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Wlodek Drabent)

Introduction

In this chapter we study two types of partially ordered sets
which are extensively used in many areas of computer science. We
first consider lattices and complete lattices, followed by chain complete
partial orders (ccpo’s).

Lattices and Complete Lattices

We survey basic definitions and and fundamental properties of lat-
tices. For more elaborate expositions, see Birkhoff 1 or Grätzer 2. 1 G. Birkhoff. Lattice Theory. American

Mathematical Society, 3rd edition, 1967

2 G. Grätzer. General Lattice Theory.
Academic Press, 1978

We first define the notions of down-sets, or order ideals, and the
dual notions of up-sets, and order filters.

Definition 1. Let (A,≤) be a poset. A set B ⊆ A is called a down-set (or
an order ideal) iff

y ∈ B whenever x ∈ B and y ≤ x.

A set B ⊆ A induces a down-set, denoted B↓,

B↓ := {x ∈ A | ∃y ∈ B, x ≤ y} .

By O(A) we denote the set of all down-sets in A,

{B↓ | B ⊆ A} .

A notion of up-set, also called order filter, is defined dually.

Let us now introduce the central notions of (least) upper bound
and (greatest) lower bound.

Definition 2. Let (A,≤) be a poset and B ⊆ A. Then x ∈ A is called an
upper bound of B iff y ≤ x for all y ∈ B (often written B ≤ x by abuse of
notation). The notion of lower bound is defined dually.

Note that the set of all lower bounds of {x}, or simply of x, is
identical to {x}↓, i.e. the down-set of x. More generally, the set of all
lower bounds of B ⊆ A equals ⋂

x∈B
{x}↓.
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Figure 1: A lattice (left) and a poset
which is not a lattice (right)

Definition 3. Let (A,≤) be a poset and B ⊆ A. Then x ∈ A is called a
least upper bound of B iff B ≤ x and x ≤ y whenever B ≤ y. The notion of
greatest lower bound is defined dually.

So a least upper bound of B is the least element of { y ∈ A |
B ≤ y }, and a greatest lower bound of B is the greatest element of
{ y ∈ A | B ≥ y }. Thus least upper bounds (and greatest lower
bounds) are unique, if they exist. So we say the least upper (greatest
lower) bound.

Definition 4. A lattice is a poset (A,≤) where every pair of elements
x, y ∈ A has a least upper bound, denoted x ∨ y, and greatest lower bound,
denoted x ∧ y.

The least upper bound (abbreviated lub) x ∨ y of {x, y} is some-
times called the join or supremum of x and y, and the greatest lower
bound (abbreviated glb) x ∧ y of {x, y} is sometimes called the
meet or infimum of x and y. Alternative notations are lub(x, y), or
sup(x, y), and glb(x, y) or inf(x, y).

Figure 1 depicts two posets as Hasse diagrams. The leftmost poset
is a lattice, while the rightmost is not (why?).

Example 1. The following are examples of lattices

• The set 2A under ⊆ is a lattice with least upper bound ∪ and greatest
lower bound ∩.

• The set Z under ≤ is a lattice with the function min as greatest lower
bound, and the function max as least upper bound.

• The set of regular languages over some alphabet Σ, ordered by ⊆, is a
lattice with intersection as greatest lower bound and union as least upper
bound (recall that regular languages are closed under both intersection
and union).
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The set of all context-free languages is not a lattice under ⊆ (when |Σ| >
1). Context-free languages are closed under union. However, they are not
closed under intersection; for example, both L1 =

{
aibicj | i, j ≥ 1

}
and

L2 =
{

aibjcj | i, j ≥ 1
}

are context-free, but their intersection L1 ∩ L2 ={
aibici | i ≥ 1

}
is the standard example of a non context-free language.

Let a context-free language L′ ⊆ Σ∗ be a lower bound of {L1, L2}. Then
L′ ⊂ L1 ∩ L2, and there exists a string w ∈ (L1 ∩ L2) \ L′. As L′ ∪ {w}
is context-free, and L′ ∪ {w} 6⊆ L′, L′ is not the lub of {L1, L2}. Hence no
lower bound is the lub, so the lub does not exist.

A join semi-lattice is a poset where the least upper bound exists
for any pair of elements (but where the greatest lower bound might
or might not exist). Similarly, a meet semi-lattice is a poset where the
greatest lower bound exists for any pair of elements (and where the
least upper bound might or might not exist).

Thus, a lattice involves a poset and two operations. Hence a lat-
tice really is a structure (A,≤,∧,∨). However, the two operations
actually follow from ≤ and vice versa. That is, a lattice is given un-
ambiguously either by the partial order or the two bounds (this will
discussed in detail in the next section). As a consequence we some-
times say that (A,≤) is a lattice assuming implicitly the existence
also of ∧ and ∨; sometimes we say instead that (A,∧,∨) is a lattice
assuming tacitly the ordering ≤.

Definition 5. Let (A,≤) be a poset. An element a ∈ A is said to cover an
element b ∈ A iff a > b and there is no c ∈ A such that a > c > b.

Example 2. The element {0, 1} covers {0} in (2{0,1,2},⊆). But it is not
the only element covering {0}, since {0} is also covered by {0, 2}.

Lemma 1. Consider a poset (A,≤), sets C ⊆ B ⊆ A and the induced
poset (B,≤). If a ∈ B is the lub of a set C in (A,≤) then a is the lub of C
in (B,≤). The analogical property holds for glb’s.

If the lub a of C in A is not a member of B (but C ⊆ B) then C may
have the lub in B (which is distinct from the lub in A), or it may have
no lub in B. The same holds for the glb of C.

Example 3. In Example 1 the set C = {L1, L2} has a glb in the lattice
(A,⊆) of all languages, but the glb does not exist in the poset (B,⊆) of
context-free languages. Consider B′ = {∅, L1, L2, L1 ∪ L2} ⊆ B. In the
poset (B′,⊆) (which is a lattice), the set C has a glb, which is ∅ – distinct
from the glb of C in A.

Note that in a lattice there exist greatest lower and upper bounds
of each finite subset (prove this), but not necessarily of an infinite
one. We introduce complete lattices, in which such bounds exist.
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Definition 6. A complete lattice is a poset (A,≤) where every subset B ⊆
A (finite or infinite) has a least upper bound

∨
B and a greatest lower bound∧

B. The element
∨

A is called the top element and is usually denoted >.
The element

∧
A is called the bottom element and is denoted ⊥.

Every complete lattice is a lattice since every pair of elements has a
least upper and greatest lower bound, but the converse does not hold
in general as illustrated by the following example.

Example 4. The set of all natural numbers N under the standard non-strict
ordering ≤ is a lattice; any pair of natural numbers has a least upper bound
(namely the supremum of the two), and a greatest lower bound (namely the
infimum of the two). However, it is not a complete lattice; any finite subset
has a least upper, and greatest lower bound, but the set of all natural num-
bers does not have a least upper bound. (However, it does have a greatest
lower bound.) On the other hand, if we add a top element > to the natural
numbers we have a complete lattice.

Example 5. The powerset 2A of any set A is a complete lattice under
standard set inclusion ⊆. Let Ai ⊆ 2A for each i ∈ I. Then we have the
least upper bound⋃

i∈I
Ai := {a | a is a member of some Ai} .

The greatest lower bound is defined dually⋂
i∈I

Ai := {a | a is a member of every Ai} .

Example 6. The lattice of all regular languages over an alphabet Σ, let us
call it (R,⊆) (see Example 1), is not a complete lattice; there is the least and
the greatest element, namely ∅ and Σ∗, however the union (or intersection)
of an infinite set of regular languages may be not regular, thus it is not an
element of the lattice. Moreover, in the lattice there may not exist the lub (or
glb) of such sets. For instance, all of the following languages are trivially
regular (as each is finite)

L0 = {ε}
L1 = {ab}
L2 = {aabb}
L3 = {aaabbb}
etc.

but their union L =
⋃{L0, L1 . . .} = {anbn | n ≥ 0} is not a regular lan-

guage, L 6∈ R. No regular language is the least upper bound of {L0, L1 . . .}
in (R,⊆). Note that any upper bound M ∈ R of {L0, L1 . . .} contains a
string x 6∈ L, so M \ {x} ∈ R and M \ {x} ⊂ M, hence M is not the least
upper bound.
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We finally survey some special lattices that enjoy additional alge-
braic properties.

Definition 7. Let (A,≤) be a lattice with ⊥ and > . We say that a ∈ A is
a complement of b ∈ A iff a ∨ b = > and a ∧ b = ⊥.

It follows that the complement of ⊥ is >, and vice versa (provided
that ⊥,> exist, of course).

Definition 8. We say that a lattice is complemented if every element has a
complement.

The lattice of regular languages over some alphabet Σ, ordered by
⊆ is a complemented lattice; in this particular case the complement
of each regular language L is unique – it is Σ∗ \ L. However, a com-
plement of an element in a complemented lattice need not be unique
(see exercises). If the complement of all elements x is unique, it is
denoted x′; hence, x ∧ x′ = ⊥ and x ∨ x′ = >.

Definition 9. A lattice (A,≤) is said to be distributive iff a ∧ (b ∨ c) =

(a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ A.

It can be shown that ∨ distributes over ∧ iff ∧ distributes over ∨;
hence, in a distributive lattice we also have that a ∨ (b ∧ c) = (a ∨ b) ∧
(a ∨ c) (see exercises). We show that in a complemented, distributive
lattice the complement of each element is unique. Suppose that both
b and c are complements of a, then

b = b ∧> = b ∧ (a ∨ c) = (b ∧ a) ∨ (b ∧ c) = ⊥∨ (b ∧ c) = b ∧ c

Hence b ≤ c. By an analogous argument c ≤ b, in which case by
necessity b = c, hence the complement of a must be unique.

Definition 10. A lattice (A,≤) is said to be Boolean iff it is complemented
and distributive.

Example 7. The set of all regular languages R over some alphabet Σ is
a lattice with ∩,∪ as the lattice operations. It has the top and bottom ele-
ment (namely Σ∗ and ∅), and it is complemented, as shown above. As ∩
distributes over ∪, the lattice is distributive, and hence Boolean.

Example 8. Not surprisingly, Boolean algebras and Boolean lattices co-
incide; that is, a Boolean algebra (B,+, ·,′ , 0, 1) is a Boolean lattice with
least upper bound +, greatest lower bound ·, complement ′, bottom element
0 and top element 1. Recall that a Boolean algebra is an algebraic structure
satisfying the following laws,

Commutative laws: a + b = b + a a · b = b · a
Distributive laws: a · (b + c) = (a · b) + (a · c) a + (b · c) = (a + b) · (a + c)
Identity laws: a + 0 = a a · 1 = a
Inverse laws: a + a′ = 1 a · a′ = 0
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for all a, b, c ∈ B.

Definition 11. Let A be a set and B ⊆ 2A be closed w.r.t. ∩ and ∪. Then
(B,⊆) is a lattice in which the lub of a, b ∈ B is a ∪ b, and their glb is a ∩ b.
We refer to it as a lattice of sets.

The fact that (B,⊆) is a lattice with glb’s and lub’s given by ∧,∨
follows from Lemma 1.

Example 9. Here we consider sets of sets, ordered by ⊆. Example 1 showed
a case in which (B,⊆) is not a lattice (B is there the set of context-free
languages), and in Example 6 (R,⊆) is not a complete lattice. Now we
show that the lub in (B,⊆) may be distinct from the union of elements of
B. Consider the set B0 of finite languages of not more than 3 elements over
an alphabet Σ, and let B = B0 ∪ {Σ∗}. Note that B is closed under ∩, but
not under ∪. Now (B,⊆) is a lattice in which the glb is given by ∩, but if
|L ∪ L′| > 3 then the lub of L, L′ is Σ∗.

Theorem 1. We have the following results for lattices of sets:

1. Any lattice of sets is distributive.

2. (2A,⊆) is distributive, and Boolean.

The proofs are left as exercises.

Lattices as Algebras

Our definition of lattice is based on partially ordered sets. How-
ever, there is an equivalent algebraic definition. Consider an algebra
(A,∧,∨) with operators ∧ : A × A → A and ∨ : A × A → A. The
algebraic structure (A,∧,∨) is a lattice if the operators satisfy the
following laws, for all a, b, c ∈ A.

(L1) Idempotency: a ∧ a = a ∨ a = a

(L2) Commutativity: a ∧ b = b ∧ a and a ∨ b = b ∨ a

(L3) Associativity: a∧ (b∧ c) = (a∧ b)∧ c and a∨ (b∨ c) = (a∨ b)∨ c

(L4) Absorption: a ∧ (a ∨ b) = a and a ∨ (a ∧ b) = a

Now let a ≤ b iff a ∧ b = a (or a ∨ b = b); then it follows that the
ordered set (A,≤) is a lattice, i.e. every pair of elements a, b ∈ A
has a least upper bound (namely a ∨ b) and a greatest lower bound
(namely a ∧ b). The proof of this equivalence is left as an exercise.
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Closure Operators and Lattices

A closure operator is a fundamental mathematical tool which describes
a transformation of a set. We begin by defining this concept formally
and then relate closure operators to complete lattices.

Definition 12. A closure operator on a set A is a function C : P(A) →
P(A) that satisfies the following properties:

1. Idempotence: For all X ⊆ A, C(X) = C(C(X)).

2. Monotonicity: For all X, Y ⊆ A, if X ⊆ Y, then C(X) ⊆ C(Y).

3. Inclusion-preserving: For all X ⊆ A, X ⊆ C(X).

Example 10. We explore an example of a closure operator where the basic
objects are Boolean functions. If f : {0, 1}n → {0, 1} is an n-ary Boolean
function and g1, . . . , gn are m-ary Boolean functions then the composi-
tion of f , g1, . . . , gn, written f ◦ g1, . . . , gn, is the m-ary Boolean function
defined as

f ◦ g1, . . . , gn(x1, . . . , xm) = f (g1(x1, . . . , xm), . . . , gn(x1, . . . , xm))

for all x1, . . . , xm ∈ {0, 1}. For n ≥ 1 and 1 ≤ i ≤ n let the ith projection
be defined as πn

i (x1, . . . , xi, . . . , xn) = xi for all x1, . . . , xi, . . . , xn ∈ {0, 1},
i.e., an n-ary Boolean function which simply returns its ith argument un-
changed.

For a set of Boolean functions F let [F] be the smallest set of Boolean
functions which (1) contains all projection functions and (2) is closed under
composition of Boolean functions. We verify that [·] is indeed a closure
operator. Thus, let F and G be two sets of Boolean functions.

1. Inclusion-preserving: F ⊆ [F] follows trivially from the definition.

2. Monotonicity: if F ⊆ G then [F] ⊆ [G] follows from the observation that
any function f ◦ g1, . . . , gn ∈ [F] where f , g1, . . . , gn ∈ F is trivially
included in [G] since F ⊆ G.

3. Idempotence: [F] = [[F]] since (1) [F] ⊆ [[F]] by the inclusion-
preservation property, and [[F]] ⊆ [F] from the observation that any
function f ◦ g1, . . . , gn ∈ [[F]] where f , g1, . . . , gn ∈ [F] is contained in
[F], too, since it is closed under composition.

The intuition is then that the set of functions [F] represents everything
that can be defined via a base set F, similarly, to how one in a vector space
can represent each vector as a linear combination of vectors in a base set.
For historical reasons, the sets [F] are called clones. For example, if F =

{ f1, f2} where f1(x, y) = x ∧ y and f2(x) = 1− x then [F] contains every
Boolean function and is the largest clone on the Boolean domain.
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We proceed by relating closure operators to complete lattices.
First, assume that C : P(A) → P(A) is a closure operator on a set A.
Consider the set AC = {C(X) | X ⊆ A} of all closed subsets of A. It is
then easy to see that (AC,⊆) is a complete lattice with:

1. least element C = ∅,

2. greatest element C(A),

3. meet ∧ defined as X ∧Y = X ∩Y for X, Y ∈ AC, and

4. join ∨ defined as X ∨Y = C(X ∪Y) for X, Y ∈ AC.

In the other direction, the closure operator corresponding to a
complete lattice (A,≤) with meet ∧ and join ∨ can be constructed as
C≤(X) =↓ ∨X, i.e., the set of all elements in X below the join of X.

Example 11. Via the results in this section we can conclude that (C,⊆) for
C = {[F] | F is a set of Boolean functions} constitutes a complete lattice, the
lattice of Boolean clones, or Post’s lattice, eponymously named after Emil
Post. The least element in this lattice is the set {πn

i | n ≥ 1, 1 ≤ i ≤ n}
of all Boolean projections, and the largest element is simply the set of all
Boolean functions. If we again consider the two functions f1(x, y) = x ∧ y
and f2(x) = 1 − x then neither [{ f1}] nor [{ f2}] equals the greatest
element but their join [{[{ f1}] ∪ [{ f2}]] = [{ f1, f2}] does. This mirrors the
well-known fact that a gate set consisting only of conjunction and negation
is sufficient to implement any Boolean function.

Chain-Complete Partial Orders

Lattices possess many appealing properties, but the requirement that
any pair of elements, or any subset of elements, has both a lub and
glb is often an unnecessarily strong requirement. A number of results
in computer science rely only on the fact that all chains have least
upper bounds.

Example 12. A poset C = (2A×B,⊆) of relations is a lattice. Its subset,
(A� B, ⊆) – the poset of partial functions from A to B, is a meet semi-
lattice3. Note that total functions are maximal elements of this semi-lattice. 3 Why is it not a join semi-lattice?

The subset of total functions from A to B, i.e. (A→ B, ⊆), is an anti-chain.

Definition 13. A partial order (A,≤) is said to be chain complete (abbrevi-
ated ccpo) if each ascending chain

a0 < a1 < a2 < . . .

has a least upper bound
∨{a0, a1, a2, . . .} ∈ A.

(It follows that A has the least element ⊥, as it is the lub of the empty
chain.)
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The intuition is that the chain is a sequence of approximations,
and the lub is the limit – the object approximated by the sequence.

Let us note that a more common definition of ccpo requires least
upper bounds of every chain (and there exist chains which cannot
be represented as ascending chains). Sometimes the ccpo’s from the
definition above are called ω-cpo’s.

Example 13. The set N of natural numbers under ≤ is not a ccpo. It does
have a least element, namely 0, but no infinite ascending chain

n1 < n2 < n3 < . . .

has a least upper bound. However, N extended with a top element ω where
n < ω for all n ∈ N is a ccpo (the reason for using the symbol ω should be
clear in Chapter 3).

On the other hand, (Z,�) which is N augmented by negative integers,
so that the positive numbers precede the negative ones: 0 ≺ 1 ≺ 2 ≺
· · · − 3 ≺ −2 ≺ −1 is not a ccpo (as N has upper bounds, but not the least
one).

Example 14. We show that the poset of partial functions (A� B, ⊆) is
a ccpo. Consider an ascending chain S in A� B. We first show that its
union f =

⋃
S is a partial function. Let (x, a), (y, b) ∈ f be two distinct

tuples. We need to prove that x 6= y or a = b. Let f1, f2 ∈ S be two
partial functions where f1(x) = a and f2(y) = b. Since S is a chain, either
f1 ⊆ f2, or f2 ⊆ f1, and we assume without loss of generality that f1 ⊆ f2.
Then x ∈ Domain( f2) and f2(x) = a. Since f2 is a partial function either
x 6= y or a = b. Note that f =

⋃
S is also the lub of S in (A� B, ⊆), since

if f ⊆ g for any f ∈ S then
⋃

S ⊆ g.
Informally, all the functions in a chain S agree on each a ∈ A, in the

sense that they do not give distinct result for a (either fi(a) = (
⋃

S)(a)
or fi is not defined on a). In other words, the elements of the chain contain
information consistent with one another. Moreover, the lub of the chain
contains only the information provided by the chain elements (

⋃
S is defined

on a iff some fi ∈ S is defined on a).
Such posets of partial functions are important for instance in semantics of

programming languages. In particular, an infinite (partial) function can be
represented as the lub of a chain of finite functions. Similarly, the semantics
of a loop statement can be represented as the lub of a chain of functions, each
describing the loop performing up to n repetitions.

Exercises

2.1 Which of the following Hasse diagrams represent lattices?
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2.2 Consider a set A and the set E = { B ⊆ A | |B| is even } of its
finite subsets of even size. Is (E,⊆) a lattice?

2.3 Which of the following structures are complete lattices? Give a
counter-example if not, otherwise give the lub and glb:

1. The set of all finite strings Σ∗ under the (non-strict) lexico-
graphical order, where e.g. a v ab v abb v ac.

2. The set N under the partial order m � n iff there exists an
i ∈N such that m · i = n.

3. The set of all equivalence relations on a set A, ordered by set
inclusion.

2.4 Show that any finite lattice is a complete lattice.

2.5 Prove that the following definitions of a lattice are equivalent:

• A poset (A,≤) where all x, y ∈ A have a lub and glb.

• A poset (A,≤) where every finite and non-empty subset has a
lub and glb.

2.6 Consider a lattice (A,≤) with lub ∨ and glb ∧. Show that the
following conditions are equivalent:

1. a ≤ b,

2. a ∧ b = a,

3. a ∨ b = b.

2.7 If possible give an example of a 5-element lattice which is dis-
tributive, and one which is not.

2.8 Prove that if a lattice (A,≤) satisfies a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
for all a, b, c ∈ A, then it also satisfies a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

2.9 If possible give an example of a 5-element complemented lattice
which has unique complements, and one which has not.

2.10 Use the algebraic laws L1 − L4 to prove that a ∧ b = a iff a ∨ b =

b.
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2.11 Prove that the componentwise product of two complete lattices
is a complete lattice as well.

2.12 Let (A,≤) be a non-empty poset. Prove that the following are
equivalent:

1. (A,≤) is a complete lattice,

2.
∧

B exists for every B ⊆ A,

3.
∨

A, and
∧

B exist for every non-empty B ⊆ A.

Hint: To show that (2) implies (1), for a given C ⊆ A consider the
set B = { x ∈ A | C ≤ x } and show that its glb,

∧
B, is the lub of

C.

2.13 Prove that (O(A),⊆) (see Definition 1) is a complete lattice.

2.14 Prove that the two definitions of a lattice – the one based on an
ordered set (A,≤) with least upper and greatest lower bounds,
and the algebraic one (A,∧,∨) – are equivalent. That is

1. Given a lattice (A,≤), prove that the algebra (A,∧,∨) (where
∧, ∨ are the lub and glb operations of the lattice) satisfies L1 −
L4.

2. Given an algebra (A,∧,∨) satisfying L1 − L4, prove that (A,≤),
where x ≤ y iff x ∨ y = y, is a poset and that each x, y ∈ A has a
least upper and greatest lower bound.

2.15 Prove Theorem 1.

2.16 Give an example of a ccpo (A,≤) which has a top element, and
for some its elements a, b ∈ A their lub a ∨ b does not exist.
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