologische Evolution
[Evolutionary Strategy: Optimization of
Technical Systems According IO the Prin-
ciples of Biological Evolution], Frommann
Holzboog Verlag, Stuttgart, Germany,
1973.

4. H.P. Schwefel, Numerical Optimization
of Computer Models, Wiley, Chichester,
UK, 1981.

5. K.A. DeJong, An Analysis of the Behavior
of a Class of Genetic Adaptive Systems,
doctoral dissertation, Univ. of Michigan,
Ann Arbor, Mich., 1975.

6. S. Forrest and M. Mitchell, “What Makes
a Problem Hard for a Genetic Algorithm?
Some Anomalous Results and their Ex-
planation,” in Machine Learning, Vol. 13,
1993, pp. 285-319.

7. D.E. Goldberg, Genetic Algorithms in
Search, Optimization and Machine Learn-
ing, Addison-Wesley, Reading, Mass.,
1989.

8. J.J. Grefenstette, “Optimization of Con-
trol Parameters for Genetic Algorithms,”
IEEE Trans. Systems, Man, and Cyber-
netics, Vol.SMC-16, No. 1, Jan./Feb. 1986,
pp. 122-128.

9. H. Muhlenbein et al., “The Parallel GA
as a Function Optimizer,” Proc. Fourth
Int’l Conf Genetic Algorithms, Morgan
Kaufmann, San Mateo, Calif., 1991, pp.
279-288.

10. J.D. Schaffer et al., “A Study of Control
Parameters Affecting On-line Perfor-
mance of Genetic Algorithms for Func-
tion Optimization,” Proc. Third Znt’l Con$
Genetic Algorithms, Morgan Kdufmann,
San Mateo, Calif., 1989, pp. 51-60.

1. M. Srinivas and L.M. Patnaik, “Adaptive
Probabilities of Crossover and Mutation
in Genetic Algorithms,” ZEEE Trans.
Systems, Man, and Cybernetics, Apr.
1994.

2. M. Srinivas and L.M. Patnaik, “Binomi-
ally Distributed Populations for Model-
ing Genetic Algorithms,” Proc. Fifth Int’l
Con$ Genetic Algorithms, Morgan Kauf-
mann, San Mateo, Calif., 1993, pp. 138-
145.

13. D. Whitley and T. Starkweather, “Geni-
tor-11: A Distributed Genetic Algorithm,”
J. Experimental Theoretical Artificial In-
telligence, Vol. 2,1990, pp. 189-214.

14. L. Davis, ed., Handbook of Genetic Algo-
rithms, Van Nostrand Reinhold, New
York, 1991.

15. Z. Michalewicz, Genetic Algorithms +
Data Structures = Evolutionary Programs,
Springer-Verlag, Berlin, 1992.

16. K.A. DeJong and W.M. Spears, “An Anal-
ysis of the Interacting Roles of Population
Size and Crossover in Genetic Algo-
rithms,” Proc. First Workshop Parallel
Problem Solving from Nature, Springer-
Verlag, Berlin, 1990, pp. 38-47.

M. Srinivas is employed at Motorola India
Electronics Ltd., where his research interests
are in theory and design of genetic algorithms,
neural networks, stochastic optimization, and
optimization in VLSI CAD algorithms. He has
also worked for the Centre for Development
of Advanced Computing.

Srinivas is a PhD candidate in computer sci-
ence and automation at the Indian Institute of
Science, Bangalore.

Lalit M. Patnaik is a professor in the Electri-
cal Sciences Division of the Indian Institute of
Science, where he directs a research group in
the Microprocessor Applications Laboratory.
His teaching, research, and development in-
terests are in parallel and distributed comput-
ing, computer architecture, computer-aided
design of VLSI systems, computer graphics,
theoretical computer science, real-time sys-
tems, neural computing, and genetic algo-
rithms. In the areas of parallel and distributed
computing and neural computing, he has been
a principal investigator for government-spon-
sored research projects and a consultant to in-
dustry.

Patnaik received his PhD for work in real-
time systems in 1978 and his DSc in computer
systems and architectures in 1989, both from
the Indian Institute of Science. He is a fellow
of the IEEE, Indian National Science Aca-
demy, Indian Academy of Sciences, National
Academy of Sciences, and Indian National
Academy of Engineering. For the last two
years, he has served as chair of the IEEE Com-
puter Society chapter, Bangalore section.

Srinivas can be reached at Motorola India
Electronics Ltd., No. 1, St. Marks Road, Ban-
galore 560 001, India; e-mail: msriniemas-
ter.miel.mot.com. Patnaik can be contacted at
the Microprocessor Applications Laboratory,
Indian Institute of Science, Bangalore 560 012,
India; e-mail: lalit@micro.iisc.ernet.in.

COMPUTER

http://ter.miel.mot.com

