
2011-01-26

1

Genetic Algorithms:
Introduction and Principles
Genetic Algorithms:

Introduction and Principles

Marcus Schmitz

(Petru Eles)

Marcus Schmitz

(Petru Eles)

2

Outline

 Introduction
 Origin
 Jargon

 Basic Algorithm
 A GA Simulation by Hand
 Mathematical Foundation
 Implementation Issues
 Applications
 Mapping
 Traveling Salesman Problem

 Introduction
 Origin
 Jargon

 Basic Algorithm
 A GA Simulation by Hand
 Mathematical Foundation
 Implementation Issues
 Applications
 Mapping
 Traveling Salesman Problem

2011-01-26

2

3

From Nature to Genetic Algorithms

 Charles R. Darwin (1809-1882)
 The Origin of Species (1859)

• “As natural selection works solely by and
for the good of each being, all corporeal
and mental endowments will tend to
progress towards perfection.”

• Survival of the fittest: Organisms that most
fit to their environment will tend to survive
the struggle for existence. Naturally,
survivors pass on their hereditary
dispositions to off-springs.

 Charles R. Darwin (1809-1882)
 The Origin of Species (1859)

• “As natural selection works solely by and
for the good of each being, all corporeal
and mental endowments will tend to
progress towards perfection.”

• Survival of the fittest: Organisms that most
fit to their environment will tend to survive
the struggle for existence. Naturally,
survivors pass on their hereditary
dispositions to off-springs.

4

From Nature to Genetic Algorithms

 Gregor Mendel (1822-1884)
Father of modern genetics

 Mating experiments with pea
plants

 Mendel’s Laws
• Law of Segregation
• Law of Independent Assortment

 Gregor Mendel (1822-1884)
Father of modern genetics

 Mating experiments with pea
plants

 Mendel’s Laws
• Law of Segregation
• Law of Independent Assortment

2011-01-26

3

5

From Nature to Genetic Algorithms

 Reason for inheritance in organisms is the
cell nucleus

 Chromosome: long, continuous piece of
DNA which carries genes

 Reason for inheritance in organisms is the
cell nucleus

 Chromosome: long, continuous piece of
DNA which carries genes

cell
Nucleus (genetic material in form

chromosomes)
{ { {

Genes

6

From Nature to Genetic Algorithms

 Genetic Algorithms (Rechenberg 1973)
 Mimic the principles of natural selection to

solve search and optimization problems

 Genetic Algorithms (Rechenberg 1973)
 Mimic the principles of natural selection to

solve search and optimization problems

-15
-10

-5
0

5
10

15 -15
-10

-5
0

5
10

15

-1

-0.5

0

Search Space

2011-01-26

4

7

Introduction
 The algorithm requires feedback in form of

a fitness value
 Fitness function (Cost function)

• Some idea of the solution quality to guide search

 Multiple objective optimization

 Multiple solutions are evolved in parallel
 “Communication” through “building blocks” of

solutions

 The algorithm requires feedback in form of
a fitness value
 Fitness function (Cost function)

• Some idea of the solution quality to guide search

 Multiple objective optimization

 Multiple solutions are evolved in parallel
 “Communication” through “building blocks” of

solutions

8

Jargon

 Chromosome: String of genes,
representing a solution candidate

 Population: Set of chromosomes (possible
solutions)

 Gene: Single entry in the chromosome,
parameter of the solution set

 Allele: Value of a gene
 Locus: Gene position in the chromosome
 Genetic operators: Transform current

chromosomes into new chromosomes

 Chromosome: String of genes,
representing a solution candidate

 Population: Set of chromosomes (possible
solutions)

 Gene: Single entry in the chromosome,
parameter of the solution set

 Allele: Value of a gene
 Locus: Gene position in the chromosome
 Genetic operators: Transform current

chromosomes into new chromosomes

2011-01-26

5

9

Jargon: Chromosome, Gene

 String of genes, representing a solution
candidate
 Example: HW/SW Co-Design

 String of genes, representing a solution
candidate
 Example: HW/SW Co-Design

BSB 1

BSB 2

BSB 3

BSB 4

HW

SW

1 0 0 0
BSB1 BSB2 BSB3 BSB4

Ex
ecu

tio
n t

im
e

Fitness: 2,02ms =
1ms + 15us + 5us + 1msHW: 5us

SW: 1ms

HW: 15us
SW: 12ms

HW: 5us
SW: 7ms

HW: 1ms
SW: 1ms

10

The Fundamental Algorithm

begin
t  0
initialize P(t)
evaluate P(t)
while (not termination)
begin

t  t + 1
P(t)  selection(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

2011-01-26

6

11

Initialize Population

begin
t  0
initialize P(t)
evaluate P(t)
while (not termination)
begin
t  t + 1
P(t)  select(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

1 0 0 1 1

0 0 0 1 1

1 1 0 0 1

chromo 2

chromo 1

chromo n

Population P(t)

12

Evaluate Population

begin
t  0
initialize P(t)
evaluate P(t)
while (not termination)
begin
t  t + 1
P(t)  select(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

1 0 0 1 1

0 0 0 1 1

1 1 0 0 1

chromo 2

chromo 1

chromo n

Population P(t) fitness

0.08

1.42

0.93

2011-01-26

7

13

Selection

begin
t  0
initialize P(t)
evaluate P(t)
while (not termination)
begin
t  t + 1
P(t)  select(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

1 0 0 1 1

0 0 0 1 1

1 1 0 0 1

chromo 2

chromo 1

chromo n

Population P(t) fitness

0.08

1.42

0.93

Copied into the next population (generation).

Selection is randomly performed, with a higher probability of selecting chromosomes of high fitness.
 The number of individuals with high fitness increases from population to population

14

Crossover

begin
t  0
initialize P(t)
evaluate P(t)
while (not termination)
begin
t  t + 1
P(t)  select(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

1 0 1 1 1

0 0 0 1 1

1 1 0 0 1chromo 2

chromo 1

chromo n

Population P(t) fitness

Crossover between parent
chromosomes

0 0 0 1 1 0 0 1 1 1

1 0 0 1 1

offspringsCrossover point
(randomly)

1 0 1 1 1

 New solutions are generated from existing ones

2011-01-26

8

15

Mutation

begin
t  0
initialize P(t)
evaluate P(t)
while (not termination)
begin
t  t + 1
P(t)  select(P(t-1))
crossover P(t)
mutation P(t)
evaluate P(t)

end
end

0 0 0 1 1

1 1 0 0 1chromo 2

chromo 1

chromo n

Population P(t) fitness

Mutation: Individual genes are randomly manipulated
(with low probability)

1 0 1 1 1

1 0 0 0 1

 New individuals (points in the search space) are visited. Also solutions that would not be reached
through crossover.

16

Algorithm Outline

0 5 6

01 1 01 00

1 1 10 0 0 1

1 1 1 0 0 00

10 0 1 1 0 1

1 1 1

10 0

1 1 0 1

0 0 00

0 1 1 00 11

0 0 11 1 1 00 0 11 1 1 0

point
Crossover  1 2 3 4

1 00 0 0

String 1

String 2

String 3

String 4

String 5

String 6 0 010 0

10

0 1

Parent 1

Parent 2

Child 1

Child 2

Populations

Selection

Insertion

Evaluation

0 11 1 1 01

Q
ua

lit
y

(F
itn

es
s)

Mutate genes

Mutation

Crossover

High

Low

Assign fitness

Low probability

High probability

2011-01-26

9

17

GA Simulation by Hand

5.0)25.0()(2  xxf

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

((x-0.25)*(x-0.25))+0.5

]1..0[),()( xxfxf m (find minimum)

Analytic solution:

25.0m
x

5.02)('  xxf

0)(' m xf

18

Chromosomes: Binary Encoding

 The interval [0..1] is encoded into a 8 bit string: The interval [0..1] is encoded into a 8 bit string:

00000000  0
00000001  0.0039216
00000010  0.0078431

11111111  1

...
...

...

0039216.0
12

01
8





2011-01-26

10

19

Create Initial Population

00000011
11011000
01111111
10001001
00010010

)(tP

 0.0117
 0.8471
 0.4980
 0.5373
 0.0706

x

f(x) = 0.5568
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5825
f(x) = 0.5322 1

2

3
4

5

Rank

Fitness Function 5.0)25.0()(2  xxf

20

Selection

00000011
11011000
01111111
10001001
00010010

)(tP

 0.0117
 0.8471
 0.4980
 0.5373
 0.0706

x

f(x) = 0.5568
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5825
f(x) = 0.5322 1

2

3
4

5

Rank

21 3 4 5
33% 25% 20% 15% 7%

0 0.33 0.58 10.78 0.93

1. RandFloat(0,1) = 0.21  1
2. RandFloat(0,1) = 0.65  3
3. RandFloat(0,1) = 0.98  5

selected for P(t+1)

2011-01-26

11

21

Crossover (2-point)

11011000
01111111

00010010

 0.0117
 0.8471
 0.4980
 0.5373
 0.0706

x

f(x) = 0.5568
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5825
f(x) = 0.5322 1

2

3
4

5

Rank

01111111
00010010

Parents:

01110010
00011111

0.4471
0.1216

x

f(x) = 0.5388
f(x) = 0.5165

Children:

X-over at random point!

P(t+1)

22

Replacement

00000011
11011000
01111111
10001001
00010010

 0.0117
 0.8471
 0.4980
 0.5373
 0.0706

x

f(x) = 0.5568
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5825
f(x) = 0.5322 1

2

3
4

5

Rank

01110010
00011111

0.4471
0.1216

f(x) = 0.5388
f(x) = 0.5165

Children:

P(t+1)

2011-01-26

12

23

Second Iteration

01110010
11011000
01111111
00011111
00010010

)1(tP

 0.4471
 0.8471
 0.4980
 0.1216
 0.0706

x

f(x) = 0.5388
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5165
f(x) = 0.5322 2

3

4
1

5

Rank

• Next selection for crossover: 1 and 4
01111111
00011111

0.3755
0.2471

01011111
00111111

f(x) = 0.5158
f(x) = 0.50001

24

Why do GAs work?

00000011
11011000
01111111
00011111
00010010

f(x) = 0.5568
f(x) = 0.8565
f(x) = 0.5615
f(x) = 0.5165
f(x) = 0.5322 2

3

4
1

5

Rank

 Relationship between similarities and
high fitness!
 Information to help guide the search

 Relationship between similarities and
high fitness!
 Information to help guide the search

2011-01-26

13

25

Similarity Templates (Schemata)

 Which information is admitted?
 Schemata help to answer this question

 Which information is admitted?
 Schemata help to answer this question

*0000 {00000,10000}matches
111 matches {01110,01110,

11110,11111}

*  Don’t care symbol

kl: alternative string

(k+1)l: schemata

(25 = 32)

(35 = 243)

26

Information Amount
 Number of unique schemata in population

Each string is a member of 2l schemata
 Between 2l and n·2l (n: population size)

 Defining length of a schema
Distance between last and first fixed string
position
d(*11*00*) = 6 – 2 = 4

 Order of a schema
Number of 0 and 1 (fixed) positions
O(*11*00*) = 4

 Number of unique schemata in population
Each string is a member of 2l schemata

 Between 2l and n·2l (n: population size)

 Defining length of a schema
Distance between last and first fixed string
position
d(*11*00*) = 6 – 2 = 4

 Order of a schema
Number of 0 and 1 (fixed) positions
O(*11*00*) = 4

2011-01-26

14

27

Usefully Processed?

 Effect of Selection (Reproduction)
 Ever-increasing number of individuals with good

similarity patterns
 Effect of Crossover

 Schema can be disrupted or left unscathed
Examples: 1***0 and **11*

 Effect of Mutation
 Schema is disrupted with low frequently (low mutation

rate)
 Conclusion: Highly fit schemata with short-

defining-length and low order (building blocks) are
propagated from generation to generation.

 Effect of Selection (Reproduction)
 Ever-increasing number of individuals with good

similarity patterns
 Effect of Crossover

 Schema can be disrupted or left unscathed
Examples: 1***0 and **11*

 Effect of Mutation
 Schema is disrupted with low frequently (low mutation

rate)
 Conclusion: Highly fit schemata with short-

defining-length and low order (building blocks) are
propagated from generation to generation.

28

Algorithm Setup & Parameters

 Chromosome type (Encoding)

 Population type & size

 Selection scheme

 Crossover types (2-point, 3-point, etc.)

 Mutation strategy & probability

 Fitness function

 Termination criterion

 Chromosome type (Encoding)

 Population type & size

 Selection scheme

 Crossover types (2-point, 3-point, etc.)

 Mutation strategy & probability

 Fitness function

 Termination criterion

2011-01-26

15

29

Chromosome

 Principle of meaningful building blocks
 “Select encoding so that short, low-order

schemata are relevant to the underlying
problem”, i.e., short distance between related
bit positions

 Principle of minimal alphabets
 “Choose smallest alphabet that permits a

natural expression of the problem”

 Principle of meaningful building blocks
 “Select encoding so that short, low-order

schemata are relevant to the underlying
problem”, i.e., short distance between related
bit positions

 Principle of minimal alphabets
 “Choose smallest alphabet that permits a

natural expression of the problem”

30

Population Types & Size
 Generation-based GAs
 In each generation all individuals of the

population are replaced

 Steady-state GAs
 Generational overlap: A certain fraction of the

population is replaced by new individuals

 Multiple Populations with Immigration
 Several populations evolve in parallel,

individuals can immigrate between population
islands (computing clusters)

 Typical Sizes 25 - 2000 chromosomes

 Generation-based GAs
 In each generation all individuals of the

population are replaced

 Steady-state GAs
 Generational overlap: A certain fraction of the

population is replaced by new individuals

 Multiple Populations with Immigration
 Several populations evolve in parallel,

individuals can immigrate between population
islands (computing clusters)

 Typical Sizes 25 - 2000 chromosomes

2011-01-26

16

31

Initial Population

 Randomly selected individuals

 Mixed population
 A fixed amount of individual constructed

through different constructive heuristic
 In addition, random individuals

 Randomly selected individuals

 Mixed population
 A fixed amount of individual constructed

through different constructive heuristic
 In addition, random individuals

32

Selection Scheme

 Roulette Wheel Selection
 Fitness determines selection probability

 Ranking-based Selection
 Ranking determines selection probability
 Avoids problems with “super-individuals”

 Tournament Selection
 Randomly select two individuals, the better one

is chosen

 Roulette Wheel Selection
 Fitness determines selection probability

 Ranking-based Selection
 Ranking determines selection probability
 Avoids problems with “super-individuals”

 Tournament Selection
 Randomly select two individuals, the better one

is chosen

Assignment of reproduction
opportunities to the individuals

2011-01-26

17

33

Crossover Types

1-point : 2-point:
random

34

String Encoding

 Recall: Short defining-length, low order, high
fitness schemata (building blocks) recombine

 The coding decision influences the efficiency of GAs

 Recall: Short defining-length, low order, high
fitness schemata (building blocks) recombine

 The coding decision influences the efficiency of GAs

a b c d e f

1 * * * * 1  highest average fitness

a f c d e b

1 1 * * * *

Likely to be disrupted
(long defining-length)

Likely to be left undisrupted
(short defining-length)

Reordering of genes

2011-01-26

18

35

Mutation Strategies & Probability

 Constant Mutation Rate
 Genes are altered permanently during

optimization with fixed probability (common
value <1%)

 Decreasing Mutation Rate
 An initially high mutation rate decreases

during optimization run

 Stimulating Mutation
 If premature convergence is detected, an

increasing number of individuals are mutated

 Constant Mutation Rate
 Genes are altered permanently during

optimization with fixed probability (common
value <1%)

 Decreasing Mutation Rate
 An initially high mutation rate decreases

during optimization run

 Stimulating Mutation
 If premature convergence is detected, an

increasing number of individuals are mutated

36

Fitness function

 Single-objective optimization

 Fitness depends on calculated cost

 Multi-objective optimization

 Objective weighting:

 Pareto ranking: Distance based

 Single-objective optimization

 Fitness depends on calculated cost

 Multi-objective optimization

 Objective weighting:

 Pareto ranking: Distance based





k

i
ii fwF

1

)()(xx

2011-01-26

19

37

Pareto Ranking

Timing (QoS)

energy
Pareto front

Non-Dominated solutions

Dominated
solutions

8

8

8
8

3

6

[10,2]

10

2 15

3
[2,15]

Non-dominated solutions: at least on of the solution weights
is the smallest among all other solutions!

38

Termination Criterion

 A given maximal number of generations has
been reached

 A certain amount of generations has not
produced any further improvements

 The diversity in the population has reached
a lower limit

 A given maximal number of generations has
been reached

 A certain amount of generations has not
produced any further improvements

 The diversity in the population has reached
a lower limit

2011-01-26

20

39

Applicability

 Large Search Space
 Not perfectly smooth (no gradient-based tech.)
 Not unimodal (extreme points)
 Not well understood
 Noisy fitness function

 Global optimum is not essential
 High quality solution is sufficient

 Large Search Space
 Not perfectly smooth (no gradient-based tech.)
 Not unimodal (extreme points)
 Not well understood
 Noisy fitness function

 Global optimum is not essential
 High quality solution is sufficient

40

Knowledge-based Techniques

 In the most general case, GAs are “blind”
heuristics, i.e., no problem specific
knowledge is required

 Hybrid Schemes
 Example: GA + local search (GA finds hills,

local search climbs hills)
 Performance improvement

 In the most general case, GAs are “blind”
heuristics, i.e., no problem specific
knowledge is required

 Hybrid Schemes
 Example: GA + local search (GA finds hills,

local search climbs hills)
 Performance improvement

2011-01-26

21

41

Evolution Programs

 Difference between GAs and EPs?

 GAs: binary string representations
 EPs: Complex data structures

 GAs: Standard genetic operators
 EPs: Specialized genetic operators

 Difference between GAs and EPs?

 GAs: binary string representations
 EPs: Complex data structures

 GAs: Standard genetic operators
 EPs: Specialized genetic operators

42

Available Implementations

 GALib (MIT, http://lancet.mit.edu/ga)
 Includes several GA types
 Comes with numerous crossover, replacement,

mutation types
 Easily adaptable to specific problems (new

genetic operators can be created)
 GAUL (GNU, http://gaul.sourceforge.net)
 Support for multiple, simultaneously evolving

populations (computing clusters)
 Additional optimization algorithms are built-in

• Simulated annealing
• Tabu search

 GALib (MIT, http://lancet.mit.edu/ga)
 Includes several GA types
 Comes with numerous crossover, replacement,

mutation types
 Easily adaptable to specific problems (new

genetic operators can be created)
 GAUL (GNU, http://gaul.sourceforge.net)
 Support for multiple, simultaneously evolving

populations (computing clusters)
 Additional optimization algorithms are built-in

• Simulated annealing
• Tabu search

2011-01-26

22

43

Further Readings
 Books

 Goldberg, “Genetic Algorithms in Search, Optimization &
Machine Learning”

 Michalewicz, “Genetic Algorithms + Data Structures =
Evolution Programs”

 Mazumder and Rudnick, “Genetic Algorithms for VLSI
Design, Layout & Test Automation”

 Conference proceedings
 International Conference on Genetic Algorithms
 International Conference on Evolutionary Programming

 Journals
 IEEE Transactions on Evolutionary Computation
 Evolutionary Computation Journal (MIT Press)

 Books
 Goldberg, “Genetic Algorithms in Search, Optimization &

Machine Learning”
 Michalewicz, “Genetic Algorithms + Data Structures =

Evolution Programs”
 Mazumder and Rudnick, “Genetic Algorithms for VLSI

Design, Layout & Test Automation”
 Conference proceedings

 International Conference on Genetic Algorithms
 International Conference on Evolutionary Programming

 Journals
 IEEE Transactions on Evolutionary Computation
 Evolutionary Computation Journal (MIT Press)

44

Applications

 Application Mapping in Multiprocessor
Systems

 Traveling Salesman Problem

 Application Mapping in Multiprocessor
Systems

 Traveling Salesman Problem

2011-01-26

23

45

Application Mapping

Available area:

Mapping 1 Mapping 2

50mm2







 



Specification















 

Available area:
50mm2

Performance: 10ms
Power dissipation: 350mW

Performance: 9ms
Power dissipation: 370mW

46

Task Properties

 ti(C) is the execution time of task i on component
C

 ai(C) is the area required to accommodate task i
on component C

 Pi(C) is the power dissipated by task i on
component C

 Competing objectives:
 Performance
 Area
 Power consumption

 ti(C) is the execution time of task i on component
C

 ai(C) is the area required to accommodate task i
on component C

 Pi(C) is the power dissipated by task i on
component C

 Competing objectives:
 Performance
 Area
 Power consumption

2011-01-26

24

47

Encoding: Mapping String

Task Graph













MEM

In
te

rf
ac

e
In

te
rf

ac
e

In
te

rf
ac

e

P
C

I-
B

u
s

C1

C2

C3

MEM













0

1

3

2

1

3

2

1

2

3

4

5

String Architecture

• Locus determines task position
• Allele determines task mapping

48

Fitness Function





areapenalty

C

timepentalty

rep
energy

T
M AP

DV
EF

T
_

_

2

2

1)(












































otherwise11

 if1









AA

UA
k

SAAA

AP

2011-01-26

25

49

GA Mapping Algorithm

Scheduling

Assign fitness

Ranking

Selection

Mutation

Mating

Insertion

GA (Mapping)

no yes

Timing,
Energy +
Area

By itself a hard problem!
Initial
Population

Final
Population

Iter.

Termination

50

Experimental Setup

 Population size: 50

 Generational overlap: 20%

 Two-point crossover

 Dynamic mutation probability 5%

 Population size: 50

 Generational overlap: 20%

 Two-point crossover

 Dynamic mutation probability 5%

2011-01-26

26

51

Evolution Run

8500

9000

9500

10000

10500

11000

11500

12000

0 5 10 15 20 25 30 35 40 45 50

F
itn

es
s

Generation

'Min'
'Individual'

30 nodes
3 processors

52

Multi-Objective Optimization

A
re

a
ov

er
he

ad

Average Power (mW)

Pareto-points
Pareto-front

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

2011-01-26

27

53

Experimental Results

No. Nodes CPU time (s)

20 5.5

30 11

40 37

100 127

PentiumIII/500MHz

Optimization times include overheads due
to scheduling and energy management

54

Traveling Salesman Problem

 “…given a finite number n of "cities" along
with the cost of travel between each pair of
them, find the cheapest way of visiting all
the cities and returning to your starting
point.”

 The problem has a solution space of
(n-1)!/2

 “…given a finite number n of "cities" along
with the cost of travel between each pair of
them, find the cheapest way of visiting all
the cities and returning to your starting
point.”

 The problem has a solution space of
(n-1)!/2 Cities Possible routes

10 181,440
25 310e21
100 466e153

2011-01-26

28

55

Recombination Problem

 Standard GA operators fail to produces
meaningful chromosomes
 Example: 1-point crossover

 Standard GA operators fail to produces
meaningful chromosomes
 Example: 1-point crossover

[A B C D E F]

[B D C A E F]

[A B C A E F]

[B D C D E F]

 Repair algorithm to restore a valid solution
is not effective

 Using appropriate operator that lead to
feasible solutions

 Repair algorithm to restore a valid solution
is not effective

 Using appropriate operator that lead to
feasible solutions

56

Edge Recombination Operator

 Similarities between tours should be
preserved
 Offspring should be constructed from “links”

that exist in the parent tours

 Similarities between tours should be
preserved
 Offspring should be constructed from “links”

that exist in the parent tours

 Key to solve the problem is a meaningful
recombination technique
For example: Edge recombination operator [1]

 Key to solve the problem is a meaningful
recombination technique
For example: Edge recombination operator [1]

2011-01-26

29

57

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

Child tour:[? ? ? ? ? ?]

58

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

1. Initialize child tour with one of the two
initial cities of the parents.

Randomly chosen B.

Child tour:[B ? ? ? ? ?]

2011-01-26

30

59

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

2. Remove all occurrences of B in the edge
map.

Child tour:[B ? ? ? ? ?]

60

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

3. Which of the cities in edge list B has the
fewest cities in its own edge list? C, D, F!

Randomly chosen C.

Child tour:[B C ? ? ? ?]

2011-01-26

31

61

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

4. Remove all occurrences of C in the edge
lists.

Child tour:[B C ? ? ? ?]

62

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

Child tour:[B C D ? ? ?]

5. Which of the cities in edge list C has the
fewest cities in its own edge list? D!

Chosen D.

2011-01-26

32

63

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

6. Remove all occurrences of D in the edge
lists.

Child tour:[B C D ? ? ?]

64

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

Child tour:[B C D E ? ?]

7. Which of the cities in edge list D has the
fewest cities in its own edge list? E!

Chosen E.

2011-01-26

33

65

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

8. Remove all occurrences of E in the edge
lists.

Child tour:[B C D E ? ?]

66

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

Child tour:[B C D E A ?]

9. Which of the cities in edge list E has the
fewest cities in its own edge list? F!

Randomly chosen A.

2011-01-26

34

67

An Example
 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

 Parent tours: [A B C D E F] and [B D C A E F]

 Edge map: A: B F C E D: C E B

B: A C D F E: D F A

C: B D A F: A E B

All cities have been visit  STOP

Child tour:[B C D E A F]

68

GA-TSP: Results

 30 cities (optimal solution 420)
 4.42e30 possible tours
 10 sub-populations with a size of 200 each
 7,000 recombinations
 30 out of 30 runs optimal solution found

 105 cities (optimal solution 14,383)
 5.14e165 possible tours
 10 sub-populations with a size of 1000 each
 200,000 recombinations
 15 out of 30 runs optimal solution found
 15 out of 30 runs with 1 percent of optimal solution

 30 cities (optimal solution 420)
 4.42e30 possible tours
 10 sub-populations with a size of 200 each
 7,000 recombinations
 30 out of 30 runs optimal solution found

 105 cities (optimal solution 14,383)
 5.14e165 possible tours
 10 sub-populations with a size of 1000 each
 200,000 recombinations
 15 out of 30 runs optimal solution found
 15 out of 30 runs with 1 percent of optimal solution

2011-01-26

35

69

References

[1] D. Whitley et al, “The Traveling Salesman
and Sequence Scheduling: Quality Solutions
Using Genetic Edge Recombination”, 1993.

[1] D. Whitley et al, “The Traveling Salesman
and Sequence Scheduling: Quality Solutions
Using Genetic Edge Recombination”, 1993.

70

Conclusions

 Simple GA has been introduced
 We have examined how GAs work
 Implementation issues

 Crossovers
 Encoding

 Applications
 Task mapping
 TSP

 GAs provide a robust, easy to implement heuristic
search strategy that can be applied to large
number of optimization and search problems

 Simple GA has been introduced
 We have examined how GAs work
 Implementation issues

 Crossovers
 Encoding

 Applications
 Task mapping
 TSP

 GAs provide a robust, easy to implement heuristic
search strategy that can be applied to large
number of optimization and search problems

