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Introduction

In this chapter we consider the problem of finding solutions to
equations of the form

f (x) = x

where f : A → A. An element a ∈ A such that f (a) = a is called a
fixed point of f . Note that our problem is more far-reaching than this.
If we want to solve an equation f (x) = 0, this can be reformulated
as the problem of solving the equation f (x) + x = x; hence, if we
define g(x) := f (x) + x we have again the problem g(x) = x. Of
course, our function may not have any fixed points (e.g. f (n) :=
n + 1), or if may have more than one fixed point (e.g. f (n) := n). The
problem of determining if a function has a fixed point is undecidable
in general and in this chapter we focus on two sufficient conditions
under which we can guarantee the existence of fixed points, and
in some cases even compute them (or at least approximate them
arbitrarily well).

For a historic account of the use of fixed points in semantics of
programming languages and logics, see Lassez et al. 1. 1 J.-L. Lassez, V.L. Nguyen, and E.A.

Sonenberg. Fixed point theorems and
semantics: A folk tale. Inform. Process.
Lett., 14:112–116, 1982Basic Notions

We summarize some basic properties of functions on ordered sets.

Definition 1. Let (A,≤) be a poset. A function f : A → A is said to be

• monotone (order-preserving) iff f (x) ≤ f (y) whenever x ≤ y,

• antimonotone iff f (x) ≥ f (y) whenever x ≤ y,

• inflationary iff x ≤ f (x) for all x ∈ A, and

• idempotent iff f ( f (x)) = f (x) for all x ∈ A.

A trivial case where we can always guarantee the existence of fixed
points is when the map is idempotent.

Theorem 1. Let (A,≤) be a non-empty ccpo and f : A → A idempotent.
Then f has a (not necessarily unique) fixed point.

We also introduce the notion of continuous maps. We first attempt
a generic definition which is subsequently adapted to complete lat-
tices and ccpo’s.
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Definition 2. Let (A,≤) be a lattice. A function f : A → A is contin-
uous if it preserves least upper bounds: if B ⊆ A and

∨
B exists, then∨

{ f (x) | x ∈ B} exists and equals f (
∨

B).

In the case of a complete partial order – which only guarantees the
existence of suprema for ascending chains – we may specialize this as
follows.

Definition 3. Let (A,≤) be a ccpo. A function f : A → A is called (chain-
) continuous if

f (
∨{x0, x1, x2, . . .}) = ∨{ f (x0), f (x1), f (x2), . . .}

for every ascending chain x0 < x1 < x2 < . . . in A.

In the case of a complete lattice – where every subset has a supre-
mum – we get:

Definition 4. Let (A,≤) be a complete lattice. A function f : A → A is
continuous if

f (
∨

B) =
∨{ f (x) | x ∈ B}

for every B ⊆ A.

A continuous map is always monotone (prove this), but the con-
verse is not true in general.

Knaster-Tarski’s theorem

In this section we prove a classic fixed point theorem due to Knaster-
Tarski (see Tarski 2) which concerns the existence of (least and great- 2 A. Tarski. A lattice-theoretic fixpoint

theorem and it´s application. Pacific J.
Math., 5:285–309, 1955

est) fixed points of monotone maps on complete lattices. We also
give, without proof, a similar result concerning the existence of (least)
fixed points of monotone maps on ccpo’s.

Definition 5. Let (A,≤) be a poset and consider a map f : A → A. An
x ∈ A such that f (x) ≤ x is called a pre-fixed point of f . Similarly, x ∈ A
is called a post-fixed point of f iff x ≤ f (x).

Example 1. As defined previously a set B ⊆ A is closed under the map
f : A → A iff f (x) ∈ B whenever x ∈ B. We may “lift” f to F : 2A → 2A

as follows
F(X) := { f (x) | x ∈ X} .

Then B ⊆ A is closed under f iff B is a pre-fixed point of F, i.e. if F(B) ⊆
B. (In many cases the same symbol f is used for both functions, by abuse of
notation.)

We now state and prove the Knaster-Tarski fixed point theorem.
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Theorem 2. Let (A,≤) be a complete lattice and f : A → A be a monotone
function. Then ∧

{x ∈ A | f (x) ≤ x}

is the least fixed point of f , and∨
{x ∈ A | x ≤ f (x)}

is the greatest fixed point of f .

Proof. We prove the first part of the theorem. The second result can
be shown dually. Consider the set S := {x ∈ A | f (x) ≤ x} of all
pre-fixed points of f . The set S clearly is non-empty since at least
f (⊤) ≤ ⊤. Now let y :=

∧
S. Then by definition y ≤ x for every

x ∈ S. By monotonicity of f , f (y) ≤ f (x) ≤ x, for every x ∈ S. Hence
f (y) ≤ x for every x ∈ S, i.e. f (y) is a lower bound of S. But since y is
the greatest lower bound we must have

f (y) ≤ y. (1)

Moreover, f ( f (y)) ≤ f (y) (by monotonicity) which means that
f (y) ∈ S. Hence

y ≤ f (y). (2)

Our two inequalities imply not only that y is a fixed point but also
that y is least, since all fixed points (including y) must be contained
in S.

That is, the least pre-fixed point of f is the least fixed point of f .
Dually, the greatest post-fixed point of f is the greatest fixed point of
f .

The Knaster-Tarski theorem concerns complete lattices, but the
existence of a least fixed point holds also for monotone maps on
ccpo’s; however, the proof is more complicated, and we give the
theorem without a proof.

Theorem 3. Let (A,≤) be a ccpo and f : A → A monotone. Then f has a
least fixed point.

The least fixed point of f is denoted lfp( f ). Alternatively it is
written

µx. f (x)

with reading: the least x such that f (x) = x. The greatest fixed point
of f is often denoted gfp( f ), alternatively

νx. f (x).
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Example 2. Recall that the factorial function on N can be defined as
fac(0) = 1 and fac(n) = fac(n − 1) · n otherwise. Via the machinery
developed in this chapter we can give a formal account of the semantics of
such recursive functions, where the basic idea is to understand a recursive
function as a limit of a sequence of finite approximations (i.e., partial func-
tions defined on a finite number of arguments). We can formalize this idea
as follows.

For a non-empty partial function f : N → N let

F( f ) = f ∪ {(x + 1, y · (x + 1)) | (x, y) ∈ f }

and additionally let
F(∅) = {(0, 1)}.

Hence, the idea behind this function is that, given a partially defined
factorial function, it returns a partially defined factorial function which is
defined for at least one additional argument. We claim that F is a monotone
function: assume that f ⊆ g for two partial functions f and g. Then
F( f ) ⊆ F(g) must hold. Let A be the set of partial functions from N to
N and recall that (A,⊆) is a ccpo. It follows that the least fixed point of F
exists and equals

⋂{ f ∈ A | F( f ) ≤ f }, i.e., the intersection of all partial
functions f where F( f ) does not produce a new value3. In this example it 3 What are those functions? Can there

exist more than one?is not hard to see that this least fixed point equals fac, but in general the
Knaster-Tarski theorem only guarantees the existence of a least fixed point
without any hints of how to practically compute it. We will soon revisit this
issue in the context of Kleene’s fixed point theorem.

Example 3. Recall from Chapter 3 that two sets A and B have the same
cardinality (|A| = |B|) if there exists an injective function f : A → B
and an injective function g : B → A. We claimed without proof that this
also implies the existence of a bijective function h : A → B (the Cantor-
Schröder–Bernstein theorem). Via the Knaster-Tarski fixed point theorem
we are now in a position to give an elementary proof. First, for any X ⊆ A
we define the function

ϕ(X) = A \ g(B \ f (X)).

We claim that ϕ is monotone. Indeed, assume that X ⊆ Y ⊆ A: then

ϕ(X) = A \ g(B \ f (X)) ⊆ ϕ(Y) = A \ g(B \ f (Y))

since f (X) ⊆ f (Y) implies that g(B \ f (X)) ⊇ g(B \ f (Y)). Next, since
(2A,⊆) is a complete lattice we (via Knaster-Tarski’s fixed point theorem)
conclude that µX.ϕ(X) for some set X ⊆ A. Then

ϕ(X) = A \ g(B \ f (X)) = X

and
A \ X = g(B \ f (X)).
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Let g|B\ f (X) and f|X be g and f restricted to B \ f (X), respectively X. It
follows that these functions are bijections and we define the desired bijection
h : A → B as

h(x) = f (x)

if x ∈ X and
h(x) = (gB\ f (X))

−1(x)

if x /∈ X.

Kleene’s Fixed Point Theorem

Knaster-Tarski’s theorem concerns the existence of least and greatest
fixed points. We now turn to the problem of computing, or at least
approximating, fixed points. First, we recall the following theorem
from Chapter 4.

Theorem 4. Let (A,≤) be a complete lattice and assume that f : A → A is
monotonic. Then f α ≤ f α+1 for all ordinals α.

The following theorem, due to Kleene, provides a hint on how to
compute the least fixed point, in case of a continuous map.

Theorem 5. Let (A,≤) be a ccpo (or a complete lattice) and assume that
f : A → A is continuous. Then f ω(⊥) is the least fixed point of f .

Proof. We begin by proving that f ω(⊥) is a fixed point of f , and then
show that it must be the least fixed point. First, Theorem 4 implies
that ⊥ = f 0(⊥) ≤ f 1(⊥) ≤ . . . is an ascending chain, which means
that the least upper bound of { f n(⊥) | n < ω} exists and equals

f ω(⊥) =
∨

n<ω

f n(⊥). (3)

Since f is continuous we then have:

f (
∨

n<ω

f n(⊥)) =
∨

n<ω

f ( f n(⊥))

=
∨

1≤n<ω

f n(⊥)

= f ω(⊥) (since f 0(⊥) = ⊥ and since x ∨⊥ = x for any x).

We finally demonstrate that f ω(⊥) must be the least fixed point of
f . Let x be an arbitrary fixed point of f . We show that x is an upper
bound of { f n(⊥) | n < ω} by proving that f n(⊥) ≤ x for every
n < ω via induction:

1. n = 0: then ⊥ ≤ x which due to monotonicity of f implies that
f (⊥) ≤ x.
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2. Assume that f n(⊥) ≤ x for some n > 0. Then f n+1(⊥) ≤ f (x) = x
(monotonicity and since x is a fixed point of f ).

Hence, x is an upper bound of { f n(⊥) | n < ω}. But since f ω(⊥) is
the least upper bound, f ω(⊥) ≤ x, and f ω(⊥) therefore is the least
fixed point of f .

From Chapter 3 we know that

f ω(⊥) =
∨

n<ω

f n(⊥).

That is, lfp( f ) is the least upper bound of the so-called Kleene se-
quence,

⊥, f (⊥), f 2(⊥), . . . , f n(⊥), . . .

In fact, since f is monotonic this is an ascending chain, which means
that lfp( f ) = limn→∞ f n(⊥).

Example 4. We continue with Example 2. First, we claim that F is contin-
uous on the ccpo of partial functions from N to N. Thus, let f1 ⊂ f2 ⊂
. . . be an ascending chain of partial functions. One can then show that
F(

⋃{ f1, f2, . . .}) = ⋃{F( f ) | f ∈ { f1, f2, . . .}}. Hence, via Kleene’s fixed
point theorem we conclude that Fω is the least fixed point of F and that our
function in this case is the least upper bound of the sequence

F0, F1, F2, F3, . . .

i.e.,
∅, {(1, 1)}, {(1, 1), (2, 2)}, {(1, 1), (2, 2), (3, 6)}, . . . .

Example 5. Consider the following equation over strings of some alphabet
Σ with 1 ∈ Σ

w = 1w. (4)

Such equations occur frequently when studying semantics of perpetual
processes; for instance, in reactive, distributed and concurrent systems. The
equation may for example model the behavior of a process w which sends a
message 1 and then behaves like w again, in infinity.

It should be clear that no finite string satisfies (4) since the righthand
side is always one character longer than the lefthand side if w is finite.
That is, there are no solutions in Σ∗. Hence, consider instead the set of all
possibly infinite strings Σ∞ = Σ∗ ∪ Σω. We may rewrite (4) as a fixed point
equation

w = one(w) (5)

where

one(x) := {(0 7→ 1)} ∪ {(n + 1 7→ a) | (n 7→ a) ∈ x} .
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Then
one

0(∅) = ∅
one

1(∅) = {0 7→ 1}
one

2(∅) = {0 7→ 1, 1 7→ 1}
one

3(∅) = {0 7→ 1, 1 7→ 1, 2 7→ 1}
...

with the limit

one
ω(∅) =

⋃
n<ω

one
n(∅) = {0 7→ 1, 1 7→ 1, 2 7→ 1, 3 7→ 1, . . .}.

Now one : Σ∞ → Σ∞ can be shown to be chain-continuous; for every chain
w0 < w1 < w2 < . . . we have that,

one(
⋃
i≥0

wi) =
⋃
i≥0

one(wi) (6)

Hence, one
ω(∅) is the (unique) least solution to (4).

Exercises

5.1 Give an example of a function which is monotone but not infla-
tionary and vice versa.

5.2 Prove that functional composition preserves monotonicity. That
is, if f : A → A and g : A → A are monotone, then so is f ◦ g. Note:
( f ◦ g)(x) := f (g(x)).

5.3 Prove that functional composition preserves continuity.

5.4 Define a map Φ such that Φω(⊥) is the Fibbonacci function,

{0 7→ 1, 1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 5, 5 7→ 8, . . .}.

Show that the map is chain-continuous.

5.5 Give an example of a complete lattice (A,≤) and a monotonic
map f : A → A such that f ω(⊥) is not a fixed point of f .

5.6 Prove that a continuous map on a complete lattice (or a ccpo) is
always monotone.

5.7 Show that if there exists an n ∈ N such that x is a unique fixed
point of f n (i.e. for every y such that f n(y) = y it holds that x = y),
then x must be a fixed point of f .

5.8 Let (A,≤) be a complete lattice (or a ccpo) and f : A → A mono-
tone. Show, using transfinite induction, that f α(⊥) ≤ lfp( f ) for
every ordinal α.
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