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n the last five years, genetic algorithms have emerged as practical, robust op- 
timization and search methods. Diverse areas such as music generation, ge- 
netic synthesis, VLSI technology, strategy planning, and machine learning 

have profited from these methods. The popularity of genetic algorithms is reflected 
in three biennial conferences, a new international journal, and an ever-increasing 
mass of literature devoted to the theory, practice, and applications of such techniques 
(see the sidebar “To learn more”). 

Genetic algorithm search methods are rooted in the mechanisms of evolution and 
natural genetics. The interest in heuristic search algorithms with underpinnings in 
natural and physical processes began as early as the 1970s, when Holland’ first pro- 
posed genetic algorithms. This interest was rekindled by Kirkpatrick, Gelatt, and 
Vecchi’s simulated annealing technique in 1983.2 Simulated annealing is based on 
thermodynamic considerations, with annealing interpreted as an optimization pro- 
cedure. Evolutionary ~ t r a t e g i e s ~ . ~  and genetic  algorithm^,^.'^ on the other hand, 
draw inspiration from the natural search and selection processes leading to the sur- 
vival of the fittest individuals. Simulated annealing, genetic algorithms, and evolu- 
tionary strategies are similar in their use of a probabilistic search mechanism di- 
rected toward decreasing cost or increasing payoff. These three methods have a 
high probability of locating the global solution optimally in a multimodal search 
landscape. (A multimodal cost function has several locally optimal solutions as well.) 
However, each method has a significantly different mode of operation. 

Simulated annealing probabilistically generates a sequence of states based on a 
cooling schedule to ultimately converge to the global optimum. Evolutionary strate- 
gies use mutations as search mechanisms and selection to direct the search toward the 
prospective regions in the search space. Genetic algorithms generate a sequence of 
populations by using a selection mechanism, and use crossover and mutation as search 
mechanisms. The principal difference between genetic algorithms and evolutionary 
strategies is that genetic algorithms rely on crossover, a mechanism of probabilistic 
and useful exchange of information among solutions, to locate better solutions, while 
evolutionary strategies use mutation as the primary search mechanism. Although 



simulated annealing, evolutionary strate- 
gies, and genetic algorithms have basi- 
cally different approaches. several hy- 
brids of these techniques that narrow the 
distinctions among them have been pro- 
posed in recent literature. Other opti- 
mization algorithms derived from the 
evolutionary paradigm have also demon- 
strated considerable success. 

In this article we introduce the art and 
science of genetic algorithms and survey 
current issues in G A  theory and practice. 
We do not present a detailed study, since 
several wonderful texts on GAS already 
e~is t . ’ .~ . ’ ‘ . ’~ Instead, we offer a quick 
guide into the labyrinth of G A  research. 
To  start, we draw the analogy between 
genetic algorithms and the search pro- 
cesses in nature. Then we describe the 
genetic algorithm that Holland intro- 
duced in 1975 and the workings of GAS. 
After a survey of techniques proposed 
as improvements to Holland’s G A  and 
of some radically different approaches, 
we survey the advances in G A  theory re- 
lated to modeling. dynamics, and decep- 
tion. 

Genetic algorithms 
and natural 
selection 

In nature. individuals best suited to 
competition for scanty resources survive. 
Adapting to a changing environment is 

essential for the survival of individuals of 
each species. While the various features 
that uniquely characterize an individual 
determine its survival capacity. the fea- 
tures in turn are determined by the indi- 
vidual’s genetic content. Specifically, 
each feature is controlled by a basic unit 
called a gene. The sets of genes control- 
ling features form the chromosomes, the 
“keys” to the survival of the individual in 
a competitive environment. 

Although evolution manifests itself as 
a succession of changes in species’ fea- 
tures, it is the changes in the species’ ge- 
netic material that form the essence of 
evolution. Specifically, evolution’s driv- 
ing force is the joint action of natural se- 
lection and the recombination of genetic 
material that occurs during reproduc- 
tion. 

In nature, competition among individ- 
uals for scant resources such as food and 
space and for mates results in the fittest 
individuals dominating over weaker ones. 
Only the fittest individuals survive and 
reproduce, a natural phenomenon called 
“the survival of the fittest.” Hence, the 
genes of the fittest survive, while the 
genes of weaker individuals die out. Nat- 
ural selection leads to the survival of the 
fittest individuals, but it also implicitly 
leads to the survival of the fittest genes. 

The reproduction process generates di- 
versity in the gene pool. Evolution is ini- 
tiated when the genetic material (chro- 
mosomes) from two parents recombines 
during reproduction. New combinations 
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of genes are generated from previous 
ones; a new gene pool is created. Specif- 
ically, the exchange of genetic material 
among chromosomes is called crossover. 
Segments of the two parent chromo- 
somes are exchanged during crossover, 
creating the possibility of the “right” 
combination of genes for better individ- 
uals. Repeated selection and crossover 
cause the continuous evolution of the 
gene pool and the generation of individ- 
uals that survive better in a competitive 
environment. 

Holland’ proposed genetic algorithms 
in the early 1970s as computer programs 
that mimic the evolutionary processes in 
nature. Genetic algorithms manipulate 
a population of potential solutions to  an 
optimization (or search) problem. Spe- 
cifically, they operate on encoded repre- 
sentations of the solutions, equivalent to 
the genetic material of individuals in na- 
ture, and not directly on the solutions 
themselves. Holland’s genetic algorithm 
encodes the solutions as strings of bits 
from a binary alphabet. As in nature, se- 
lection provides the necessary driving 
mechanism for better solutions to sur- 
vive. Each solution is associated with a 
fitness vulue that reflects how good it is, 
compared with other solutions in the 
population. The higher the fitness value 
of an individual, the higher its chances 
of survival and reproduction and the 
larger its representation in the subse- 
quent generation. Recombination of ge- 
netic material in genetic algorithms is 
simulated through a crossover mecha- 
nism that exchanges portions between 
strings. Another operation, called muta- 
tion, causes sporadic and random alter- 
ation of the bits of strings. Mutation too 
has a direct analogy from nature and 
plays the role of regenerating lost genetic 
material. 

A simple genetic 
algorithm 

In the literature, Holland’s genetic al- 
gorithm is commonly called the Simple 
Genetic Algorithm or SGA. Essential to 
the SGA’s working is a population of bi- 
nary strings. Each string of Os and Is  is 
the encoded version of a solution to the 
optimization problem. Using genetic op- 
erators - crossover and mutation -the 
algorithm creates the subsequent gener- 
ation from the strings of the current pop- 
ulation. This generational cycle is re- 
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peated until a desired termination crite- 
rion is reached (for example. a prede- 
fined number of generations are pro- 
cessed). 

Figure 1 summarizes the working of 
the SGA. which has the following com- 
ponents: 

0 a population of binary strings, 
control parameters. 
a fitness function, 

0 genetic operators (crossover and mu- 

a selection mechanism, and 
0 a mechanism to encode the solutions 

tation), 

as binary strings. 

Encoding mechanism. Fundamental to 
the G A  structure is the encoding mecha- 
nism for representing the optimization 
problem's variables. The encoding mech- 
anism depends on the nature of the 
problem variables. For example. when 
solving for the optimal flows in a trans- 
portation problem. the variables (flows 
in different channels) assume continuous 
values, while the variables in a traveling- 
salesman problem are binary quantities 
representing the inclusion or  exclusion of 
an edge in the Hamiltonian circuit. In 
each case the encoding mechanism 
should map each solution to a unique bi- 
nary string. 

A large number of optimization prob- 
lems have real-valued continuous vari- 
ables. A common method of encoding 
them uses their integer representation. 
Each variable is first linearly mapped to 
an integer defined in a specified range, 
and the integer is encoded using a fixed 
number of binary bits. The binary codes 
of all the variables are then concatenated 
to obtain a binary string. For example, 
consider a continuous variable defined in 
a range from -1.28 to 1.28. We could en- 
code this continuous variable with an ac- 
curacy of two decimal places by multi- 
plying its real value by 100 and then 
discarding the decimal portion of the 
product. Thus the value that the variable 
attains is linearly mapped to integers in 
the range [-128, 1281. The binary code 
corresponding to each integer can be eas- 
ily computed. 

Fitness function. The objective func- 
tion, the function to be optimized, pro- 
vides the mechanism for evaluating each 
string. However. its range of values varies 
from problem to problem. To maintain 
uniformity over various problem do- 
mains, we use thefitness function to nor- 

malize the objective function to 
a convenient range of 0 to 1. The 
normalized value of the objective 
function is thefitness of the string, 
which the selection mechanism 
uses to evaluate the strings of the 
population. 

Selection. Selection models na- 
ture's survival-of-the-fittest mech- 
anism. Fitter solutions survive 
while weaker ones perish. In the 
SGA, a fitter string receives a 
higher number of offspring and 
thus has a higher chance of sur- 
viving in the subsequent genera- 
tion. In the proportionate selec- 
tion scheme, a string with fitness 
value f - is allocated fb'f offspring, 

Simple Genetic Algorithm () 

initialize population; 
evaluate population; 

[ 

wherefis the average fitness value of the 
population. A string with a fitness value 
higher than the average is allocated more 
than one offspring, while a string with a 
fitness value less than the average is allo- 
cated less than one offspring. 

The proportionate selection scheme al- 
locates fractional numbers of offspring to 
strings. Hence the numberfb'frepresents 
the string's expected number of offspring. 
Since in the final allocation some strings 
have to receive a higher number of off- 
spring thanfi/'and some less than fb'f, al- 
location methods include some random- 
ization to remove methodical allocation 
biases toward any particular set of strings. 
The allocation technique controls the ex- 
tent to which the actual allocation of off- 
spring to strings matches the expected 
number of offspringfi/'. 

The SGA uses the roulette wheel se- 
lection scheme' to implement propor- 
tionate selection. Each string is allocated 
a sector (slot) of a roulette wheel with 
the angle subtended by the sector at the 
center of the wheel equaling 2x  fi@. A 
string is allocated an offspring if a ran- 
domly generated number in the range 0 
to 2x falls in the sector corresponding to 
the string. The algorithm selects strings 
in this fashion until it has generated the 
entire population of the next generation. 
Roulette wheel selection could generate 
large sampling errors in the sense that 
the final number of offspring allocated 
to a string might vary significantly from 
the expected number. The allocated 
number of offspring approaches the ex- 
pected number only for very large pop- 
ulation sizes. 

Figure 1. Simple Genetic Algorithm structure. 

Crossover. After selection comes 
crossover, SGA's crucial operation. Pairs 

of strings are picked at random from the 
population to be subjected to crossover. 
The SGA uses the simplest approach - 
single-point crossover. Assuming that 1 is 
the string length, it randomly chooses a 
crossover point that can assume values in 
the range 1 to 1 - 1. The portions of the 
two strings beyond this crossover point 
are exchanged to form two new strings. 
The crossover point may assume any of 
the 1 - 1 possible values with equal prob- 
ability. Further, crossover is not always 
effected. After choosing a pair of strings, 
the algorithm invokes crossover only if a 
randomly generated number in the range 
0 to  1 is greater than pc ,  the crossover 
rate. (In G A  literature, the term cross- 
over rate is also used to denote the prob- 
ability of crossover.) Otherwise the 
strings remain unaltered. The value ofp,. 
lies in the range from 0 to 1. In a large 
population,p, gives the fraction of strings 
actually crossed. 

Mutation. After crossover. strings are 
subjected to mutation. Mutation of a bit 
involves flipping it: changing a 0 to 1 or  
vice versa. Just asp, controls the proba- 
bility of a crossover, another parameter. 
P , , ~  (the mutation rate), gives the proba- 
bility that a bit will be flipped. The bits of 
a string are independently mutated - 
that is, the mutation of a bit does not af- 
fect the probability of mutation of other 
bits. The SGA treats mutation only as a 
secondary operator with the role of 
restoring lost genetic material. For ex- 
ample, suppose all the strings in a popu- 
lation have converged to a 0 at a given 
position and the optimal solution has a 1 
at that position. Then crossover cannot 
regenerate a 1 at that position. while a 
mutation could. 
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Population P1: 

String Fitness value 
0 0 0 0 0 1 1 1 0 0  0.3 
1 0 0 0 0 1 1 1 1 1  0.6 
0 1  10101011 0.6 
1 1 1 1 1 1 1 0 1 1  0.9 

Population P2 : After selection 

String Fitness value 
1000011111 0.6 
0 1 1 0 1 0 1 0 1 1  0.6 
1 1 1 1 1 1 1 0 1 1  0.9 
1 1 1 1 1 1 1 0 1 1  0.9 

Population P3 : After crossover 

String Fitness value 
100001 11 01 1 0.5 
0110101011 0.6 
1111111011 0.9 
11111111111 1.0 

Population P4 : After mutation 

String 

crossed, while the other pair of strings is 
left intact. The crossover point falls be- 
tween the fifth and sixth bits of the 
strings, and portions of strings 1 and 4 be- 
yond the fifth bit are swapped. Popula- 
tion P3 represents the set of strings after 
crossover. The action of mutation on 
population P3 can be seen in population 
P4 on the sixth bit of string 2 and the first 
bit of string 4: Only two bits out of 40 
have been mutated, representing an ef- 
fective mutation rate of 0.05. Population 
P4 represents the next generation. (In ef- 
fect, P1 and P4 are the populations, while 
P2 and P3 represent intermediate stages 
in the generational cycle.) 

The example in Figure 2 is only for il- 
lustration. Typically the SGA uses a pop- 
ulation size of 30 to 200, crossover rates 
from 0.5 to 1.0, and mutation rates from 
0.001 to 0.05. These parameters - the 
population size, mutation rate, and 
crossover rate - are together referred 
to as the control parameters of the SGA 
and must be specified before its execu- 
tion. 

To terminate execution of the SGA. 
we must specify a stopping criterion. It 
could be terminated after a fixed num- 
ber of generations, after a string with a 
certain high fitness value is located, or af- 
ter all the strings in the population have 
attained a certain degree of homogeneity 
(a large number of strings have identical 
bits at most positions). 

Figure 2. A generational cycle of the 
Simple Genetic Algorithm. 

How do genetic 
algorithms work? 

Generational cycle. Figure 2 shows a 
generational cycle of the genetic algo- 
rithm with a population ( P l )  of four 
strings with 10 bits each. In the example, 
the objective function, which can assume 
values in the range 0 to 10, gives the num- 
ber of Is in the string. The fitness function 
performs a “divide by 10” operation to 
normalize the objective function to the 
range 0 to 1. The four strings thus have 
fitness values of 0.3,0.6,0.6, and 0.9. Ide- 
ally, the proportional selection scheme 
should allocate 0.5, 1.0. 1.0 and 1.5 off- 
spring to the strings. However, in this 
case, the final allocation of offspring is 0, 
1.1, and 2. In Figure 2 the population P2 
represents this selected set of strings. 
Next, the four strings are paired ran- 
domly for crossover. Strings 1 and 4 form 
one pair, while strings 2 and 3 form the 
other pair. At a crossover rate of 0.5, only 
the pair of strings 1 and 4 is actually 

Despite successful use of GAS in a 
large number of optimization problems. 
progress on the theoretical front has been 
rather slow. A very clear picture of the 
workings of GAS has not yet emerged, 
but the schemu theory and the building- 
block hypothesis of Holland and Gold- 
berg’.7 capture the essence of GA me- 
chanics. 

Similarity template. A schema is a sim- 
ilarity template describing a subset of 
strings with similarities at certain posi- 
t i o n ~ . ’ , ~  In other words, a schema repre- 
sents a subset of all possible strings that 
have the same bits at certain string posi- 
tions. As an example, consider strings with 
five bits. A schema **000 represents 
strings with 0s in the last three positions: 
the set of strings 00000,01000,10000, and 
11000. Similarly, a schema 1*00* repre- 

sents the strings 10000, 10001,11000, and 
11001. Each string represented by a 
schema is called an instance of the schema. 
Because the symbol * signifies that a 0 or 
a 1 could occur at the corresponding string 
position, the schema ***** represents all 
possible strings of five bits. The fixed po- 
sifions of a schema are the string positions 
that have a 0 or a 1: in **000, the third, 
fourth. and fifth positions. The number of 
fixed positions of a schema is its order: 
**000 is of order 3. A schema’s defining 
length is the distance between the outer- 
most fixed positions. Hence, the defining 
length of **000 is 2, while the defining 
length of 1 *00* is 3. Any specific string is 
simultaneously an instance of 2‘schemata 
( I  is the string length). 

Since a schema represents a subset of 
strings, we can associate a fitness value 
with a schema: the average fitness o f  the 
schema. In a given population, this is de- 
termined by the average fitness of in- 
stances of the schema. Hence, a schema’s 
average fitness value varies with the pop- 
ulation’s composition from one genera- 
tion to another. 

Competition. Why are schemata im- 
portant? Consider a schema with k fixed 
positions. There are 2k - 1 other sche- 
mata with the same fixed positions that 
can be obtained by considering all per- 
mutations of 0s and Is  at these k posi- 
tions. Altogether, for k fixed positions, 
there are 2h distinct schemata that gen- 
erate a partitioning of all possible strings. 
Each such set of k fixed positions gener- 
ates a schema competition, a survival 
competition among the 2k schemata. 
Since there are 2’ possible combinations 
of fixed positions, 2‘distinct schema com- 
petitions are possible. The execution of 
the GA thus generates 2‘ simultaneous 
schema competitions. The GA simulta- 
neously, though not independently, at- 
tempts to solve all the 2‘ schema compe- 
titions and locate the best schema for 
each set of fixed positions. 

We can visualize the GA’s search for 
the optimal string as a simultaneous com- 
petition among schemata to increase the 
number of their instances in the popula- 
tion. If we describe the optimal string as 
the juxtaposition of schemata with short 
defining lengths and high average fitness 
values, then the winners of the individ- 
ual schema competitions could poten- 
tially form the optimal string. Such 
schemata with high fitness values and 
small defining lengths are appropriately 
called building blocks. The notion that 
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strings with high fitness values can be lo- 
cated by sampling building blocks with 
high fitness values and combining the 
building blocks effectively is called the 
building-block hypothesis.’.’ 

Building blocks. The genetic operators 
- crossover and mutation - generate, 
promote, and juxtapose building blocks 
to form optimal strings. Crossover tends 
to conserve the genetic information pre- 
sent in the strings to be crossed. Thus, 
when the strings to be crossed are similar, 
its capacity to  generate new building 
blocks diminishes. Mutation is not a con- 
servative operator and can generate rad- 
ically new building blocks. Selection pro- 
vides the favorable bias toward building 
blocks with higher fitness values and en- 
sures that they increase in representation 
from generation to generation. GAS’ cru- 
cial and unique operation is the juxtapo- 
sition of building blocks achieved during 
crossover, and this is the cornerstone of 
CA mechanics. 

The building-block hypothesis assumes 
that the juxtaposition of good building 
blocks yields good strings. This is not al- 
ways true. Depending on the nature of 
the objective function, very bad strings 
can be generated when good building 
blocks are combined. Such objective 
functions are referred to as CA-decep- 
tive functions, and they have been studied 
extensively. (We discuss them in more 
detail in a later section.) 

Schema theorem. When we consider 
the effects of selection. crossover, and 
mutation on the rate at which instances of 
a schema increase from generation to 
generation. we see that proportionate se- 
lection increases or  decreases the num- 
ber in relation to the average fitness value 
of the schema. Neglecting crossover, a 
schema with a high average fitness value 
grows exponentially to win its relevant 
schema competition. However, a high av- 
erage fitness value alone is not sufficient 
for a high growth rate. A schema must 
have a short defining length too. Because 
crossover is disruptive, the higher the 
defining length of a schema, the higher 
the probability that the crossover point 
will fall between its fixed positions and 
an instance will be destroyed. Thus, 
schemata with high fitness values and 
small defining lengths grow exponentially 
with time. This is the essence of the 
schema theorem, first proposed by Hol- 
land as the “fundamental theorem ofge- 
netic algorithms.”’ (See the sidebar.) 

The following equation is a formal statement of the schema theorem: 

where 
f(h, t ) :  average fitness value of schema h in generation t 
f c t ) :  average fitness value of the population in generation t 
pc:  crossover probability 
pm: mutation probability 
F(h): defining length of the schema 
o(h): order of the schema h 
N(h, t ) :  expected number of instances of schema h in generation t 
I: the number of bit positions in a string 

The factor: 

gives the probability that an instance of 
the schema h is disrupted by crossover, 
andp,,o(h) gives the probability that an 
instance is disrupted by mutation.’ 

The C A  samples the building blocks 
at a very high rate. In a single genera- 
tional cycle the C A  processes only P 
strings (P is the population size), but it 
implicitly evaluates approximately P’ 
schemata.’ This capacity of GAS to si- 
multaneously process a large number of 
schemata, called implicit parallelism, 
arises from the fact that a string simul- 
taneously represents 2‘ different sche- 
mata. 

Modifications to 
the SGA 

Over the last decade, considerable re- 
search has focused on improving G A  per- 
formance. Efficient implementations of 
the proportionate selection scheme such 
as the stochastic remainder technique and 
the stochastic universal sampling tech- 
nique have been proposed to reduce sam- 
pling errors. Selection mechanisms such 
as rank-based selection, elitist strategies, 
steady-state selection, and tournament se- 
lection have been proposed as alterna- 
tives to proportional selection. Crossover 
mechanisms such as two-point, multi- 

point. and uniform have been proposed 
as improvements on the traditional sin- 
gle-point crossover technique. Gray codes 
and dynamic encoding have overcome 
some problems associated with fixed- 
point integer encoding. Departing from 
the traditional policy of static control pa- 
rameters for the GA, adaptive techniques 
dynamically vary the control parameters 
(crossover and mutation rates). Signifi- 
cant innovations include the distributed 
genetic algorithms and parallel genetic al- 
gorithms. The rest of this section surveys 
these developments. 

Selection mechanisms and scaling. 
The proportionate selection scheme al- 
locates offspring based on the ratio of a 
string’s fitness value to the population’s 
average fitness value. In the initial gen- 
erations of the C A ,  the population typ- 
ically has a low average fitness value. 
The presence of a few strings with rela- 
tively high fitness values causes the pro- 
portionate selection scheme to allocate 
a large number of offspring to these “su- 
perstrings,” and they take over the pop- 
ulation, causing premature convergence. 
A different problem arises in the later 
stages of the C A  when the population 
has converged and the variance in string 
fitness values becomes small. The pro- 
portionate selection scheme allocates 
approximately equal numbers of off- 
spring to all strings, thereby depleting 
the driving force that promotes better 
strings. Scaling mechanisms and rank- 
based selection schemes overcome these 
two problems. 
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Scaling of fitness values involves read- 
justment of string fitness values. Linear 
scaling computes the scaled fitness value 
as 

f = a f + b  

wherefis the fitness value, f is the scaled 
fitness value, and a and b are suitably 
chosen constants. Here a and b are cal- 
culated in each generation to ensure that 
the maximum value of the scaled fitness 
value is a small number, say 1.5 or 2.0 
times the average fitness value of the pop- 
ulation. Then the maximum number of 
offspring allocated to a string is 1.5 or 2.0. 
Sometimes the scaled fitness values may 
become negative for strings that have fit- 
ness values far smaller than the average 
fitness of the population. In such cases, 
we must recompute a and b appropriately 
to avoid negative fitness values. 

One way to overcome the problem of 
negative scaled fitness values is simply to 
remove these “troublemakers” from the 
competition. The sigma truncation 
scheme does exactly this by considering 
the standard deviation of fitness values 
before scaling them. Hence the fitness 
values of strings are determined as fol- 
lows: 

f = f - & c o )  

wherefis the average fitness value of the 
population, CJ is the standard deviation of 
fitness values in the population, and c is a 
small constant typically ranging from 1 
to 3. 

Strings whose fitness values are less 
than c standard deviations from the aver- 
age fitness value are discarded. This ap- 
proach ensures that most strings in the 
population (those whose fitness values are 
within c standard deviations of the aver- 
age) are considered for selection, but a few 
strings that could potentially cause nega- 
tive scaled fitness values are discarded. 

An alternate way to avoid the twin 
problems that plague proportional selec- 
tion is rank-based selection, which uses a 
fitness value-based rank of strings to allo- 
cate offspring. The scaled fitness values 
typically vary linearly with the rank of the 
string. The absolute fitness value of the 
string does not directly control the number 
of its offspring. To associate each string 
with a unique rank, this approach sorts the 
strings according to their fitness values, in- 
troducing the drawback of additional 
overhead in the GA computation. 

Another mechanism is tournament se- 

lection. For selection, a string must win a 
competition with a randomly selected set 
of strings. In a k-ary tournament, the best 
of k strings is selected for the next gener- 
ation. 

In either proportionate selection (with 
or without scaling) or rank-based selec- 
tion, the expected number of offspring is 
not an integer, although only integer 
numbers of offspring may be allocated to 
strings. Researchers have proposed sev- 
eral implementations to achieve a distri- 
bution of offspring very close to the ex- 
pected numbers of offspring. 

Considerable research 
has focused on 
improving GA 
performance. 

Innovations include 
distributed and 
parallel GAS. 

The stochastic remainder technique de- 
terministically assigns offspring to strings 
based on the integer part of the expected 
number of offspring. It allocates the frac- 
tional parts in a roulette wheel selection 
(stochastic selection) to the remaining 
offspring, thus restricting randomness to 
only the fractional parts of the expected 
numbers of offspring. 

Each iteration of the simple G A  cre- 
ates an entirely new population from an 
existing population. GAS that replace 
the entire population are called genera- 
tional GAS. GAS that replace only a 
small fraction of strings at  a time are 
called steady-state GAS. Typically, new 
strings created through recombination 
replace the worst strings (strings with 
the lowest fitness values). Functionally, 
steady-state GAS differ from genera- 
tional GAS in their use of populational 
elitism (preservation of the best strings), 
large population sizes, and high proba- 
bilities of crossover and mutation. The 
elitist selection strategy balances the dis- 
ruptive effects of high crossover and mu- 
tation rates. 

Crossover mechanisms. Because of 
their importance to G A  functioning, 

much of the literature has been devoted 
to different crossover techniques and 
their analysis. This section discusses the 
important techniques. 

Traditionally, GA researchers set the 
number of crossover points at one or two. 
In the two-point crossover scheme, two 
crossover points are randomly chosen 
and segments of the strings between them 
are exchanged. Two-point crossover 
eliminates the single-point crossover bias 
toward bits at the ends of strings. 

An extension of the two-point scheme, 
the multipoint crossover, treats each 
string as a ring of bits divided by k 
crossover points into k segments. One set 
of alternate segments is exchanged be- 
tween the pair of strings to be crossed. 

Uniform crossover exchanges bits of a 
string rather than segments. At each 
string position, the bits are probabilisti- 
cally exchanged with some fixed proba- 
bility. The exchange of bits at one string 
position is independent of the exchange 
at other positions. 

Recent G A  literature has compared 
various techniques, particularly single- 
point and two-point crossover on the one 
hand, and uniform crossover on the 
other. To classify techniques, we can use 
the notions of positional and distribu- 
tional biases. A crossover operator has 
positional bias if the probability that a 
bit is swapped depends on its position in 
the string. Distributional bias is related 
to the number of bits exchanged by the 
crossover operator. If the distribution of 
the number is nonuniform, the crossover 
operator has a distributional bias. 
Among the various crossover operators, 
single-point crossover exhibits the max- 
imum positional bias and the least dis- 
tributional bias. Uniform crossover, at 
the other end of the spectrum, has max- 
imal distributional bias and minimal po- 
sitional bias. 

Empirical and theoretical studies have 
compared the merits of various crossover 
operators, particularly two-point and uni- 
form crossover. At one end, uniform 
crossover swaps bits irrespective of their 
position, but its higher disruptive nature 
often becomes a drawback. Two-point 
and single-point crossover preserve 
schemata because of their low disruption 
rates, but they become less exploratory 
when the population becomes homoge- 
neous. 

A related issue is the interplay between 
the population size and the type of 
crossover. Empirical evidence suggests 
that uniform crossover is more suitable 
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for small populations, while for larger 
populations, the less disruptive two-point 
crossover is better. Uniform crossover’s 
disruptiveness helps sustain a highly ex- 
plorative search in small populations. 
The inherent diversity in larger popula- 
tions reduces the need for exploration 
and makes two-point crossover more 
suitable. 

A rather controversial issue strikes at 
the heart of G A  workings: Is crossover 
an essential search mechanism, or is mu- 
tation alone sufficient for efficient 
search? Experimental evidence shows 
that for some objective functions muta- 
tion alone can locate the optimal solu- 

Increasing the population size in- 
creases its diversity and reduces the 
probability that the GA will prema- 
turely converge to a local optimum, 
but it also increases the time required 
for the population to converge to the 
optimal regions in the search space. 

We cannot choose control parameters 
until we consider the interactions be- 
tween the genetic operators. Because 
they cannot be determined indepen- 
dently, the choice of the control parame- 
ters itself can be a complex nonlinear op- 

Encodings. Critical to G A  perfor- 
mance is the choice of the underlying en- 
coding for solutions of the optimization 
problem. Traditionally, binary encodings 
have been used because they are easy to 
implement and maximize the number of 
schemata processed. The crossover and 
mutation operators described in the pre- 
vious sections are specific only to binary 
encodings. When alphabets other than 
[OJ] are used, the crossover and muta- 
tion operators must be tailored appro- 
priately. 

A large number of optimization prob- 
lems have continuous variables that as- 
sume real values. A common technique 

tions, while for objective functions in- for encoding continuous variables in the 
volving high epistaticity (nonlinear binary alphabet uses a fixed-point inte- 
interactions among the bits of the ger encoding - each variable is encoded 
strings), crossover performs a faster Nontraditional using a fixed number of binary bits. The 
search than mutation. On the other hand, techniques including binary codes of all the variables are con- 
crossover has long been accepted as more catenated to obtain the strings of the 
useful when optimal solutions can be con- dynamic and population. A drawback of encoding 
structed by combining building blocks adaptive strategies variables as binary strings is the presence 

of Hamming cliffs: large Hamming dis- 
tances between the binary codes of adja- 

(schemata with short defining lengths and 
high average fitness values), indicating 
which requires linear interactions among proposed to improve cent integers. For example, 01111 and 
the string bits. The question is whether performance. lo000 are the integer representations of 
the experimental evidence and the gen- 15 and 16, respectively, and have a Ham- 
era1 consensus about the utility of ming distance of 5. For the G A  to im- 

have also been 

crossover are contradictory. Or is cross- 
over beneficial in most objective func- 
tions that have either linear or nonlinear 
interactions? These questions are far 
from being resolved, and considerable 
theoretical and empirical evidence must 
be gathered before any definite conclu- 
sions can be drawn. 

Control parameters. We can visualize 
the functioning of GAS as a balanced 
combination of exploration of new re- 
gions in the search space and exploita- 
tion of already sampled regions. This bal- 
ance, which critically controls the 
performance of GAS, is determined by 
the right choice of control parameters: 
the crossover and mutation rates and the 
population size. 

The choice of the optimal control pa- 
rameters has been debated in both ana- 
lytical and empirical investigations. Here 
we point out the trade-offs that arise: 

Increasing the crossover probability 
increases recombination of building 
blocks, but it also increases the dis- 
ruption of good strings. 
Increasing the mutation probability 
tends to transform the genetic search 
into a random search, but it also helps 
reintroduce lost genetic material. 

timization problem. Further, it is 
becoming evident that the optimal con- 
trol parameters critically depend on the 
nature of the objective function. 

Although the choice of optimal con- 
trol parameters largely remains an open 
issue, several researchers have proposed 
control parameter sets that guarantee 
good performance on carefully chosen 
testbeds of objective functions. Two dis- 
tinct parameter sets have emerged: One 
has a small population size and relatively 
large mutation and crossover probabili- 
ties, while the other has a larger popula- 
tion size, but much smaller crossover and 
mutation probabilities. Typical of these 
two categories are 

crossover rate: 0.6, mutation rate: 

crossover rate: 0.9, mutation rate: 
0.001, population size: and 

0.01, population size: 30.8 

The first set of parameters clearly gives 
mutation a secondary role, while the sec- 
ond makes it more significant. The high 
crossover rate of 0.9 in the second set 
also indicates that a high level of string 
disruption is desirable in small popula- 
tions. 

prove the code of 15 to that of 16, it must 
alter all bits simultaneously. Such Ham- 
ming cliffs present a problem for the GA, 
as both mutation and crossover cannot 
overcome them easily. Gray codes sug- 
gested to alleviate the problem ensure 
that the codes for adjacent integers al- 
ways have a Hamming distance of l. 
However, the Hamming distance does 
not monotonously increase with the dif- 
ference in integer values, and this phe- 
nomenon introduces Hamming cliffs at 
other levels. 

Nontraditional techniques in GAS. The 
previous sections described selection and 
crossover techniques developed as natu- 
ral extensions of the simple GA. Hence 
the techniques still have the traditional 
mold: binary encodings, statically defined 
control parameters, and fixed-length en- 
codings. Recently, a wide spectrum of 
variants has broken away from the tradi- 
tional setup. The motivation has been the 
performance criterion: to achieve better 
G A  performance on a wide range of ap- 
plication problems. We refer to these as 
nontraditional techniques. 

Dynamic and adaptive strategies. In 
practical situations, the static configura- 
tions of control parameters and encod- 
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ings in GAS have some drawbacks. Pa- 
rameter settings optimal in the earlier 
stages of the search typically become in- 
efficient during the later stages. Similarly, 
encodings become too coarse as the 
search progresses, and the fraction of the 
search space that the G A  focuses its 
search on becomes progressively smaller. 
To overcome these drawbacks, several 
dynamic and adaptive strategies for vary- 
ing the control parameters and encodings 
have been proposed. One strategy expo- 
nentially decreases mutation rates with 
increasing numbers of generations, to 
gradually decrease the search rate and 
disruption of strings as the population 
converges in the search space. Another 
approach considers dynamically modify- 
ing the rates at which the various genetic 
operators are used, based on their per- 
formance. Each operator is evaluated for 
the fitness values of strings it generates in 
subsequent generations. 

Very often, after a large fraction of the 
population has converged (the strings 
have become homogeneous), crossover 
becomes ineffective in searching for bet- 
ter strings. Typically, low mutation rates 
(0.001 to 0.01) are inadequate for contin- 
uing exploration. In such a situation, a 
dynamic approach for varying mutation 
rates based on the Hamming distance be- 
tween strings to be crossed can be useful. 
The mutation rate increases as the Ham- 
ming distance between strings decreases. 
As the strings to be crossed resemble 
each other to a greater extent, the capac- 
ity of crossover to generate new strings 
decreases, but the increased mutation 
rate sustains the search. 

The dynamic encoding of variables in 
several implementations (DPE, Argot, 
and Delta Encoding) increases the search 
resolution as the G A  converges. While 
strings are encoded using the same num- 
ber of bits, the size of the search space in 
which strings are sampled is progressively 
reduced to achieve a higher search reso- 
lution. 

Another adaptive strategy of encoding 
(“messy” GAS) explicitly searches low- 
order, high-fitness value schemata in the 
initial stages and then juxtaposes the 
building blocks with a splicing operator to 
form optimal strings. This technique has 
successfully optimized deceptive func- 
tions, which can cause the Simple G A  to 
converge to local optima. 

Distributed and parallel GAS. Dis- 
tributed GAS and parallel GAS decen- 
tralize the processing of strings. Although 

they sound similar, the two approaches 
are basically different. Distributed GAS 
have a number of weakly interacting sub- 
populations, and each carries out an in- 
dependent search. Parallel GAS are par- 
allel implementations of the “sequential” 
G A  on several computation engines to 
speed execution. 

Distributed GAS distribute a large 
population into several smaller subpop- 
ulations that evolve independently. Thus, 

Researchers are 
developing models 

of GA dynamics, 
analyzing problems 

difficult for GAS, 
and studying how 

GAS work. 

the exploration arising from a large pop- 
ulation is evident, but the convergence 
rates of the subpopulations are also high. 
To  ensure global competition among 
strings, the best strings of the subpopula- 
tions are exchanged. A distributed GA 
can be implemented on a single compu- 
tation engine or in parallel with each sub- 
population processed by a different en- 
gine. 

Parallel GAS have emerged primarily 
to enable execution on parallel comput- 
ers. Issues such as local and global com- 
munication, synchronization, and efficacy 
of parallel computation have led to mod- 
ifications of the G A  structure. Tech- 
niques such as local-neighborhood selec- 
tion have been introduced to increase 
computation speed. 

Advances in theory 
The emergence of new G A  implemen- 

tations for better performance has been 
accompanied by considerable theoretical 
research, especially in developing models 
of G A  dynamics, analyzing problems that 
are hard for GAS, and, most important, 
gaining a deeper understanding of how 
GAS work. 

To analyze the working of the simple 
GA, Holland compared it with the k- 

armed bandit problem.’ This problem 
discusses the optimal allocation of trials 
among k alternatives, each of which has 
a different payoff, to maximize the total 
payoff in a fixed number of trials. The 
payoff of each alternative is treated as a 
random variable. The distribution of pay- 
offs from the different alternatives is not 
known a priori and must be character- 
ized based on the payoffs observed dur- 
ing the trials. Holland demonstrated that 
the GA simultaneously solves a number 
of such k-armed bandit problems. 

Consider the competition among 
schemata of order m that have the same 
fixed positions. There are 2m competing 
schemata, and the G A  allocates trials to 
them to locate the fittest. Totally, there 
are 2‘ ( I  is the string length) such compe- 
titions occurring in parallel, with the G A  
attempting to solve all simultaneously. 
The exponential allocation of trials to the 
fittest strings by the GA is a near optimal 
allocation strategy, as it resembles the op- 
timal solution to the k-armed bandit 
p r ~ b l e m . ~  

The schema theorem’ calculates a 
lower bound on the expected number of 
schemata under the action of selection, 
crossover, and mutation. Although the 
schema theorem captures the essence of 
the GA mechanism, its applicability in 
estimating the proportions of various 
schemata in the population is limited. At- 
tempts to refine the schema theorem 
model the effects of crossover between 
instances of the same schema. To make 
the schema theorem more useful, ex- 
pressions for the percentage of schema 
instances generated by crossover and mu- 
tation have been derived. The additional 
terms have extended the inequality of the 
schema theorem into an equation. How- 
ever, the abstract nature of the calcula- 
tions involved in computing these terms 
reduces the applicability of the schema 
“equation.” 

A generalization of schemata defined 
by Holland has been proposed. It views 
as a predicate the condition for a string 
to be included as an instance of a schema. 
This general definition allows 
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predicates to exist, compared with the 3‘ 
Holland schemata for strings of length 1. 
While the schema theorem remains valid 
for these generalized predicates, we can 
study several new interesting properties 
regarding their stability and dominance 
under the action of the genetic operators. 
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GA dynamics. The GA’s population 
dynamics are controlled by the parame- 
ters population size, mutation rate, and 
crossover rate. Characterizing the dy- 
namics - not a simple task - is impor- 
tant for understanding the conditions un- 
der which the G A  converges to the global 
optimum. 

Most work related to the dynamics of 
GAS looks at convergence results from 
one of two perspectives: 

(1) finite versus infinite population re- 

(2) homogeneous versus inhomoge- 
sults, or 

neous convergence results. 

The first classification is self-explanatory. 
The second arises from the state-transi- 
tion probabilities of the Markov pro- 
cesses that model the GA. If the state- 
transition probabilities are invariant over 
generations, we have a homogeneous 
Markov chain. 

For the finite population case, we can 
consider each distinct population as a 
possible state of a Markov chain, with the 
state-transition matrix indicating the 
probabilities of transitions between the 
populations due to the genetic operators. 
When the mutation probability is not 
zero, every population can be reached 
from every other population with some 
nonzero probability. This property guar- 
antees the existence of a unique fixed 
point (a limiting distribution) for the dis- 
tribution of populations. For a zero mu- 
tation probability (with only selection 
and crossover), any population consist- 
ing of multiple copies of a single string is 
a possible fixed point of the random pro- 
cess modeling the GA. 

Consider a nonstandard replacement 
operator after crossover that ensures the 
following property: For every bit position 
i there exist strings in the population hav- 
ing a 0 and a 1 at the position i .  With this 
we can show that every population is 
reachable in a finite number of genera- 
tions. The replacement operator substi- 
tutes one of the strings in the population 
with another string so the population sat- 
isfies the defined property. Further, the 
property also guarantees convergence of 
the G A  to the global optimum with the 
probability of 1.0. 

While these results summarize the ho- 
mogeneous case, the main inhomoge- 
neous result for finite populations is the 
demonstration of an exponential an- 
nealing schedule that guarantees con- 
vergence of the G A  to one of the fixed 

points of the homogeneous case without 
mutation. However, this does not mean 
that the population corresponding to this 
fixed point contains only the global op- 
timum. Empirical evidence suggests that 
as the population size increases, the 
probability mass of the limit distributions 
is concentrated at the optimal popula- 
tions. 

In infinite populations, we need model 
only the proportions of strings. We can 
model the evolution of populations as the 

We are faced 
with an 

important question: 
what problems 
mislead GAS to 
local optima? 

interleaving of a quadratic operator rep- 
resenting crossover and mutation, and a 
linear operator representing selection. 
When only selection and crossover are 
considered, all limit points of the proba- 
bility distribution have mass only at the 
most fit strings. With mutation and uni- 
form selection, the uniform distribution is 
the unique fixed point. 

Although it is important to establish 
the global convergence of GAS, it is 
equally important to have GAS with good 
rates of convergence to  the global opti- 
mum. We believe that a major direction 
for future research on the dynamics of 
GAS is the establishment of bounds on 
the convergence rates of the G A  under 
various conditions. 

Deception. An important control on the 
dynamics of GAS is the nature of the 
search landscape. We are immediately 
confronted with a question: What features 
in search landscapes can GAS exploit effi- 
ciently? Or more to the point: What prob- 
lems mislead GAS to local optima? 

GAS work by recombining low-order, 
short schemata with above-average fit- 
ness values to form high-order schemata. 
If the low-order schemata contain the 
globally optimal solution, then the G A  
can potentially locate it. However, with 
functions for which the low-order high- 

fitness value schemata do not contain the 
optimal string as an instance, the G A  
could converge to suboptimal strings. 
Such functions are called decep t i~e .~  Re- 
cently, considerable research has focused 
on the analysis and design of deceptive 
functions. 

The simplest deceptive function is the 
minimaf deceptive problem, a two-bit 
function. Assuming that the string “11” 
represents the optimal solution, the fol- 
lowing conditions characterize this prob- 
lem: 

The lower order schemata O* or *O do not 
contain the optimal string 11 as an in- 
stance and lead the G A  away from 11. 
The minimal deceptive problem is a par- 
tially deceptive function, as both condi- 
tions of Equation 2 are not satisfied 
simultaneously. In a fully deceptiveprob- 
lem, all the lower order schemata that 
contain the optimal string have lower av- 
erage fitness values than their competi- 
tors (other schemata with the same fixed 
positions). 

The minimal deceptive problem can 
easily be extended to higher string 
lengths. GA literature abounds with anal- 
yses of deceptive functions, conditions 
for problems to be deceptive, and ways of 
transforming deceptive functions into 
nondeceptive ones. 

Some recent studies have investigated 
the implications of GA deceptiveness in 
the context of problems that are hard - 
that is, difficult for GAS to optimize. While 
it appears that a deceptive objective func- 
tion offers some measure of difficulty for 
GAS, there has been some recent consen- 
sus that deception is neither a sufficient 
nor a necessary condition for a problem 
to be hard. At the heart of this argument 
is the observation that the definition of de- 
ception in GAS derives from a static hy- 
perplane analysis which does not account 
for the potential difference of GAS’ dy- 
namic behavior from static predictions. 
Empirical work shows that some nonde- 
ceptive functions cannot be optimized eas- 
ily by GAS, while other deceptive func- 
tions are easily optimized. Essentially, 
other features such as improper problem 
representations, the disruptive nature of 
crossover and mutation, finite population 
sizes, and multimodal landscapes could be 
potential causes of hardness. 
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nvented in the early 1970s, genetic 
algorithms only recently have 
gained considerable popularity as 

general-purpose robust optimization and 
search techniques. The failure of tradi- 
tional optimization techniques in search- 
ing complex, uncharted and vast-payoff 
landscapes riddled with multimodality 
and complex constraints has generated 
interest in alternate approaches. Genetic 
algorithms are particularly attractive be- 
cause instead of a naive “search and se- 
lect” mechanism they use crossover to 
exchange information among existing so- 
lutions to locate better solutions. 

Despite the algorithms’ success, some 
open issues remain: 

the choice of control parameters, 
the exact roles of crossover and mu- 
tation, 
the characterization of search land- 
scapes amenable to optimization, and 
convergence properties. 

Limited empirical evidence points to the 
efficacy of distributed and parallel GAS 
and the adaptive strategies for varying 
control parameters. However, more ex- 
perimental evidence is needed before we 
draw any definite conclusions about com- 
parative performance. 

GAS are emerging as an independent 
discipline, but they demand considerable 
work in the practical and theoretical do- 
mains before they will be accepted at 
large as alternatives to traditional opti- 
mization techniques. We hope this article 
stimulates interest in GAS and helps in 
their establishment as an independent ap- 
proach for optimization and search. W 
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