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Introduction

The natural numbers are often viewed as abstractions of finite
sets. For instance, 7 is an abstraction of the set of weekdays or the set
of mortal sins. But natural numbers can also be used to describe the
position of an element in a sequence or a chain. For instance, July is
the 7th month in the total order of all months ordered in the standard
manner

January<February<March<April< . . . <December.

Actually instead of saying that 7 is the position of July, we may view
it as the length of the ascending chain which includes July and all its
predecessors

January<February<March<April<May<June<July.

In the very first example 7 denotes the equivalence class of all sets of
size 7, in which case we talk of the cardinal number 7. In the second
case 7 denotes the equivalence class of ascending chains of length
7. In this case we refer to 7 as an ordinal number, or simply ordinal.
Hence, ordinal numbers carry more information than cardinal num-
bers, namely order in addition to size.

Definition 1. (Informal, first attempt) An ordinal number is a mathemat-
ical object which uniquely describes a total order.

Example 1. Every natural number n ∈ N is, intuitively, an ordinal
number since n describes the chain 0 < 1 < 2 . . . < n − 1 < n.

In fact, any total order over a finite set can be described as a chain
0 < 1 < 2 . . . < n − 1 < n by renaming elements in a suitable way.

Example 2. Consider a strict total order ({a1, a2, a3, a4, a5, a6, a7},<)

with seven elements. In principle, the elements a1, . . . , a7 can be ordered in
many1 different ways. For example, a1 < a2 < a3 < a4 < a5 < a6 < a7 1

504, to be precise.

would constitute one ordering, and a2 < a4 < a5 < a7 < a1 < a3 < a6

another. However, conceptually, there is no relevant distinction between
these two orderings and we can easily translate one order to the other simply
by renaming the elements. This holds more generally: for any finite set
A = {a1, . . . , ak} with k elements there is, up to renaming of elements, only
one strict total order, namely a1 < a2 . . . ak−1 < ak.
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For infinite sets and chains the situation is more complicated. Con-
sider the following strict chains (in this chapter we usually employ
the notation 0, 1, 2, . . . when writing a chain 0 < 1 < 2 < . . .):

1. Z ordered as . . . ,−2,−1, 0, 1, 2, . . ..

2. Z ordered as 0,−1, 1,−2, 2, . . .

3. N ordered as 0, 1, 2, 3, 4, . . .

4. N ordered as 1, 2, 3, 4, . . . , 0

Abstracting away from order it is evident that all four orders have
the same (countable) cardinality. However, structurally they are pair-
wise different with the exception of (2) and (3). To explain why we
need to introduce some additional notions.

Definition 2. A function f from (A,≤) to (B,⪯) is called monotonic
(isotone, order-preserving) iff x ≤ y implies f (x) ⪯ f (y) for all x, y ∈ A.

We sometimes say that f is an order-homomorphism2 (or order- 2 homo ≈ similar, morphism ≈ shape,
hence the term homomorphism sug-
gests that the two orders have a similar
shape.

morphism) from (A,≤) into (B,⪯) when f is monotonic.

Definition 3. An order-homomorphism f from (A,≤) into (B,⪯) is called

• a monomorphism if f is injective, i.e., if f (x) = f (y) then x = y;

• an epimorphism if f is surjective, i.e., for every y ∈ B there exists an
x ∈ A such that f (x) = y; and

• an isomorphism if f is bijective (injective and surjective).

Two ordered sets A := (A,≤) and B := (B,⪯) are said to be
(order-)isomorphic if there exists an order-isomorphism f : A → B. We
write A ≃ B when A and B are isomorphic. Let us then return to the
orders:

1. Z ordered as . . . ,−2,−1, 0, 1, 2, . . ..

2. Z ordered as 0,−1, 1,−2, 2, . . .

3. N ordered as 0, 1, 2, 3, 4, . . .

4. N ordered as 1, 2, 3, 4, . . . , 0

The first order has neither a minimal nor a maximal element.
Hence it cannot be isomorphic to a chain with a minimal (or max-
imal) element. The last order has both a minimal and a maximal
element and is therefore not isomorphic to any of the other three; the
two middle orderings have only a minimal element. In fact, they are
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isomorphic – there exists a bijective and order-preserving mapping
from Z to N (and hence also in the other direction), namely

f (n) =

{
2n if n ≥ 0,
−2n − 1 if n < 0.

Concerning 4, it is not hard to see that the function h(x) = x + 1 is
an injective order-homomorphism from 3 to 4 (if x, y ∈ N and x is
smaller than y then x + 1 is smaller than y + 1). However, it is not an
isomorphism since it is not surjective (no element is mapped to 0).
Thus, intuitively:

1. 2 and 3 are different representations of the same ordinal number,

2. the ordinal number of 2 and 3 is smaller than the ordinal number
corresponding to 4 since there exists an order-homomorphism
from the former to the latter, but not vice versa, and

3. 1 cannot be (obviously) related to the other orderings at all.

One way to formalize the difference between (1) and the other
ones is that the former has no minimal element, while the latter three
all do. In fact, any subset of (2), (3) or (4) has a minimal element, i.e.,
they are well-orders. In the rest of this chapter we will exclusively
concentrate on well-orders and the associated ordinals. This can
be motivated as follows: if we only consider well-orders then the
resulting notion of an ordinal is very natural and leads to a robust
mathematical theory where all ordinals can be related to each other.

The road-map for the rest of this chapter is now that we want to
understand (primarily infinite) well-orderings better and describe
them up to isomorphism. Surprisingly, we will see that there exists
a canonical sequence of well-orderings such that any well-ordering
is isomorphic to an element in this sequence. After having properly
defined ordinal numbers we will also see that they can be used to
define cardinal numbers in an unambiguous way.

Definitions

It is tempting to define an ordinal number as the equivalence class
of a well-order induced by ≃. However, in standard set theory such
an object is too large to constitute a set, so we investigate an alter-
native construction. Here, the idea is to (1) define an ordinal as a
well-ordering which satisfies a relevant property, (2) use this property
to construct a canonical sequence of ordinals, and (3) show that any
well-ordering is isomorphic to exactly one element in this sequence.
Without further ado we now present the basic definition of an ordi-
nal3. The basic intuition is that we want to define an ordinal α as a 3 The definitions in this section essen-

tially follow the lecture notes available
at http://www2.math.uu.se/~vera/
undervisning/mangdlara/12/set_and_
model_theory.pdf

set {α1, α2, . . .} where each αi is a smaller ordinal than αi+1.

http://www2.math.uu.se/~vera/undervisning/mangdlara/12/set_and_model_theory.pdf
http://www2.math.uu.se/~vera/undervisning/mangdlara/12/set_and_model_theory.pdf
http://www2.math.uu.se/~vera/undervisning/mangdlara/12/set_and_model_theory.pdf


chapter 3: ordinal and cardinal numbers 4

Definition 4. An ordinal is a set α which:

1. is well-ordered by ∈ (i.e., by set membership), and

2. is transitive: if a ∈ α then a ⊆ α.

Note that ∅ is by definition an ordinal which describes the well-
ordering with 0 elements. Next, consider {∅}, i.e., the set containing
∅. This is also an ordinal since (1) ∅ ∈ {∅} and ∅ ⊆ {∅}, and (2) it
is trivially well-ordered by ∈ since it only contains one element. This
ordinal represents a well-ordering of one element. More generally we
can form an ordinal α ∪ {α} from any ordinal α, the so-called successor
ordinal of α.

Definition 5. Let α be an ordinal. The successor ordinal of α is defined as
S(α) = α ∪ {α}.

For reasons which will be made clear later we sometimes write
α + 1 for S(α). The intuition behind the successor ordinal S(α) is that
it describes the ordering obtained by adding α itself to the ordering.
We will soon see why this is relevant. It is then not difficult to prove
that S(α) is indeed also an ordinal whenever α is an ordinal.

Lemma 1. If α is an ordinal then S(α) is an ordinal.

Proof. Let a ∈ S(α) = α ∪ {α}. If a ∈ α then a ⊆ α ⊆ α ∪ {α} (since
α is an ordinal). But if a = α then it trivially holds that α ⊆ α ∪ {α}.
Next, we prove that S(α) is well-ordered by ∈. It is easy to show that
∈ is a strict total order so we only prove that every set A ⊆ S(α)
contains a minimal element. Indeed:

1. if A ⊆ α then A must contain a minimal element since α is an
ordinal, and

2. if A ⊆ S(α) and α ∈ A then every a ∈ A distinct from α satisfies
a ∈ α, and the minimal element in A \ {α} is therefore the same as
the minimal element in A.

Since ∅ is (trivially) an ordinal this leads to the following canon-
ical construction of ordinals4 where we start with ∅ and then com- 4 Due to John Von Neumann.

pute S(∅) = {∅}, S(S(∅)) = {∅, {∅}}, and so on. Here, we denote
the nth number in the sequence simply by n since it can be viewed as
an alternative representation of the natural number n.
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Notation Canonical representation

0 ∅
1 {∅} = 0 ∪ {0} = {0}
2 {∅, {∅}} = 1 ∪ {1} = {0, 1}
3 {∅, {∅}, {∅, {∅}}} = 2 ∪ {2} = {0, 1, 2}
4 {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}} = 3 ∪ {3} = {0, 1, 2, 3}

etc.

These ordinal numbers can then be ordered in the following way:
n < m iff n ∈ m. For example, 1 < 2 since 1 = {∅} ∈ 2 = {∅, {∅}}.
Are we then done? No, not even close: consider the set constructed
by

ω =
⋃

n≥0
{n},

i.e., the limit of the sequence ∅, S(∅), S(S(∅)), . . .. We claim (with-
out proof) that ω is also an ordinal, the first so-called limit ordinal.
The intuition behind this object is that it is the least ordinal which
describes all final ordinals. More generally we define a limit ordinal
as follows.

Definition 6. An ordinal α is said to be a limit ordinal if (1) ∅ ∈ α and
(2) if a ∈ α then S(a) ∈ α.

In other words limit ordinals are closed under the successor oper-
ation. Now, are we done? No, again, even from a limit ordinal ω we
can form a new successor ordinal ω ∪ {ω}, and from this ordinal we
can form (ω ∪ {ω}) ∪ {ω ∪ {ω}}, and so on, and if we repeat this we
can again construct a limit ordinal which is usually denoted ω + ω. It
should be reasonably clear that we can construct new ordinals in this
way, but the interesting and non-trivial implication is that all ordinals
can be constructed in this way.

Lemma 2. Every ordinal is either:

1. ∅,

2. a successor ordinal, or

3. a limit ordinal.

Proof. We provide a proof sketch but omit certain technical steps. Let
α ̸= ∅ be an ordinal which is not a limit ordinal. We will show that α

must be a successor ordinal. Since α ̸= ∅ it follows that ∅ ⊂ α. But
then ∅ ∈ α since for any a, b ∈ α we have a ∈ b or b ∈ α (remember
that every ordinal is well-ordered by ∈ which in particular implies
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that any two elements are comparable. Next, since α is not a limit
ordinal there has to exist an ordinal β ∈ α such that S(β) = β ∪
{β} /∈ α. However, one can then show that it must be the case that
α = β ∪ {β}5, i.e., α = S(β). 5 Why? For any ordinals α and β one

can prove that either α ∈ β, α = β, or
β ∈ α.Even better, one can prove that every well-order is isomorphic to a

unique ordinal.

Theorem 1. Every well-order (A,<) is isomorphic to a unique ordinal.

Proof. The proof is not trivial and we only provide a brief sketch. The
most important property is that one can prove that (A,<) is isomor-
phic to a unique ordinal if ({x ∈ A | x < a},<) is isomorphic to a
unique ordinal for every a ∈ A. This condition roughly provides a
method for proving the required isomorphism by proving the exis-
tence of isomorphisms for the simpler objects ({x ∈ A | x < a},<).

Thus, assume that (A,<) is not isomorphic to a unique ordinal.
Then there has to exist a least element a ∈ A such that ({x ∈ A |
x < a},<) is not isomorphic to a unique ordinal (by the property
stated above). But this set cannot be empty since then we would
trivially have an isomorphism to the ordinal ∅. Since a was the least
element with the stated property, any ({x ∈ A | x < b},<) must be
isomorphic to a unique ordinal. But then ({x ∈ A | x < a},<}) must
be isomorphic to a unique ordinal.

Due to this we for a well-order (A,<) write ord((A,<)) for the
unique ordinal isomorphic to (A,<).

Example 3. For the last time we return to the orderings:

1. Z ordered as . . . ,−2,−1, 0, 1, 2, . . ..

2. Z ordered as 0,−1, 1,−2, 2, . . .

3. N ordered as 0, 1, 2, 3, 4, . . .

4. N ordered as 1, 2, 3, 4, . . . , 0

It follows that:

• 1 is not isomorphic to any ordinal since it is not a well-order.

• ord(2) = ord(3) = ω.

• ord(4) = ω + 1.

Furthermore, ω < ω + 1.
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Definitions by Transfinite Recursion

In this section we define some useful functions on ordinals. These
definitions are defined in a familiar recursive style where we define
(e.g). a function f (α) via f (β) for some smaller ordinal β, but require
an additional condition when α is a limit ordinal.

Ordinal Arithmetics

Recall that the successor ordinal S(α) (also written α + 1) can be
viewed as the ordinal obtained by extending α with exactly one new
element, namely α itself. This idea can be generalized as follows.

Definition 7. Let α and β be ordinals. We define α + β recursively6 as: 6 Sometimes called transfinite recursion.
It can be proven (via transfinite induc-
tion) that functions defined in this style
are unique and exists, the so-called
transfinite recursion theorem.

• α + β = α when β = 0.

• α + β = (α + (β − 1)) + 1 when β has an immediate predecessor, i.e.,
β = δ + 1 for some ordinal δ.

• α + β =
⋃

δ<β(α + δ) when β is a limit ordinal.

For example, 3 + 4 = 7, and ordinal arithmetic can thus be viewed
as an extension of integer arithmetic. However, the commutative
law does not hold in general for addition of ordinals. Consider the
ordinals

ω = {1, 2, 3, 4, . . .} and 1 = {0}.

Then one can show that ω + 1 ̸= ω while 1 + ω = ω. Thus, addi-
tion of ordinals does not always behave as addition over the natural
numbers. Note also that the following holds.

Theorem 2. If β ̸= 0 then α < α + β for all ordinals α, β.

Ordinal arithmetic also provides a useful mechanism for com-
bining two well-orders (A,≤) and (B,≺) by adding the associated
ordinals. Intuitively, the resulting well-order is simply the result of
taking the disjoint union of A and B7 and ordering elements such 7 It might be the case that A ∩ B is not

empty, and in that case we need to
rename elements.

that a precedes b whenever a ∈ A and b ∈ B.
Since we now can add two ordinals it is perhaps no great surprise

that we can also multiply ordinals (recall that multiplication as we
normally understand it is just repeated addition).

Definition 8. Let α and β be ordinals. We define α · β recursively as:

• α · β = 0 when β = 0.

• α · β = (α · (β − 1)) + α when β has an immediate predecessor, i.e.,
β = δ + 1 for some ordinal δ.
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• α · β =
⋃

δ<β(α · δ) when β is a limit ordinal.

It is not hard to prove that 2 · ω = ω, but that ω · 2 = ω + ω ̸= ω.
More generally, the finite n-fold product of α is often written αn,

and it is also possible to define αβ for all ordinals α and β (see e.g. 8 8 P. Halmos. Naive Set Theory. van
Nostrand, 1961for an extensive exposition of ordinal numbers and ordinal arith-

metic).

Ordinal Powers of Functions

We next outline some notions useful for generalized definition of
infinite and transfinite (beyond infinity) sets. Consider a function
f : A → A on a complete lattice (A,≤). The (ascending) ordinal
powers of f are defined as follows:9 9 Most of this applies also to the case

when (A,≤) is a ccpo.

f 0(x) := x
f α+1(x) := f ( f α(x)) for successor ordinals α + 1
f α(x) :=

∨
β<α f β(x) for limit ordinals α

When x equals ⊥ we simply write f α instead of f α(⊥). That is:

f 0 := ⊥
f α+1 := f ( f α) for successor ordinals α + 1
f α :=

∨
β<α f β for limit ordinals α

The definition of f α(x) also applies when A is a ccpo if f is mono-
tonic and x ≤ f (x). For complete lattices we also have a correspond-
ing dual notion of descending ordinal powers:

f 0(x) := x
f α+1(x) := f ( f α(x)) for successor ordinals α + 1
f α(x) :=

∧
β<α f β(x) for limit ordinals α

Example 4. Consider a transition system (C,→, I) with initial configura-
tions I; i.e. I ⊆ C. Let step : 2C → 2C be a step function

step(x) := {c ∈ C | ∃c′ ∈ x such that c′ → c}

Then
step

0(I) = I
step

1(I) = step(I)
step

2(I) = step(step(I)).

That is, for finite ordinals n, step
n(I) is the set of all configurations reach-

able in n steps from some initial configuration. Moreover, the least infinite
ordinal power, corresponding to the limit ordinal ω is

step
ω(I) =

⋃
n<ω

step
n(I).

The limit ordinal is the set of all configurations reachable in a finite (but
unbounded) number of steps from an initial configuration.
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Example 5. Consider a relation R ⊆ A × A. Let fR◦ : 2A×A → 2A×A

be defined as R ◦ S, i.e. the function which composes the relation R with the
relation S ⊆ A × A. The ordinal powers of fR◦ are as follows

f 0
R◦(S) = S

f α+1
R◦ (S) = fR◦((R◦)α(S)) = R ◦ f α

R◦(S)
f α
R◦(S) =

⋃
β<α f β

R◦(S) for limit ordinals α.

And
f 0
R◦(idA) = idA

f 1
R◦(idA) = R ◦ idA = R

f 2
R◦(idA) = R ◦ R ◦ idA = R ◦ R

f 3
R◦(idA) = R ◦ R ◦ R

etc.

It follows that f ω
R◦(idA) is the reflexive and transitive closure of R. Simi-

larly f ω
R◦(R) is the transitive closure of R.

Cardinal Numbers

We now illustrate how one can formally define the concept of a cardi-
nal number using ordinal numbers. For cardinal numbers we say that
two (possibly infinite) sets A and B have the same cardinality iff there
exists a bijective mapping f : A → B (and hence a bijective mapping
f−1 : B → A). We write A ∼ B if there exists a bijection from A to B.
We know for instance that N ∼ Z ∼ Q but N ̸∼ R. It is easy to prove
that ∼ is an equivalence relation, and, intuitively, each equivalence
class of this relation is a cardinal number: the least cardinal number,
written 0, is the equivalence class that contains ∅ (and nothing else);
the next cardinal number, written 1, is the equivalence class of all sin-
gleton sets, etc. The least infinite cardinal number is written ℵ0 and
contains the set of all natural numbers, as well as all other infinite,
enumerable sets.

However, this point of view is oversimplified. Strictly speaking, ∼
is not a relation since it should be a subset of the Cartesian product
of the set of all sets, and such a set does not exist in standard set
theory. However, we can circumvent this difficulty by associating the
cardinality of a set with an ordinal number.

Definition 9. The cardinality of a set A (written |A|) is the least ordinal α

such that there exists a bijection between A and α10. 10 Additionally, one can prove that a
unique ordinal α always exists, but this
requires the well-ordering theorem which
we have not introduced.

Sets of the form |A| are then naturally referred to as cardinal num-
bers. For a finite set |A| the cardinality is simply the same as the ordi-
nal |A| = k, i.e., the number of elements, but for infinite sets the two
notions differ. For example, |N| = ω = ℵ0, and |N ∪ {ω}| = ℵ0 = ω
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even though ω and ω ∪ {ω} are different ordinals. We define the
following basic relations and operations on cardinal numbers.

Definition 10. Let A and B be two sets.

1. |A| ≤ |B| if there exists an injective function from A to B.

2. |A|+ |B| = |A ∪ B| (cardinal addition).

3. |A| · |B| = |A × B| (cardinal multiplication).

4. 2|A| = |2A| (cardinality of powerset, recall that 2A is the powerset of A).

5. |A||B| = |AB| (cardinal exponentiation, recall that AB is the set of all
functions from B to A).

The relation ≤ over cardinals is antisymmetric: if |A| ≤ |B| and
|B| ≤ |A| then there exists a bijection between A and B and |A| = |B|
(the Cantor-Schröder–Bernstein theorem). Any set A where |A| = ℵ0

is said to be countable, and if ℵ0 < |A| then A is said to be uncount-
able. It is known (and not difficult to prove via diagonalization) that
ℵ0 < |R| = 2|N|11 It is believed that there is no cardinal number be- 11 I.e., the cardinality of the natural

numbers is smaller than the cardinality
of the real numbers, which is some-
times said to be of continuum cardinality.

tween ℵ0 and |R|, the so-called continuum hypothesis. However, Gödel
proved that this statement is independent of the axioms of standard
set theory (ZFC), meaning that the statement can neither be proven
or disproven within ZFC.

Exercises

3.1 Give an example of a well-order of N with the ordinal number
ω + ω + ω (or ω · 3).

3.2 Give an example of a well-order of N with the ordinal number
ω · ω (i.e. intuitively an infinite sequence of infinite sequences of
natural numbers).
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