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volution is a remarkable problem-solving machine. First proposed by John 
Holland in 1975,’ genetic algorithms are an attractive class of computa- 
tional models that mimic natural evolution to solve problems in a wide va- 

riety of domains. Holland also developed the concept of classifier systems, a machine 
learning technique using induction systems with a genetic component? Holland’s 
goal was twofold: to explain the adaptive process of natural systems and to design com- 
puting systems embodying their important mechanisms. Pioneering work by Hol- 
land,’ Goldberg.’ DeJong,’ Grefen~te t te ,~  Davis,’ Muhlenbein,(‘and others is fueling 
the spectacular growth of GAS. 

GAS are particularly suitable for solving complex optimization problems and hence 
for applications that require adaptive problem-solving strategies. In addition, GAS are 
inherently parallel, since their search for the best solution is performed over genetic 
structures (building blocks) that can represent a number of possible solutions. Fur- 
thermore, GAS’ computational models can be easily parallelized7 y to exploit the 
capabilities of massively parallel computers and distributed systems. - Classes of search techniques 

This review classifies 
genetic-algorithm 
environments into 

application-oriented 
systems, algorithm- 

oriented systems, and 
toolkits. It also 

presents detailed case 
studies of leading 

environments. 

Figure 1 groups search techniques into three broad classes.’ Calculus-based tech- 
niques use a set of necessary and sufficient conditions to be satisfied by the solutions 
of an optimization problem. These techniques subdivide into indirect and direct meth- 
ods. Indirect methods look for local extrema by solving the usually nonlinear set of 
equations resulting from setting the gradient of the objective function equal to zero. 
The search for possible solutions (function peaks) starts by restricting itself to points 
with zero slope in all directions. Direct methods, such as those of Newton and Fi- 
bonacci, seek extrema by “hopping” around the search space and assessing the gradi- 
ent of the new point, which guides the search. This is simply the notion of “hill-climb- 
ing,” which finds the best local point by climbing the steepest permissible gradient. 
These techniques can be used only on a restricted set of “well-behaved” problems. 

Enumerative techniques search every point related to an objective function’s domain 
space (finite or discretized), one point at a time. They are very simple to implement 
but may require significant computation. The domain space of many applications is 
too large to search using these techniques. Dynamic programming is a good example 
of an enumerative technique. 
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Guided random search techniques are 
based on enumerative techniques but use 
additional information to guide the 
search. They are quite general in scope 
and can solve very complex problems. 
Two major subclasses are simulated an- 
nealing and evolutionary algorithms. 
Both are evolutionary processes, but sim- 
ulated annealing uses a thermodynamic 
evolution process to search minimum en- 
ergy states. Evolutionary algorithms, on 
the other hand, are based on natural- 
selection principles. This form of search 
evolves throughout generations, improv- 
ing the features of potential solutions by 
means of biologically inspired operations. 
These techniques subdivide, in turn, into 
evolutionary strategies and genetic algo- 
rithms. Evolutionary strategies were pro- 
posed by Rechenbergl” and Schwefel” 
in the early 1970s. They can adapt the 
process of “artificial evolution” to the re- 
quirements of the local response sur- 
face.I2 This means that unlike traditional 
GAS evolutionary strategies can adapt 
their major strategy parameters accord- 
ing to the local topology of the objective 
func t i~n . ’~  

Following Holland’s original genetic- 
algorithm proposal, many variations of 
the basic algorithm have been introduced. 
However, an important and distinctive 
feature of all GAS is the population-han- 
dling technique. The original GA adopted 
a generational replacenlent policy,5 ac- 
cording to which the whole population is 
replaced in each generation. Conversely, 
the steudy-stutepolicys used by many sub- 
sequent GAS selectively replaces the pop- 
ulation. It is possible. for example, to keep 
one or more population members for sev- 
eral generations, while those individuals 
sustain a better fitness than the rest of the 
population. 

After we introduce G A  models and 
their programming, we present a survey 
of GA programming environments. We 
have grouped them into three major 
classes according to their objectives: Ap- 
plication-oriented systems hide the details 
of GAS and help users develop applica- 
tions for specific domains, algorithm- 
oriented systems are based on specific C A  
models, and toolkits are flexible environ- 
ments for programming a range of GAS 
and applications. We review the available 
environments and describe their common 
features and requirements. As case stud- 
ies, we select some specific systems for 
more detailed examination. To conclude, 
we discuss likely future developments in 
C A  programming environments. 

Search techniques 

Fib0 

Figure 1. Classes of search techniques. 

I 

Figure 2. The GA cycle. 

Genetic algorithms 
A genetic algorithm emulates biologi- 

cal evolutionary theories to solve opti- 
mization problems. A C A  comprises a 
set of individual elements (the popula- 
tion) and a set of biologically inspired op- 
erators defined over the population it- 
self. According to evolutionary theories, 
only the most suited elements in a popu- 
lation are likely to survive and generate 
offspring, thus transmitting their biolog- 
ical heredity to new generations. In com- 
puting terms, a genetic algorithm maps a 
problem onto a set of (typically binary) 
strings, each string representing a poten- 
tial solution. The G A  then manipulates 
the most promising strings in its search 

for improved solutions. A G A  operates 
through a simple cycle of stages: 

(1) creation of a “population” of strings, 
(2) evaluation of each string, 
(3) selection of “best” strings, and 
(4) genetic manipulation to create the 

new population of strings. 

Figure 2 shows these four stages using 
the biologically inspired G A  terminol- 
ogy. Each cycle produces a new genera- 
tion of possible solutions for a given 
problem. At the first stage, an initial pop- 
ulation of potential solutions is created 
as a starting point for the search. Each el- 
ement of the population is encoded into 
a string (the chromosome) to be manip- 
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Figure 3. Crossover. 

Figure 4. Mutation. 

ulated by the genetic operators. In the 
next stage, the performance (or fitness) 
of each individual is evaluated with re- 
spect to the constraints imposed by the 
problem. Based on each individual’s fit- 
ness, a selection mechanism chooses 

#define POPULATION-SIZE 4 I* Size of the population *I 

#define PCROSS 0.6 I* Crossover probability */ 
#define PMUT 0.001 I* Mutation probability *I 

struct population 

#define CHROM-LENGTH 5 I* String size */ 

int value: 
{ 

t population 

Figure 5. Global constants and variable declarations in C. 

initializegopulation() 

randomize(); 
for (i=Q i < POPULATION-SIZE; i++) 

/* random generator setup *I 

encode& random(pow(2.0,CHROM-LENGTH)); 

t 

Figure 6. Initializa- 
tion routine. 

I 

select(sum-fitness) 

parsum = 0 
md = rand() % sum-fitness; 

t 
I* spin the roulette *I 

for (i=O; i < POPULATION-SIZE, parsum <= md; i++) 
parsum += pool{i].fitness; I* look for the slot *I 

return (-i); I /* returns a selected string *I 
I 

1 
Figure 7. Selection function. 

“mates” for the genetic manipulation 
process. The selection policy is ultimately 
responsible for assuring survival of the 
best fitted individuals. The combined 
evaluation and selection process is called 
reproduction. 

The manipulation process uses genetic 
operators to produce a new population 
of individuals (offspring) by manipulating 
the “genetic information,” referred to as 
genes, possessed by members (parents) 
of the current population. It comprises 
two operations: crossover and mutation. 
Crossover recombines a population’s ge- 
netic material. The selection process as- 
sociated with recombination assures that 
special genetic structures, called building 
blocks, are retained for future genera- 
tions. The building blocks then represent 
the most fitted genetic structures in a 
population. 

The recombination process alone can- 
not avoid the loss of promising building 
blocks in the presence of other genetic 
structures, which could lead to local min- 
ima. Also, it cannot explore search space 
sections not represented in the popula- 
tion’s genetic structures. Here mutation 
comes into action. The mutation operator 
introduces new genetic structures in the 
population by randomly modifying some 
of its building blocks, helping the search 
algorithm escape from local minima’s 
traps. Since the modification is not re- 
lated to any previous genetic structure of 
the population, it creates different struc- 
tures representing other sections of the 
search space. 

The crossover operator takes two chro- 
mosomes and swaps part of their genetic 
information to produce new chromo- 
somes. This operation is analogous to sex- 
ual reproduction in nature. As Figure 3 
shows, after the crossover point has been 
randomly chosen, portions of the parent 
strings P1 and P2 are swapped to produce 
the new offspring strings 0 1  and 02 .  In 
Figure 3 the crossover operator i s  applied 
to the fifth and sixth elements of the 
string. Mutation is implemented by occa- 
sionally altering a random bit in a string. 
Figure 4 shows the mutation operator ap- 
plied to the fourth element of the string. 

A number of different genetic opera- 
tors have been introduced since Holland 
proposed this basic model. They are. in 
general, versions of the recombination 
and genetic alteration processes adapted 
to the requirements of particular prob- 
lems. Examples of other genetic opera- 
tors are inversion. dominance. and ge- 
netic edge recombination. 
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The offspring produced by the genetic 
manipulation process are the next popu- 
lation to be evaluated. Genetic algo- 
rithms can replace either a whole popu- 
lation (generational approach) or its less 
fitted members only (steady-state ap- 
proach). The creation-evaluation-selec- 
tion-manipulation cycle repeats until a 
satisfactory solution to the problem is 
found or some other termination crite- 
rion is met. 

This description of the computational 
model reviews the steps needed to design 
a genetic algorithm. However, real imple- 
mentations take into account a number of 
problem-dependent parameters such as 
the population size, crossover and muta- 
tion rates, and convergence criteria. GAS 
are very sensitive to these parameters (a 
discussion of the methods for setting them 
up is beyond the scope of this article). 

Sequential GAS. To illustrate the im- 
plementation of a sequential genetic al- 
gorithm we use Goldberg’s simple func- 
tion optimization example2 and examine 
its programming in C. The first step in 
optimizing the functionf(x) = x2 over the 
interval (parameter set) [0-311 is to en- 
code the parameter setx, for example, as 
a five-digit binary string (00000-1 11 11). 
Next we generate the initial population of 
four potential solutions, shown in Table 
1, using a random number generator. 

To program this G A  function opti- 
mization, we declare the population pool 
as an array with four elements, as shown 
in Figure 5 ,  and then initialize the struc- 
ture using a random generator, as shown 
in Figure 6. Our next step is reproduc- 
tion. Reproduction evaluates and selects 
pairs of strings for mating according to 
their relative strengths (see Table 1 and 
the associated C code in Figure 7). One 
copy of string 01 101, two copies of 11000, 
and one copy of 1001 1 are selected by us- 
ing a roulette wheel method.* 

Next we apply the crossover operator, 
as illustrated in Table 2. Crossover oper- 
ates in two steps (see Figure 8). First it 
determines whether crossover is to occur 
on a pair of strings by using a flip func- 
tion: tossing a biased coin (with proba- 
bility pcross) .  If the result is heads 
(true), the strings are swapped; the 
crossoverjoint is determined by a ran- 
dom number generator. If tails (false). 
the strings are simply copied. In the ex- 
ample, crossover occurs at the fifth posi- 
tion for the first pair and the third posi- 
tion for the other. 

After crossover, the mutation opera- 

Table 1. Initial strings and fitness values. 

Initial f ( x )  Strength 
Population X (fitness) (percent of total) 

01101 13 169 14.4 
11000 24 576 49.2 
01000 8 64 5.5 
1001 1 19 361 30.9 

Sum-Fitness = 1,170 (100.0) 

Table 2. Mating pool strings and crossover. 

Mating Pool Mates Swapping New Population 

01 101  1 0 1 1 0  [l] 01100  
11 000 2 1100[0] 11001 

11000 2 11 [OOO] 1101 1 
10011 4 10[011]  10000 

crossover (parentl, parent2, childl, child2) 
{ 

if (flip(PCR0SS)) 
I 

crossover-point = random(CHR0M-LENGTH); 

for (i=O i <= CHROM-L 
1 

if (i <= site) 

Figure 8. The crossover routine. 

tor is applied to the new population, 
which may have a random bit in a given 
string modified. The mutation function 
in Figure 9 on the next page uses the bi- 
ased coin toss (flip) with probability pnzut 
to determine whether to change a bit. 

Table 3 shows the new population, to 

which the algorithm now applies a termi- 
nation test. Termination criteria may in- 
clude the simulation time being up, a 
specified number of generations ex- 
ceeded. or a convergence criterion satis- 
fied. In the example, we might set the 
number of generations to 50 and the con- 
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vergence as an average fitness improve- 
ment of less than 5 percent between gen- 
erations. For the initial population, the 
average is 293, that is, (169 + 576 + 64 + 
361) 4, while for the new population it 
has improved to 439, that is, 66 percent, 
(see the sidebar on Sequential GA C list- 
ing on page 34). 

Parallel GAS. The G A  paradigm of- 
fers intrinsic parallelism in searches for 
the best solution in a large search space, 
as demonstrated by Holland’s schema 
theorem.’ Besides the intrinsic paral- 
lelism, G A  computational models can 
also exploit other levels of parallelism 
because of the natural independence of 
the genetic manipulation operations. 

A parallel G A  is generally formed by 
parallel components, each responsible for 
manipulating subpopulations. As was 
shown in Figure 1, there are two classes of 
parallel GAS: centralized and distributed. 
The first has a centralized selection mech- 
anism: A single selection operator works 
synchronously on the global population 
(of subpopulations) at the selection stage. 
In distributed parallel GAS, each parallel 
component has its own copy of the selec- 

tion operator, which works asyn- 
chronously. In addition, each component 
communicates its best strings to a subset 
of the other components. This process re- 
quires a migration operator and a migra- 
tion frequency defining the communica- 
tion interval. 

The Asparagos algorithm’ has a dis- 
tributed mechanism. Figure 10 shows a 
skeleton C-like program, based on this 
algorithm, for the simple function opti- 
mization discussed for sequential algo- 
rithms. In this parallel program the 
statements for initialization, selection, 
crossover, and mutation remain almost 
the same as in the sequential program. 
For the main loop, parallel (PAR) sub- 
populations are set up for each compo- 
nent, as well as values for the new pa- 
rameters. Each component then executes 
sequentially, apart from the parallel mi- 
gration operator. 

Taxonomy 
To review programming environments 

for genetic algorithms, we use a simple 
taxonomy of three major classes: appli- 

Table 3. Second generation and its fitness values. 

Figure 9. The 
mutation operator 
C implementation. 

f(x) Strength 
Initial Population X (fitness) (percent of total) 

01100  12 144 8.2 
11001  25 625 35.6 
1 1 0 1 1  27 729 41.5 
10000  16 256 14.7 

Sum-Fitness = 1,754 (100.0) 
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cation-oriented systems, algorithm- 
oriented systems, and toolkits. 

Application-oriented systems are essen- 
tially “black boxes” that hide the G A  im- 
plementation details. Targeted at business 
professionals, some of these systems sup- 
port a range of applications; others focus 
on a specific domain, such as finance. 

Algorithm-oriented systems support 
specific genetic algorithms. They subdi- 
vide into 

algorithm-specific systems, which 
contain a single genetic algorithm, 
and 
algorithm libraries, which group to- 
gether a variety of genetic algorithms 
and operators. 

These systems are often supplied in 
source code and can be easily incorpo- 
rated into user applications. 

Toolkits provide many programming 
utilities, algorithms, and genetic opera- 
tors for a wide range of application do- 
mains. These programming systems sub- 
divide into 

educational systems that help novice 
users obtain a hands-on introduction 
to G A  concepts, and 
general-purpose systems that provide 
a comprehensive set of tools for pro- 
gramming any GA and application. 

Table 4 lists the GA programming en- 
vironments examined in the next sec- 
tions, according to their categories. For 
each category we present a generic sys- 
tem overview, then briefly review exam- 
ple systems, and finally examine one sys- 
tem in more detail, as a case study. The 
parallel environments GAUCSD, Pega- 
sus, and GAME are also covered, but no 
commercial parallel environments are 
currently available. See the sidebar “De- 
velopers address list” on page 37 for a 
comprehensive list of programming en- 
vironments and their developers. 

Application- 
oriented systems 

Many potential users of a novel com- 
puting technique are interested in appli- 
cations rather than the details of the tech- 
nique. Application-oriented systems are 
designed for business professionals who 
want to use genetic algorithms for spe- 
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cific purposes without having to acquire 
detailed knowledge about them. For ex- 
ample, a manager in a trading company 
may need to optimize its delivery sched- 
uling. By using an application-oriented 
programming environment, the manager 
can configure an application for sched- 

ule optimization based on the traveling- 
salesman problem without having to 
know the encoding technique or the ge- 
netic operators. 

Overview. A typical application-ori- 
ented environment is analogous to a 

I I I 

#define MAX-GEN 
#define POPULATION-SIZE 
#define SUB-POP-SIZE 
#define NUM-OF-GAS 

I 

50 
32 
8 
POPULATION-SIZE/ 
SUB-POP-SIZE 

Algorithm- Algorithm Educational 
specific systems libraries systems 

Application- 
Oriented Systems 

#define NUM-OF-NEIGHBORS 2 
#define MIGRATION-FREQ 5 
#define NUM-OF-EMIGRANTS 2 

General- 
purpose systems 

main () 
1 
PAR for (i=o; i<SUB-POPSIZE; i++) /* Parallel execution */ 

SEQ 1 initialize();) 

Figure 10. Parallel GA with migration. 

Table 4. Programming environments and their categories. 

spreadsheet or word-processing utility. 
Its menu-driven interface (tailored to 
business users) gives access to parame- 
terized modules (targeted at specific do- 
mains). The user interface provides 
menus to configure an application, mon- 
itor its execution, and, in certain cases, 
program an application. Help facilities 
are also provided. 

Survey. Application-oriented systems 
have many innovative strategies. Systems 
such as PCiBeagle and XpertRule 
GenAsys are expert systems that use 
GAS to generate new rules to expand 
their knowledge base of the application 
domain. Evolver is a companion utility 
for spreadsheets. Omega is targeted at fi- 
nancial applications. 

Evolver. This add-on utility works 
within the Excel, Wingz, and Resolve 
spreadsheets on Macintosh and PC com- 
puters. Axcelis, its marketer, describes it 
as “an optimization program that extends 
mechanisms of natural evolution to the 
world of business and science applica- 
tions.” A user starts with a model of a sys- 
tem in the spreadsheet and calls the 
Evolver program from a menu. After the 
user fills a dialog box with the informa- 
tion required (the cell to minimize or 
maximize), the program starts working, 
evaluating thousands of scenarios auto- 
matically until it has found an optimal an- 
swer. The program runs in the back- 
ground, freeing the user to work in the 
foreground. 

When Evolver finds the best result, it 
notifies the user and places the values 
into the spreadsheet for analysis. This is 
an excellent design strategy, given the im- 
portance of spreadsheets in business. In 
an attempt to improve the system and ex- 

Evolver 
Omega 
PC/Beagle 

XpertRule 
GenAsys 

Escapade 
GAGA 

GAUCSD 

Genesis 
Genitor 

EM C A  Workbench Engeneer 

MicroCA 
~ GAME 

OOGA 1 Pegasus 
Splicer 
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pand its market. Axcelis introduced 
Evolver 2.0, which has many toolkit-like 
features. The new version can integrate 
with other applications in addition to  
spreadsheets. It also offers more flexibil- 
ity in accessing the Evolver engine: This 
can be done from any Microsoft Win- 

dows application that can call a Dynamic 
Link Library. 

techniques to create a tool that is “flexi- 
ble, powerful, informative and straight- 
forward to use,” according to its devel- 
opers. Geared to the financial domain, 
Omega can be applied to direct market- 
ing, insurance, investigations (case scor- 
ing), and credit management. The envi- 

Omega. The Omega Predictive Mod- 
elling System, marketed by KiQ. is a 
powerful approach to developing predic- 
tive models. It exploits advanced G A  

Sequential GA C Listing 
crossover(selected[i],seiectedfi+l ].i,i+l ); 
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ronment offers facilities for automatic 
handling of data; business, statistical, or 
custom measures of performance: simple 
and complex profit modeling; validation 
sample tests; advanced confidence tests; 
real-time graphics; and optional control 
over the internal genetic algorithm. 

PUBeagle. Produced by Pathway Re- 
search, this rule-finder program applies 
machine learning techniques to create a 
set of decision rules for classifying exam- 
ples previously extracted from a data- 
base. It has a module that generates rules 
by natural selection. Further details are 

given in the case study section. 

XpertRule GenAsys. XpertRule Gen- 
Asys is an expert system shell with em- 
bedded genetic algorithms. Marketed by 
Attar Software, this G A  expert system 
solves scheduling and design problems. 

else for (i=O; i < CHROM-LENGTH; i++) 
value += (int)pow(2.O,(double)i) site = CHROM-LENGTH-1; 1 pool[index].string[CHROMJENGTH-l -i]; 

0; i < CHROM-LENGTH; i++) 
retum(va1ue); 

((i <= site) II (site=&)) 
I 

I L 
I[chikll ].string[i] = pool[parentl ].string[i]; 
I[child2].string[i] = pool[parent2].string[i]; 

ew~[chiWl].string[] = pool[parent2].string[i]; 
new~ool[child2].string[] = poot[parentl].string[i]; 

*.+C.ttt~+..t**t+.tt..**.~*~.~*.*~* 

values of string position 
tt*t**~ttt~~t*.****t'.******~* 

*tt.*******~.t~tt~*tt+t**.~"**.***~.****~***,~,*,**~ 

evaluate 
function f(x)=xA2 
*t***..**.*ttt*tt+,.*."**"**~~~**~ 

pow((douMe)value,2.0)); 

(i=O; I c POPULATION-SIZ 
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The system combines the power of ge- 
netic algorithms in evolving solutions 
with the power of rule-base programming 
in analyzing the effectiveness of solu- 
tions. Rule-base programming can also 
be used to generate the initial solutions 
for the genetic algorithm and for postop- 
timization planning. Problems this sys- 
tem can solve include optimization of de- 
sign parameters in the electronics and 
avionics industries, route optimization in 
the distribution sector, and production 
scheduling in manufacturing. 

Case study: PCIBeagle. PClBeagle is a 
rule-finder program that examines a 
database of examples and uses machine 
learning techniques to create decision 
rules for classifying those examples, turn- 
ing data into knowledge. The software 
analyzes an expression via a historical 
database and develops a series of rules to 
explain when the target expression is 
false or true. The system contains six 
main components generally run in se- 
quence: 

SEED (selectively extracts example 
data) puts external data into a suit- 
able format and may append leading 
or lagging data fields as well. 
ROOT (rule-oriented optimization 
tester) tests an initial batch of user- 
suggested rules. 
HERB (heuristic evolutionary rule 
breeder) generates decision rules by 
natural selection, using G A  philoso- 
phy and ranking mechanisms. 
STEM (signature table evaluation 
module) makes a signature table 
from the rules produced by HERB. 
LEAF (logical evaluator and fore- 
caster) uses STEM output to do fore- 
casting or classification. 
PLUM (procedural language utility 
maker) can convert a Beagle rule file 
into a language such as Pascal or For- 
tran so other software can use the 
knowledge gained. 

PC/Beagle accepts data in ASCII for- 
mat, with items delimited by commas, 
spaces, or tabs. Rules are produced as 
logical expressions. The system is highly 
versatile, covering a wide range of appli- 
cations. Insurance, weather forecasting, 
finance, and forensic science are some ex- 
amples. PC/Beagle requires an IBM PC- 
compatible computer with at least 256 
Kbytes of RAM and an MS-DOS or PC- 
DOS operating system, version 2.1 or 
later. 

Algorithm-oriented 
systems 

Our taxonomy divides algorithm- 
oriented systems into algorithm-specific 
systems that contain a single algorithm 
and algorithm libraries, which group to- 
gether a variety of genetic algorithms and 
operators. 

Algorithm-specific environments em- 
body a single powerful genetic algorithm. 
These systems have typically two groups 
of users: system developers requiring a 
general-purpose G A  for their applica- 
tions and researchers interested in the de- 
velopment and testing of a specific algo- 
rithm and genetic operators. 

Algorithm-specific 
environments 

embody a 
single powerful 

genetic algorithm. 

Overview of algorithm-oriented sys- 
tems. In general, these systems come in 
source code so expert users can make al- 
terations for specific requirements. They 
have a modular structure for a high de- 
gree of modifiability. In addition, user in- 
terfaces are frequently rudimentary, of- 
ten command-line driven. Typically the 
codes have been developed at universi- 
ties and research centers, and are avail- 
able free over worldwide computer re- 
search networks. 

System survey. The most well known 
programming system in this category is 
the pioneering Genesis: which has been 
used to implement and test a variety of 
new genetic operators. In Europe proba- 
bly the earliest algorithm-specific system 
was GAGA. For scheduling problems, 
Genitor14 is another influential and suc- 
cessful system. GAUCSD permits paral- 
lel execution: It distributes several copies 
of a Genesis-based algorithm to Unix ma- 
chines in a network. Escapade13 uses a 
somewhat different approach - an evo- 
lutionary strategy. 

Escapade. Escapade (Evolutionary 
Strategies Capable of Adaptive Evolu- 

tion) provides a sophisticated environ- 
ment for a particular class of evolutionary 
algorithms, called evolutionary strategies. 
Escapade is based on Korr, Schwefel’s 
implementation of a (p, +h)-evolution- 
ary strategy, where the p best individu- 
als of the h offspring, added to their par- 
ents, survive and become the parents of 
the new generation. The system provides 
an elaborate set of monitoring tools to 
gather data from an optimization run of 
Korr. According to Escapade’s author, it 
should be possible to incorporate a dif- 
ferent implementation of an evolution- 
ary strategy or even a G A  into the 
system using its runtime support. The 
program is separated into several inde- 
pendent components that support the 
various tasks during a simulation run. 
The major modules are parameter setup, 
runtime control, Korr, generic data mon- 
itors, customized data monitors, and 
monitoring support. 

During an optimization run, the mon- 
itoring modules are invoked by the main 
algorithm (Korr or some other evolu- 
tionary strategy or G A  implementation) 
to log internal quantities. The system is 
not equipped with any kind of graphical 
interface. Users must pass all parameters 
for a simulation as command-line op- 
tions. For output, each data monitor 
writes its data into separate log files. 

GAGA. The Genetic Algorithms for 
General Application were originally pro- 
grammed in Pascal by Hillary Adams at 
the University of York. The program was 
later modified by Ian Poole and trans- 
lated into C by Jon Crowcroft at Univer- 
sity College London. GAGA is a task- 
independent genetic algorithm. The user 
must supply the target function to be op- 
timized (minimized or maximized) and 
some technical G A  parameters, and wait 
for the output. The program is suitable 
for the minimization of many difficult 
cost functions. 

GAUCSD. This software was devel- 
oped by Nicol Schraudolph at the Uni- 
versity of California, San Diego (hence 
UCSD).lS The system is based on Gene- 
sis 4.5 and runs on Unix, MS-DOS, Cray 
operating system, and VMS platforms, 
but it presumes a Unix environment. 
GAUCSD comes with an awk script 
called “wrapper,” which provides a 
higher level of abstraction for defining 
the evaluation function. By supplying the 
code for decoding and printing this func- 
tion’s parameters automatically, it allows 
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the direct use of most C functions as eval- 
uation functions. with few restrictions. 
The software also includes a dynamic pa- 
rameter encoding technique developed 
by Schraudolph. which radically reduces 
the gene length while keeping the desired 
level of precision for the results. Users 
can run the system in the background at 
low priority using the go command. 

The go command can also be used to 
execute GAUCSD on remote hosts. The 
results are then copied back to the user’s 
local directory, and a report is produced 
if appropriate. If the host is not binary 
compatible, GAUCSD compiles the 
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Attar Software 
Newlands Road 
Leigh, Lancashire, UK 
Telephone: +44 94 2608844 
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Technical University of Berlin 
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Techniques Laboratory 
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Ackerstasse 71 -76 (ACKl) 
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born Ofbl O.tu-berlin.de 

Escapade 
Frank Hoffmeister 
University of Dortmund 
System Analysis Research Group, LSXl 
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whole system on the remote host. Ex- 
periments can be queued in files, dis- 
tributed to several hosts, and executed in 
parallel. The experiments are distributed 
according to a specified loading factor 
(how many programs will be sent to each 
host), along with the remote execution 
arguments to the go command. The ex 
command notifies the user via write or 
mail when all experiments are completed. 
GAUCSD is clearly a very powerful 
system. 

Genesis. The Genetic Search Imple- 
mentation System, or Genesis, was writ- 

Science Park, Milton Rd. 
Cambridge CB4 4DW, UK 

Computer Science 
University College 
Gower St. 

GAUCSD 
N.N. Schraudoloh 

ten by John Grefenstette4 to promote the 
study of genetic algorithms for function 
optimization. It has been under develop- 
ment since 1981 and widely distributed 
to the research community since 1985. 
The package is a set of routines written in 
C. To build their own genetic algorithms, 
users provide only a routine with the fit- 
ness function and link it with the other 
routines. Users can also modify modules 
or add new ones (for example, genetic 
operators and data monitors) and create 
a different version of Genesis. In fact, 
Genesis has been used as a base for test 
and evaluation of a variety of genetic al- 
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gorithms and operators. It was primarily 
developed to work in a scientific envi- 
ronment and is a suitable tool for re- 
search. Genesis is highly modifiable and 
provides a variety of statistical informa- 
tion on output. 

Genitor. The modular G A  package 
Genitor (Genetic Implementor) has ex- 
amples for floating-point, integer, and bi- 
nary representations. Its features include 
many sequencing operators, as well as sub- 
population modeling. The software pack- 
age is an implementation of the Genitor 
algorithm developed by Darrel Whitley.14 

Genitor has two major differences 
from standard genetic algorithms. The 
first is its explicit use of ranking. Instead 
of using fitness-proportionate reproduc- 
tion, Genitor allocates reproductive trials 
according to the rank of the individual in 
the population. The second difference is 
that Genitor abandons the generational 
approach (in which the whole population 
is replaced with each generation) and re- 
produces new genotypes on an individ- 
ual basis. Using the steady-state ap- 
proach, Genitor lets some parents and 
offspring coexist. A newly created off- 
spring replaces the lowest ranking indi- 
vidual in the population rather than a 
parent. Because Genitor produces only 
one new genotype at a time, inserting a 
single new individual is relatively simple. 
Furthermore, the insertion automatically 
ranks the individual in relation to the ex- 
isting pool - no further measure of the 
relative fitness is needed. 

Case study: Genesis. Genesis4 is the 
most well known software package for 
G A  development and simulation. It runs 
on most machines with a C compiler. 
Version 5.0, now available from the Soft- 
ware Partnership, runs successfully on 
both Sun workstations and IBM PC-com- 
patible computers, according to its au- 
thor. The code is designed to be portable, 
but minor changes may be necessary for 
other systems. 

Genesis provides the fundamental pro- 
cedures for genetic selection, crossover, 
and mutation. The user is only required 
to provide the problem-dependent eval- 
uation function. 

Genesis has three levels of represen- 
tation for the structures it evolves. The 
lowest level, packed representation, max- 
imizes both space and time efficiency in 
manipulating structures. In general, this 
level of representation is transparent to 
the user. The next level, the string repre- 

sentation, represents structures as null- 
terminated arrays of characters, or 
“chars.” This structure is for users who 
wish to provide an arbitrary interpreta- 
tion of the genetic structures, for exam- 
ple, nonnumeric concepts. The third 
level, the floating-point representation, 
is appropriate for many numeric opti- 
mization problems. At this level the user 
views genetic structures as vectors or real 
numbers. For each parameter, or gene, 
the user specifies its range, number of val- 
ues, and output format. The system then 
automatically lays out the string repre- 

Algorithm libraries 
provide a 

powerful collection 
of parameterized 

genetic algorithms 
and operators. 

sentation and translates between the 
user-level genes and lower representa- 
tion levels. 

Genesis has five major modules: 

Initialization. The initialization pro- 
cedure sets up the initial population. 
Users can “seed” the initial popula- 
tion with heuristically chosen struc- 
tures, and the rest of the population 
is filled with random structures. 
Users can also initialize the popula- 
tion with real numbers. 
Generation. This module executes 
the selection, crossover, mutation, 
and evaluation procedures, and col- 
lects some data. 
Selection. The selection module 
chooses structures for the next gen- 
eration from the structures in the 
current generation. The default se- 
lection procedure is stochastic, based 
on the roulette wheel algorithm, to 
guarantee that the number of off- 
spring of any structure is bounded by 
the floor and ceiling of the (real-val- 
ued) expected number of offspring. 
Genesis can also perform selection 
using a ranking algorithm. Ranking 
helps forestall premature conver- 
gence by preventing “super” indi- 
viduals from taking over the popula- 
tion within a few generations. 

Mutation. After Genesis selects the 
new population, it applies mutation 
to each structure. Each position is 
given a chance (according to the mu- 
tation rate) of undergoing mutation. 
If mutation is to occur, Genesis ran- 
domly chooses 0 or 1 for that posi- 
tion. If the mutated structure differs 
from the original one, it is marked for 
evaluation. 
Crossover. The crossover module ex- 
changes alleles between adjacent 
pairs of the first n structures in the 
new population. The result of the 
crossover rate applied to the popula- 
tion size gives the number n of struc- 
tures to operate on. Crossover can be 
implemented in a variety of ways. If, 
after crossover, the offspring are dif- 
ferent from the parents, then the off- 
spring replace the parents and are 
marked for evaluation. 

These basic modules are added to the 
evaluation function supplied by the user 
to create the customized version of the 
system. The evaluation procedure takes 
one structure as input and returns a dou- 
ble-precision value. 

To execute Genesis, three programs 
are necessary: set-up, report, and ga. The 
setup program prompts for a number of 
input parameters. All the information is 
stored in files for future use. Users can 
set the type of representation, number of 
genes, number of experiments, trials per 
experiment, population size, length of the 
structures in bits, crossover and mutation 
rates, generation gap, scaling window, 
and many other parameters. Each pa- 
rameter has a default value. 

The report program runs the genetic 
algorithm and produces a description of 
its performance. It summarizes the mean, 
variance, and range of several measure- 
ments, including on-line performance, 
off-line performance, average perfor- 
mance of the current population, and cur- 
rent best value. 

Overview of algorithm libraries Algo- 
rithm libraries provide a powerful col- 
lection of parameterized genetic algo- 
rithms and operators, generally coded in 
a common language, so users can easily 
incorporate them in applications. These 
libraries are modular, letting users select 
a variety of algorithms, operators, and 
parameters to solve particular problems. 
They allow parameterization so users can 
try different models and compare the re- 
sults for the same problem. New algo- 
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rithms coded in high-level languages like 
Cor  Lisp can be easily incorporated into 
the libraries. The user interface facilitates 
model configuration and manipulation, 
and presents the results in different 
shapes (tables, graphics, and so on). 

Library survey. The two leading algo- 
rithm libraries are EM and OOGA. Both 
provide a comprehensive selection of ge- 
netic algorithms, and EM also supports 
evolutionary strategy simulation. OOGA 
can be easily tailored for specific prob- 
lems. It runs in Common Lisp and CLOS 
(Common Lisp Object System), an ob- 
ject-oriented extension of Common Lisp. 

E M .  Developed by Hans-Michael 
Voigt, Joachim Born, and Jens Treptow16 
at the Institute for Informatics and Com- 
puting Techniques in Germany, EM 
(Evolution Machine) simulates natural 
evolution principles to obtain efficient 
optimization procedures for computer 
models. The authors chose different evo- 
lutionary methods to provide algorithms 
with different numerical characteristics. 
The programming environment supports 
the following algorithms: 

Rechenberg’s evolutionary strat- 

Rechenberg and Schwefel’s evolu- 

Born’s evolutionary strategy, 
Goldberg’s simple genetic algo- 

Voigt and Born’s genetic algorithm.16 

egy,’O 

tionary strategy,lOJ1 

rithm: and 

To run a simulation, the user provides 
the fitness function coded in C .  The sys- 
tem calls the compiler and linker, which 
produce an executable file containing the 
selected algorithm and the user-supplied 
fitness function. 

EM has extensive menus and default 
parameter settings. The program pro- 
cesses data for repeated runs, and its 
graphical presentation of results includes 
on-line displays of evolution progress and 
one-, two-, and three-dimensional graphs. 
The system runs on an IBM PC-compat- 
ible computer with the MS-DOS operat- 
ing system and uses the Turbo C (or 
Turbo C++) compiler to generate the ex- 
ecutable files. 

OOGA. The Object-Oriented Genetic 
Algorithm is a simplified version of the 
Lisp-based software developed in 1980 by 
Lawrence Davis. He created it mainly to 
support his book: but it can also be used 

to develop and test customized or new ge- 
netic algorithms and genetic operators. 

Case study: OOGA. This algorithm is 
designed so each technique used by a GA 
is an object that can be modified, dis- 
played, or replaced in an object-oriented 
fashion. It provides a highly modular ar- 
chitecture in which users incrementally 
write and modify components in Com- 
mon Lisp to define and use a variety of 
G A  techniques. The files in the OOGA 
system contain descriptions of several 
techniques used by G A  researchers, but 

Toolkits contain 
educational systems 

for novice users 
and general-purpose 

systems with a 
comprehensive 

set of tools. 

they are not exhaustive. OOGA contains 
three major modules: 

The evaluation module has the eval- 
uation (or fitness) function that mea- 
sures the worth of any chromosome 
for the problem to be solved. 
The population module contains a 
population of chromosomes and the 
techniques for creating and manipu- 
lating that population. There are a 
number of techniques for population 
encoding (binary, real number, and 
so on), initialization (random binary, 
random real, and normal distribu- 
tion) and deletion (delete all and 
delete last). 
The reproduction module has a set of 
genetic operators for selecting and 
creating new chromosomes. This 
module allows G A  configurations 
with more than one genetic operator. 
The system creates a list with user- 
selected operators and executes their 
parameter settings, before executing 
them in sequence. OOGA provides a 
number of genetic operators for se- 
lection (for example, roulette wheel), 
crossover (one- and two-point 
crossover, mutate-and-crossover), 
and mutation. The user can set all pa- 

rameters, such as the bit-mutation 
and crossover rates. 

The last two modules are, in fact, li- 
braries of different techniques enabling 
the user to configure a particular genetic 
algorithm. When the genetic algorithm is 
run, the evaluation, population, and re- 
production modules work together to 
evolve a population of chromosomes to- 
ward the best solution. The system also 
supports some normalization (for exam- 
ple, linear normalization) and parame- 
terization techniques for altering the ge- 
netic operators’ relative performance 
over the course of the run. 

To ol kits 
Toolkits subdivide into educational 

systems for novice users and general-pur- 
pose systems that provide a comprehen- 
sive set of programming tools. 

Educational systems overview. Educa- 
tional programming systems help novices 
gain a hands-on introduction to GA con- 
cepts. They typically provide a rudimen- 
tary graphical interface and a simple con- 
figuration menu. Educational systems are 
typically implemented on PCs for porta- 
bility and low cost. For ease of use, they 
have a fully menu-driven graphical inter- 
face. GA Workbench” is one of the best 
examples of this class of programming 
environment. 

Case study: GA Workbench. This en- 
vironment was developed by Mark 
Hughes of Cambridge Consultants to run 
on MS-DOS/PC-DOS microcomputers. 
With this mouse-driven interactive pro- 
gram, users draw evaluation functions on 
the screen. The system produces runtime 
plots of GA population distribution, and 
peak and average fitness. It also displays 
many useful population statistics. Users 
can change a range of parameters, in- 
cluding the settings of the genetic opera- 
tors, population size, and breeder selec- 
tion. 

G A  Workbench’s graphical interface 
uses a VGA or EGA adapter and divides 
the screen into seven fields consisting of 
menus or graphs. The command menu is 
a menu bar that lets the user enter the 
target function and make general com- 
mands to start or stop a GA execution. 
After selecting “Enter Targ” from the 
command menu, the user inputs the tar- 
get function by drawing it on the target 
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function graph using the mouse cursor. 
The algorithm control chapter can con- 

tain two pages (hence “chapter”), but 
only one page is visible at a time. Clicking 
with the mouse on screen arrows lets the 
user flip pages forward or backward. The 
initial page, the “simple genetic algorithm 
page,” shows a number of input variables 
used to control the algorithm’s operation. 
The variable values can be numeric or 
text strings, and the user can alter any of 
these values by clicking the left mouse 
button on the up or down arrows to the 
left of each value. The “general program 
control variables page” contains variables 
related to general program operation 
rather than a specific algorithm. Here the 
user can select the source of data for plot- 
ting on the output plot graph, set the scale 
for the x or y axis, seed the random num- 
ber generated, or determine the fre- 
quency with which the population distri- 
bution histogram is updated. 

The output variables box contains the 
current values of variables relating to the 
current algorithm. For the simple genetic 
algorithm, a counter of generations is 
presented as well as the optimum fitness 
value, current best fitness, average fit- 
ness, optimum x ,  current best x, and av- 
erage x.  The population distribution his- 
togram shows the genetic algorithm’s 
distribution of organisms by value of x. 
The histogram is updated according to 
the frequency set in the general program 
control variables page. The output graph 
plots several output variables against 
time. 

From any graph, the user can read the 
coordinate values of the point indicated 
by the mouse cursor. When the user 
moves the cursor over the plot area of a 
graph, it changes to a cross hair and the 
axis value box displays the coordinate 
values. 

By drawing the target function, vary- 
ing several numeric control parameters, 
and selecting different types of algo- 
rithms and genetic operators, the novice 
user can practice and see how quickly the 
algorithm can find the peak value, or in- 
deed if it succeeds at all. 

General-purpose programming sys- 
tems overviw. General-purpose systems 
are the ultimate in flexible C A  program- 
ming. Not only do they let users develop 
their own G A  applications and algo- 
rithms; they also let users customize the 
system. 

These programming systems provide a 
comprehensive toolkit, including 

a sophisticated graphical interface, 
a parameterized algorithm library, 
a high-level language for program- 

an open architecture. 
ming GAS, and 

Users access system components via a 
menu-driven graphical interface. The al- 
gorithm library is normally “open,” let- 
ting users modify or enhance any mod- 
ule. A high-level language - often 
object-oriented - may be provided for 

General-purpose 
systems let 

programmers develop 
applications and 
algorithms and 

customize the system. 

programming G A  applications, algo- 
rithms, and operators through specialized 
data structures and functions. And be- 
cause parallel GAS are becoming impor- 
tant, systems provide translators to par- 
allel machines and distributed systems, 
such as networks of workstations. 

General-purpose survey. The number 
of general-purpose systems is increasing, 
stimulated by growing interest in GA ap- 
plications in many domains. Systems in 
this category include Splicer, which pre- 
sents interchangeable libraries for devel- 
oping applications; MicroGA, which is an 
easy-to-use object-oriented environment 
for PCs and Macintoshes; and the parallel 
environments Engeneer, GAME, and 
Pegasus. 

Engeneer. Logica Cambridge devel- 
oped Engeneerl8 as an in-house environ- 
ment to assist in G A  application devel- 
opment in a wide range of domains. The 
C software runs on Unix systems as part 
of a consultancy and systems package. It 
supports both interactive (X Windows) 
and batch (command-line) operation. 
Also, it supports a certain degree of par- 
allelism for the execution of application- 
dependent evaluation functions. 

Engeneer provides flexible mecha- 
nisms that let the developer rapidly bring 
the power of GAS to bear on new prob- 
lem domains. Starting with the Genetic 

Description Language, the developer can 
describe, at a high level, the structure of 
the “genetic material” used. The lan- 
guage supports discrete genes with user- 
defined cardinality and includes features 
such as multiple models of chromosomes, 
multiple species models, and nonevolv- 
able parsing symbols, which can be used 
for decoding complex genetic material. 

A descriptive high-level language, the 
Evolutionary Model Language, lets the 
user describe the G A  type in terms of 
configurable options including popula- 
tion size, population structure and 
source, selection method, crossover type 
and probability, mutation type and prob- 
ability, inversion, dispersal method, and 
number of offspring per generation. 

An interactive interface (with on-line 
help) supports both high-level languages. 
Descriptions and models can be defined 
“on the fly” or loaded from audit files, 
which are automatically created during a 
C A  run. Users can monitor C A  progress 
with graphical tools and by defining in- 
tervals for automatic storage of results. 
Automatic storage lets the user restart 
Engeneer from any point in a run, by 
loading both the population at that time 
and the evolutionary model. 

To connect Engeneer to different 
problem domains, a user specifies the 
name of the program to evaluate the 
problem-specific fitness function and 
constructs a simple parsing routine to in- 
terpret the genetic material. Engeneer 
provides a library of standard interpre- 
tation routines for commonly used rep- 
resentation schemes such as gray coding 
and permutations. The fitness evaluation 
can then be run as the GA’s slave pro- 
cess or via standard handshaking rou- 
tines. Better still, it can be run on the ma- 
chine hosting Engeneer or on any 
sequential or parallel hardware capable 
of connecting to a Unix machine. 

GAME. The Genetic Algorithm Ma- 
nipulation Environment is being devel- 
oped as part of the European Commu- 
nity (ESPRIT 111) G A  project called 
Papagena. It is an object-oriented envi- 
ronment for programming parallel C A  
applications and algorithms, and map- 
ping them onto parallel machines. The 
environment has five principal modules. 

The virtual machine (VM) is the mod- 
ule responsible for maintaining data 
structures that represent genetic infor- 
mation and providing facilities for their 
manipulation and evaluation. It isolates 
genetic operators and algorithms from 
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dealing directly with data structures 
through a set of low-level commands im- 
plemented as a collection of functions 
called the VM Application Program In- 
terface (VM-API). The VM also sup- 
ports fine-grained parallelism and can ex- 
ecute several commands simultaneously. 
It comprises three modules: the produc- 
tion manager, the fitness evaluation 
module, and the parallel support mod- 
ule. The first executes genetic manipula- 
tion commands over the data structures 
residing in the VM population pools. The 
VM-API includes commands for swap- 

the GUI) events that occur during a sim- 
ulation session. Each GAME compo- 
nent notifies the MCM about messages 
received or any modification of the data 
elements it maintains. Users can select 
the level of monitoring for each compo- 
nent. The MCM can also inform other 
GAME components about particular 
events through its “lists of interests” 
mechanism. 

The genetic algorithm libraries com- 
prise a collection of hierarchically orga- 

Macintosh computers. 
The application developer can config- 

ure an application manually or by using 
Galapagos. This Windows-based code 
generator produces, from a set of custom 
templates and a little user-provided in- 
formation, a complete stand-alone Mi- 
croGA application. It helps with the cre- 
ation of a subclass derived from its 
“TIndividual” class, required by the en- 
vironment to create the genetic data 
structure to be manipulated. Galapagos 
requests the number of genes for the pro- 
totype individual, as well as the range of 

ping, inverting, duplicating, and modify- possible values they can assume. The user 
ing genetic structures. The fitness evalu- can specify the evaluation function, but 
ation module performs the actual the Galapagos notation does not allow 
evaluation of genetic structures and such complex or nonmathematical fitness 
related calculations as total, average, and algorithms functions. Galapagos creates a class, de- 

rived from TIndividual, which contains 
the specific member functions as required by combining by the user application. 

problem-dependent objective function is 
only “connected” to the fitness evalua- 
tion module at link time. Finally, the par- comDonents from Users can manually define applications 

New 

highest, and lowest fitness values. The can be created 

- -  _ _  
allel support module schedules com- 1ibraAes and setting requiring complex genetic data structures 
mands received by the VM among and fitness functions by having them in- 
several copies of the population manager their parameters* herit from the TIndividual class and writ- 
and fitness evaluation modules. 

The parallel execution module (PEM) 
implements a hardware/operating sys- 
tem-independent interface that supports 
multiple, parallel computational models. 
It provides straightforward API-contain- 
ing functions for process initiation, ter- 
mination, synchronization, and commu- 
nication. It is responsible for integrating 
application components (algorithms, op- 
erators, user interface, and virtual ma- 
chine) defined as GAME components. 
The PEM is implemented in two layers. 
The upper layer defines the standard in- 
terface functions used by all GAME com- 
ponents of an application. The lower 
layer implements the functions that map 
the upper layer requests into the particu- 
lar environment. PEM’s design permits 
porting GAME applications to diverse 
sequential and parallel machines by sim- 
ply linking with the PEM library imple- 
mented for the required machine/oper- 
ating system. 

A graphical user interface module con- 
taining simple graphic widgets for MS- 
Windows and X Windows environments 
is also provided. It enables applications to 
input and output data in a variety of for- 
mats. GAME’S GUI contains standard 
dialog boxes, buttons, and charting win- 
dows that can be associated by the user 
with events reported by the monitoring 
control module. 

The monitoring control module 
(MCM) collects and displays (through 

nized modules containing predefined, pa- 
rameterized applications; genetic algo- 
rithms; and genetic operators. New ap- 
plications and algorithms can be created 
by simply combining the required com- 
ponents from the libraries and setting 
their parameters in a configuration file. 

The environment is programmed in 
C++ and is available in source code for 
full user modification. 

MicroGA. Marketed by Emergent Be- 
havior, MicroGA is designed for a wide 
range of complex problems. It is small 
and easy to use, but expandable. Because 
the system is a framework of C++ objects, 
several pieces working together give the 
user some default behavior. In this, Mi- 
croGA is far from the library concept, in 
which a set of functions (or classes) is of- 
fered for incorporation in user applica- 
tions. The framework is almost a ready- 
to-use application. MicroGA needs only 
a few user-defined parameters to start 
running. The package comprises a com- 
piled library of C++ objects, three sample 
programs, a sample program with an Ob- 
ject Windows Library user interface 
(from Borland), and the Galapagos code- 
generation system. MicroGA runs on 
IBM PC-compatible systems with Mi- 
crosoft Windows 3.0 (or later), using 
Turbo or Borland C++. It also runs on 

ing the code for its member functions. Af- 
ter creating the application-dependent 
genetic data structure and fitness func- 
tion, MicroGA compiles and links ev- 
erything using the Borland or Turbo C++ 
compiler, and produces a file executable 
in Microsoft Windows. 

MicroGA is very easy to use and lets 
users create G A  applications quickly. 
However, for real applications the user 
must understand basic concepts of ob- 
ject-oriented programming and Windows 
interfacing. 

Pegasus. The Programming Environ- 
ment for Parallel Genetic Algorithms, or 
Pegasus, was developed at the German 
National Research Center for Computer 
Science. The toolkit can be used for pro- 
gramming a wide range of genetic algo- 
rithms, as well as for educational pur- 
poses. The environment is written in 
ANSI-C and is available for many differ- 
ent Unix-based machines. It runs on mul- 
tiple instruction, multiple data parallel 
machines, such as transputers, and dis- 
tributed systems of workstations. Pega- 
sus is structured in four hierarchical 
levels: 

the user interface, 
the Pegasus kernel and library, 
compilers for several Unix-based ma- 

the sequential and distributed or par- 
chines, and 

allel hardware. 
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The user interface consists of three 
parts: the Pegasus script language, a 
graphical interface, and a user library. The 
user library has the same functionality as 
the Pegasus G A  library. It lets the user 
define application-specific functions not 
provided by the system library, using the 
script language to specify the experiment. 
The user defines the application-depen- 
dent data structures, attaches the genetic 
operators to them, and specifies the I10 
interface. The script language specifies 
the construction of subpopulations con- 
nected via the graphical interface. 

The kernel includes base and frame 
functions. The basefunctions control the 
execution order of the genetic operators, 
manage communication among different 
processes, and provide I/O facilities. 
They build general frames for simulating 
GAS and can be considered as au- 
tonomous processes. They interpret the 
Pegasus script, create appropriate data 
structures, and describe the order of 
frame functions. Invoked by a base func- 
tion, a frame function controls the exe- 
cution of a single genetic operator. Frame 
functions prepare the data representing 
the genetic material and apply the genetic 
operators to it, according to the script 
specification. The library contains genetic 
operators, a collection of fitness func- 
tions, and I10 and control procedures. 
Hence, it gives the user validated mod- 
ules for constructing applications. 

Currently Pegasus can be compiled 
with the GNU C, RS/6000 C, ACE-C, 
and Alliant FW2800 C compilers. It runs 
on Sun and IBM RS16000 workstations, 
as well as on the Alliant FX128 MIMD 
architecture. 

Splicer. Created by the Software Tech- 
nology Branch of the Information Sys- 
tems Directorate at NASA Johnson 
Space Flight Center, with support from 
the Mitre Corp~ration, '~ Splicer is one of 
the most comprehensive environments 
available. We present it in the case study. 

Case study: Splicer. The modular ar- 
chitecture includes three principal parts 
- the genetic-algorithm kernel, inter- 
changeable representation libraries, and 
interchangeable fitness modules - and 
user interface libraries. It was originally 
developed in C on an Apple Macintosh 
and then ported to Unix workstations 
(Sun 3 and 4, IBM RS16000) using X Win- 
dows. The three modules are completely 
portable. 

The genetic-algorithm kernel comprises 

all functions necessary to manipulate 
populations. It operates independently 
from the problem representation (en- 
coding), the fitness function, and the user 
interface. Some functions it supports are 
creation of populations and members, fit- 
ness scaling, parent selection and sam- 
pling, and generation of population 
statistics. 

Interchangeable representation li- 
braries store a variety of predefined prob- 
lem-encoding schemes and functions, 
permitting the G A  kernel to be used for 
any representation scheme. There are 

We expect the number 
and diversity of 

application-oriented 
systems to expand 
rapidly in the next 

few years. 

representation libraries for binary strings 
and permutations. These libraries con- 
tain functions for the definition, creation, 
and decoding of genetic strings, as well 
as multiple crossover and mutation op- 
erators. Furthermore, the Splicer tool de- 
fines interfaces to let the user create new 
representation libraries. 

Fitness modules are interchangeable 
and store fitness functions. They are the 
only component of the environment 
a user must create or alter to solve a par- 
ticular problem. Users can create a 
fitness (scoring) function, set the initial 
values for various Splicer control pa- 
rameters (for example, population size), 
and create a function that graphically dis- 
plays the best solutions as they are found. 

There are two user interface libraries: 
one for Macintoshes and one for X Win- 
dows. They are event-driven and provide 
graphical output in windows. 

Stand-alone Splicer applications can 
be used to solve problems without any 
need for computer programming. How- 
ever, to create a Splicer application for 
a particular problem, the user must create 
a fitness module using C. Splicer, Ver- 
sion 1.0, is currently available free 
to NASA and its contractors for use on 
government projects. In the future it will 
be possible to purchase Splicer for a 
nominal fee. 

Future 
developments 

As with any new technology, in the 
early stages of development the empha- 
sis for tools is on ease of use. Applica- 
tion-oriented systems have a crucial role 
in bringing the technology to a growing 
set of domains, since they are targeted 
and tailored for specific users. Therefore, 
we expect the number and diversity of 
application-oriented systems to expand 
rapidly in the next few years. This devel- 
opment, coupled with the discovery of 
new algorithms and techniques, should 
bring an increase in algorithm-specific 
systems, possibly leading to general-pur- 
pose GAS. Algorithm libraries will pro- 
vide access to efficient versions of these 
algorithms. 

Interest in educational systems and 
demonstrators of GAS is rapidly grow- 
ing. The contribution of such systems 
comes at the start of a new technology, 
but their usage traditionally diminishes 
as general-purpose systems mature. Thus 
we expect a decline in educational sys- 
tems as sophisticated general-purpose 
systems become available and easier to 
use. General-purpose systems appeared 
very recently. With the introduction of 
Splicer, we expect commercial develop- 
ment systems in the near future. We 
should see programming environments 
for an expanding range of sequential and 
parallel computers, and more public- 
domain open-system programming envi- 
ronments from universities and research 
centers. 

One high-growth area should be the 
association of genetic algorithms and 
other optimization algorithms in hybrid 
systems. Recently there has been consid- 
erable interest in creating hybrids of ge- 
netic algorithms and expert systems or 
neural networks. If a particularly com- 
plex problem requires optimization and 
either decision-support or pattern-recog- 
nition processes, then using a hybrid sys- 
tem makes sense. For example, neural 
networks and genetic algorithms have 
been used to train networks and have 
achieved performance levels exceeding 
that of the commonly used back-propa- 
gation model. GAS have also been used 
to select the optimal configurations for 
neural networks, such as learning rates 
and the number of hidden units and lay- 
ers. By the end of the century, hybrid GA 
neural networks will have made signifi- 
cant progress with some currently in- 
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tractable machine learning problems. 
Promising domains include autonomous 
vehicle control, signal processing, and in- 
telligent process control. 

G enetic algorithms are robust, 
adaptive search techniques that 
may be immediately tailored to 

real problems. The two major trends in 
future environments will be the exploita- 
tion of parallel GAS and the program- 
ming of hybrid applications linking GAS 
with neural networks, expert systems, 
and traditional utilities such as spread- 
sheets and databases. 
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