Logic + Control: An example
or
SAT solver of Howe & King as a logic program

(File ./LIPIcs/29.pdf)

Włodzimierz Drabent

Institute of Computer Science, Polish Academy of Sciences
Linköping University (Sweden)

http://www.ipipan.waw.pl/~drabent

ICLP’12, 6th September 2012
Version compiled on September 10, 2012

Is there logic in actual Logic Programming?

To which extent LP is declarative/logical?

How to reason about logic programs?

We present
a construction of a practical Prolog program
(SAT solver of Howe&King).

Most of the reasoning done at the declarative level
(formally)
abstracting from any operational semantics.

Plan
▶ Specification
▶ Proving correctness & completeness
▶ Logic programs 1, 2, 3
▶ Adding control
▶ Conclusions

This file contains extra material, not intended to be shown
within a short presentation. In particular, such are all the
slides with their titles in parentheses.
Preliminaries

Definite programs.

To describe relations to be defined by program predicates:

Specification – a Herbrand interpretation \(S \).

Specified atom – a \(p(t_1, \ldots, t_n) \in S \).

Specifying a SAT solver

So apparently

a SAT solver should compute \(L^0_2 \).

Computing exact \(L^0_2 \) unnecessary.

E.g. nobody uses append/3 defining the list appending relation exactly!

Common in LP: relations to be computed known approximately.

Representation of propositional formulae

for a SAT solver [Howe&King]

- **Literals**
 - \(x \)
 - \(\neg x \)

- **true-X**
- **false-X**

- **CNF formulae**
 - \((\ldots \land (\ldots \lor \text{Literal}_{ij} \lor \ldots) \land \ldots) \)

- **as lists of lists**
 - \(\ldots, \ldots, [\text{Pair}_{ij}, \ldots], \ldots \)

- **CNF formula** \([f_1, \ldots, f_n] \) is satisfiable iff
 - it has an instance \([f_1\theta, \ldots, f_n\theta] \) where \(\forall i f_i\theta \in L^0_2 = \{ [t_1-u_1, \ldots, u-u, \ldots, t_n-u_n] \in \mathcal{H} \} \).

- **CNF formula** \(f \) is satisfiable iff
 - some \(f\theta \) is in \(L^0_2 = \{ [f_1\theta, \ldots, f_n\theta] \} \) as above.

A program defining \(L^0_2 \) is a SAT solver.

Common in LP: relations to be computed known approximately.
Approximate specifications

Approximate specification - (S^0, S), where $S^0 \subseteq S$.

Intention: $S^0 \subseteq M_P \subseteq S$. S^0 - what has to be computed. S - what may be computed.

Approximate specifications

Approximate specification for SAT solver: (S^0_1, S_1), states that predicate sat.cnf defines a set L'_2: $L^0_2 \subseteq L'_2 \subseteq L_2$.

[Details -> the paper]

Correctness & completeness of programs

Correctness (imperative programming)

$M_P \subseteq S$

Completeness (logic programming)

$S \subseteq M_P$

Correctness:

Everything required by the spec. is computed.

Completeness:

Everything computed is compatible with the spec.

P semi-complete w.r.t. $S = P$ complete for terminating queries (under some selection rule).

[Details -> the paper]
Correctness & completeness, sufficient conditions

Th. (Clark 1979): \(P \) correct w.r.t. \(S \) when
for each \((H \leftarrow B) \in \text{ground}(P) \), \(B \subseteq S \Rightarrow H \in S \).

(Out of correct atoms, the clauses produce only correct atoms.)

Th.: \(P \) semi-complete w.r.t. \(S \) when
for each \(H \in S \),
exists \((H \leftarrow B) \in \text{ground}(P) \) where \(B \subseteq S \).

(Each required atom can be produced out of required atoms.)

Semi-complete + terminating \(\Rightarrow \) complete.

(Towards better efficiency)

Idea: Watch two variables of each clause.
Delay \(Pol = Var \) in \(\text{sat}_cl([Pol-Var|Pairs]) \leftarrow Pol=Var \) until \(Var \) watched and bound.

New predicates – another representations of clauses
E.g. \((v_1, p_1, v_2, p_2, s)\) for \([p_1-v_1, p_2-v_2|s]\).
To block on \(v_1, v_2 \)
Specification \((S_1^0, S_1)\) extended \(\sim \) \((S_2^0, S_2)\).

Guided by the sufficient conditions for correctness & completeness a logic program \(P_2 \) built,
correct & complete w.r.t. the new specification.
[Details \(\sim \) the paper]

(Towards efficiency. Details: the new spec.)

Idea: Watch two variables of each clause.
\[
\text{delay } Pol = Var \text{ in } \text{sat}_cl([Pol-Var|Pairs]) \leftarrow Pol=Var \text{ until } Var \text{ watched and bound.}
\]

New predicates. Specification: \(S_1^0 \) (resp. \(S_1 \)) extended by atoms
\[
\text{sat}_cl3(s, v, p), \quad \text{where } [p-v|s] \in L_1^0 \text{ (resp. } \in L_1),
\]
\[
\text{sat}_cl5(v_1, p_1, v_2, p_2, s), \quad [p_1-v_1, p_2-v_2|s] \in L_1^0 \text{ (resp. } \in L_1).
\]
Already in \(S_1^0 \) (\(S_1 \)):
\[
\text{sat}_cl(s), \quad s \in L_1^0 \text{ (resp. } \in L_1).
\]

Intention: \(v_1, v_2 \) – the watched variables

\(:-\text{block sat}_cl5(-,?,-,?,?) \)
\(\text{sat}_cl5a \) called with \(v_1 \) bound
(Towards efficiency, final logic program)

P_2 may flounder (under the intended delays).
To avoid floundering – new predicates, new specification.

Initial queries $\text{sat}(f, l)$
Variables in f
Spec. requires l to be a list of $true/false$

Guided by the sufficient conditions for correctness & completeness
a logic program $P_3 \supseteq P_2$, correct & complete.
[Details ⇝ the paper]

Towards better efficiency – brief

To prepare the intended control – new predicates.
E.g. another data representation, like (v_1, p_1, v_2, p_2, s) for $[p_1-v_1, p_2-v_2][s]$, to block on v_1, v_2.

Specification (S_0^1, S_1) extended $\rightsquigarrow (S_0^3, S_3)$.

Guided by the sufficient conditions for correctness & completeness
a logic program P_3 built
correct & complete w.r.t. the new specification.

Adding control to P_3

- Delays – modifying the selection rule
 $:-\text{block sat_cl5}(-,-,?,?,?)$

- Two cases of pruning SLD-trees.
 Skipping a rule of P_3; implemented by $(\ldots\rightarrow\ldots;\ldots)$.
 Completeness preserved.
 Case 1 – proof [technical report].
 Case 2 – informal justification

Result: Prolog program [Howe&King] of 22 lines / 12 rules.
Implements DPLL with watched literals and unit propagation.
(partly)

(Adding control, details)

Delays – modifying the selection rule
$:-\text{block sat_cl5}(-,-,?,?,?)$

Pruning 1. Choosing one of two clauses dynamically.
Completeness preserved. [Proof \rightarrow tech. report]

\[
\begin{aligned}
\text{sat_cl5}(Var_1,\ldots, Var_2,\ldots) & \leftarrow \text{sat_cl5a}(Var_1,\ldots, Var_2,\ldots). \\
\text{sat_cl5}(Var_1,\ldots, Var_2,\ldots) & \leftarrow \text{sat_cl5a}(Var_2,\ldots, Var_1,\ldots).
\end{aligned}
\]

\[
\begin{aligned}
\text{sat_cl5}(Var_1,\ldots, Var_2,\ldots) & \leftarrow \\
\text{nonvar}(Var_1) & \rightarrow \text{sat_cl5a}(Var_1,\ldots, Var_2,\ldots) \\
& ; \text{sat_cl5a}(Var_2,\ldots, Var_1,\ldots).
\end{aligned}
\]
(Adding control, details 2)

Pruning 2. Removing a redundant part of SLD-tree.
(Do not work on a clause which is already true.)
Completeness preserved, informal justification.

\[
\begin{align*}
\text{sat}_\text{cl5a}(\text{Var1}, \text{Pol1}, \ldots) & \leftarrow \text{Var1} = \text{Pol1}, \\
\text{sat}_\text{cl5a}(\ldots, \text{Var2}, \text{Pol2}, \text{Pairs}) & \leftarrow \text{sat}_\text{cl3}(\text{Pairs}, \text{Var2}, \text{Pol2}). \\
\end{align*}
\]

\[
\begin{align*}
\text{sat}_\text{cl5a}(\text{Var1}, \text{Pol1}, \text{Var2}, \text{Pol2}, \text{Pairs}) & \leftarrow \\
\text{Var1} = \text{Pol1} \rightarrow \text{true}; \\
\text{sat}_\text{cl3}(\text{Pairs}, \text{Var2}, \text{Pol2}). \\
\end{align*}
\]

Conclusions, approximate specifications

- **Approximate spec's crucial for formal reasoning about programs.**
 - Exact relations (defined by programs) often not known, not easy to understand.
 - **Ex.** Which set is defined by \text{sat}_\text{cl}/1 in \text{P}_1? In \text{P}_2, \text{P}_3?
 - Misunderstood by the author (first report) and some reviewers.

- **Approximate spec's useful for declarative diagnosis (DD).**
 - Trouble: DD requires exact specifications.
 - **Ex.** Is \text{append}([a], b, [a|b]) correct?

Approximate spec's should be used:

- Diagnosing incorrectness incompleteness – specification for correctness completeness

Conclusions, approximate specifications 2

Transformational approaches seem **inapplicable**
 - to our example \text{P}_1 \rightsquigarrow \text{P}_3,
 - as the same predicates define different sets in \text{P}_1, \text{P}_3.
 - have the same approximate specification

- Interpretations as specifications
 - "existential specifications" inexpressible.

- **Ex.:** We could not state that
 - for each satisfiable \text{f some} true instance \text{fθ} is computed.
 - We required all true instances.

- Solution(?): Use **theories** as specifications.

Ex.: An error in \text{P}_1 (first version) found & located by a failed proof attempt.

Methods for programs with negation: [Drabent, Miłkowska’05]
Conclusions, declarative programming

Most of reasoning can be done at declarative level / pure logic programs.

Abstracting from operational semantics, thinking in terms of relations; formally.

Separation “logic” – “control” works:
Reasoning related to operational semantics / efficiency independent from that related to correctness & semi-completeness.

But: Pruning may spoil completeness.

Conclusions, ...

Claim: The presented approach can be used in practice, maybe informally, in programming and in teaching.

LP is not declarative unless we have/use declarative means of reasoning about programs.