
Chapter 1: Ordered Sets
Victor Lagerkvist (based on lecture notes by Ulf Nilsson &
Wlodek Drabent)

Basic Notions

We briefly summarize basic notions and notation used later on in
these notes. For a more elaborate and verbose exposition, see e.g.
Grimaldi 1. 1 R. Grimaldi. Discrete and Combinatorial

Mathematics. Addison-Wesley, 4th
edition, 2000

The set of all natural numbers {0, 1, 2, . . .} is denoted N. The set
of all integers is denoted Z, and the subset of all positive integers is
denoted Z+. (So Z+ = N \ {0}.) The rational numbers are denoted by
Q and the real numbers by R. The cardinality of a set A is denoted
|A|. So when A is finite, |A| ∈N is the number of elements in A. We
use an abbreviation “iff” for a common phrase “if and only iff”.

Additionally, we assume that the reader is familiar with basic
notions from set theory and if A and B are sets then we write A ∩ B,
A ∪ B, A \ B, Ā, P(A) = 2A for intersection, union, difference,
complement, and powerset. Sets are frequently defined via set-
builder notation, e.g., {n | n = 2k, k ∈ N} would define the set of all
even natural numbers2. 2 If one does not restrict the types of

sets constructible in this way then the
resulting (inconsistent) theory is called
naive set theory. This can be patched by
carefully specifying the sets that one
is allowed to construct, and the most
frequently used theory is known as
Zermelo–Fraenkel set theory with the axiom
of choice (ZFC).

Relations

By A× B we mean the Cartesian product of two sets A and B. That is,
the set of pairs {(a, b) | a ∈ A ∧ b ∈ B}. Note that (a, b) and (b, a) are
distinct pairs (while {a, b} and {b, a} is the same set).

Example 1. We may assume a pair to be a basic notion, but it is inter-
esting to define it by a construction, using basic concepts of set theory.
We follow Kuratowski, and by an ordered pair (a, b) of a and b we mean
the set paira,b = {{a}, {a, b}}. Note for b = a it is paira,a = {{a}}
(as {{a}, {a, a}} = {{a}, {a}} = {{a}}). Note that x is the first ele-
ment of a pair p iff ∀X ∈ p : x ∈ X. It is the second element of p iff
(∃X ∈ p : x ∈ X) ∧ (∀X1, X2 ∈ p : X1 6= X2 → (x 6∈ X1 ∨ x 6∈ X2)).

A natural generalization of the notion of a pair is introducing
triples (like (a, b, c)), quadruples (e.g. (a, b, a, b)) and, generally, n-
tuples (a1, . . . , an), for n ≥ 0. (Later on we present a precise con-
struction of n-tuples.) The Cartesian product is naturally generalized:
A1 × . . .× An = { (a1, . . . , an) | ai ∈ Ai for i = 1, . . . n }. When all Ai

are equal A we write simply An (n ≥ 0). By A1 we mean just A, and
by A0 the one-element set {∅}.

By a (finite) string (or word) over some alphabet Σ we mean an
element u in Σn, for some n ∈ N. In such context the elements of
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Σ are called symbols, and we require that Σ is finite. (So a string is a
tuple of symbols.) The length |u| of a string u ∈ Σn is n. The set of all
finite-length strings is denoted Σ∗ and is defined as

Σ∗ :=
⋃

i∈N

Σi.

The empty string (the only element in Σ0) is denoted ε; its length
is 0. Given two strings u, v ∈ Σ∗ we write the concatenation of u
and v as uv. (If u = (a1, . . . , an) and v = (b1, . . . , bm) then uv =

(a1, . . . , an, b1, . . . , bm).) The length of uv is clearly the sum of the
lengths of u and v; |uv| = |u|+ |v|.

A relation (binary relation) R on A and B is a subset of A× B. When
A = B we say simply that R is a relation on A. If (a, b) ∈ R we say
that a is related to b (by R). We usually write R(a, b) or a R b when
a is related to b by R. An n-ary relation (where n ≥ 0) is simply a
subset of the Cartesian product A1 × . . .× An.

Definition 1. A binary relation R ⊆ A× A is said to be

• reflexive iff R(x, x) for every x ∈ A,

• irreflexive iff R(x, x) for no x ∈ A,

• antisymmetric iff x = y whenever R(x, y) and R(y, x),

• symmetric iff R(x, y) whenever R(y, x),

• transitive iff R(x, z) whenever R(x, y) and R(y, z).

The identity relation on A, i.e. the relation such that R(x, y) iff x = y
and x ∈ A, is denoted idA. The composition R1 ◦ R2 of two binary
relations R1 ⊆ A× B and R2 ⊆ B× C is a binary relation on A× C
defined by

R1 ◦ R2 := {(a, c) ∈ A× C | ∃b ∈ B (R1(a, b) ∧ R2(b, c))}.

Relation composition is associative: (R1 ◦ R2) ◦ R3 = R1 ◦ (R2 ◦ R3)

(prove this).
The identity relation acts as left and right identity for relational

composition; if R ⊆ A× B then idA ◦ R = R ◦ idB = R. We adopt the
standard notation for iterated composition of a relation R ⊆ A× A.
Hence3 3 Notice that the notation is ambiguous;

An can denote both an n-fold Cartesian
product of a set, or an n-fold compo-
sition of a relation A. One has to take
care that each time it is clear which
reading of the notation is meant.

R0 := idA,
Rn+1 := Rn ◦ R (n ∈N),
R+ :=

⋃
n∈Z+ Rn,

R∗ :=
⋃

n∈N Rn.

We refer to R+ as the transitive closure of R, and R∗ as the reflexive and
transitive closure of R. The inverse of R is defined as

R−1 := { (b, a) | R(a, b) }.
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We leave as an exercise proving that R+, R∗ are transitive relations.

Example 2. Consider the set R = {R | R ⊆ A × A} of all binary
relations over a set A. We may observe that the aforementioned operation
of composing two binary relations may be seen as a function which takes
two relations R1, R2 ∈ R and returns a relation R1 ◦ R2 ∈ A. Similarly,
R−1 ∈ R for any R ∈ R, meaning that −1 can be seen as a unary function
over the set of all binary relations. More generally, one may view R together
with the operations ◦, −1, ∩,∪, ,̄ as forming an algebra where ∅ and A2

acts as 0 and 1, and where the identity relation idA acts as a “relational
1”. Such algebras are known as relation algebras4 and occur naturally 4 Not to be confused with relational

algebras in database theory.in e.g. reasoning tasks in artificial intelligence, where the basic relations
describe relationships between individual objects such as “a region in R2

is contained in another region”. With these observations we can formulate
the aforementioned properties of binary relations in a very succinct way. A
binary relation R is:

• reflexive iff idA ⊆ R,

• irreflexive iff R ∩ idA = ∅,

• antisymmetric iff R ∩ R−1 = ∅

• symmetric iff R = R−1,

• transitive iff R ◦ R ⊆ R.

An advantage to definitions in this algebraic style is that it makes it very
easy to generalize to other classes of “similar” algebraic structures.

Example 3. A transition system is a pair (C,⇒) where C is a set of
configurations, and⇒ ⊆ C× C is a so-called transition relation. Transition
systems provide abstractions of computations; a step-wise process where
we move from one configuration to the next as described by the transition
relation: c0 ⇒ c1 ⇒ c2 ⇒ . . .. The reflexive and transitive closure of⇒,
that is⇒∗, expresses reachability: if c0 ⇒∗ cn then cn is reachable, in zero
or more steps, from c0.

A transition system may also be equipped with a set of initial configura-
tions, a set of terminal configurations, and occasionally also with labelled
transitions (the label typically modelling an action corresponding to the
transition). In case of labelled transitions the transition relation is ternary,
instead of binary, one often writes c a⇒ c′ to state that (c, a, c′) is in the
relation.

We now define an important class of binary relations.

Definition 2. A relation which is reflexive, symmetric and transitive is
called an equivalence relation (or simply equivalence).
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Any equivalence ≡ on a set A defines equivalence classes (called
also abstraction classes). The equivalence class [x]≡ of an element
x ∈ A is

[x]≡ = { y ∈ A | y ≡ x }

(i.e. the set of elements related to x by ≡). Two distinct equivalence
classes are disjoint (prove that if [x]≡ and [y]≡ have a common el-
ement then [x]≡ = [y]≡). Thus an equivalence ≡ on A induces a
partition of A into equivalence classes; each element of A is in exactly
one equivalence class, and A is the union of the equivalence classes:
A =

⋃
x∈A[x]≡. The set of equivalence classes of ≡, denoted A/ ≡, is

called the quotient set: A/≡ = { [x] | x ∈ A }.

Example 4. The identity relation idA is trivially an equivalence relation
on any set A. For a more interesting example, consider addition modulo k
over the natural numbers N for some k ≥ 1, and the equivalence relation
x ≡ y(modk) over N, i.e., two natural numbers x and y are related if and
only if the remainder when performing integer division with k is the same.
Then

N = [0]≡ ∪ . . . ∪ [k− 1]≡,

i.e., ≡ induces a finite amount of equivalence classes (prove this).

Example 5. In geometry, a bound vector is a pair of points. Consider a
plane, which may be seen as R×R. Let us introduce a relation ∼ on bound
vectors

((x1, y1), (x2, y2)) ∼ ((x′1, y′1), (x′2, y′2)) iff x2− x1 = x′2− x′1 and y2− y1 = y′2− y′1.

(Prove that it is an equivalence relation.) It makes vectors with the same
length and direction equivalent (but which may have distinct initial points).
The equivalence classes of ∼ are called free vectors. The equivalence class
of a vector ~v may be understood as an abstraction of ~v in which we consider
only its direction and its length, but we abstract from its placement on the
plane.

Functions

A relation f ⊆ A× B is called a partial function from A to B when any
a ∈ A is related by f to at most one element of B. More formally, if
(a, b) ∈ f and (a, c) ∈ f then b = c, for any a ∈ A, b, c ∈ B. Instead of

writing (a, b) ∈ f , we sometimes write (a 7→ b) ∈ f , a
f7→ b, or use the

standard notation f (a) = b. For instance, the partial function

{ 2 7→ 1, 4 7→ 2, 6 7→ 3, 8 7→ 4 } ⊆N×N

provides the halves of one-digit even positive numbers. Note that the
notation f (a) does not make sense for an a which is not related by f
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to some element of B. The set

{ a ∈ A | (a, b) ∈ f for some b }

of those elements for which f (A) is defined is called the domain of f
(written Domain( f )).

Definition 3. A partial function f ⊆ A× B is a total function, or simply
function, when Domain( f ) = A.

In other words, when f (a) is defined for any a ∈ A. We write
f : A → B to state that f is a function from A to B. Analogically, we
introduce notation f : A � B for partial functions. Also, A → B,
sometimes written BA, denotes the set of all functions from A to B.

An n-tuple (n ≥ 0) may be defined as a function from {0, . . . , n−
1} to A. For instance, (5, 4, 2) as {0 7→ 5, 1 7→ 4, 2 7→ 2}.5 Hence a 5 Note that we have now two ways

of viewing pairs: as 2-tuples, and
as defined previously. They are
equivalent; to each pair (a, b), i.e.
{{a}, {a, b}}, there corresponds the 2-
tuple {0 7→ a, 1 7→ b}, and vice versa. We
say that the set of 2-tuples {0, 1} → A
and the set of pairs A × A are iso-
morphic. We usually do not need to
distinguish 2-tuples from pairs. Sim-
ilarly, the set {0} → A of 1-tuples is
isomorphic with A, and we often do not
distinguish a 1-tuple {0 7→ a} from a.
Note also that the 0-tuple is the empty
function (i.e. the empty set ∅) – the
only element of ∅→ A.

Cartesian product An may be seen as the space of all functions from
{0, . . . , n− 1} to A. Similarly, a Cartesian product of distinct sets may
be seen as a set of functions A0 × . . .× An−1 = { f : {0, . . . , n− 1} →
A | f (ai) ∈ Ai for i = 0, . . . n− 1 } (where A =

⋃n−1
i=0 Ai). The function

space N→ A can thus be thought of as an infinite product “A∞”, but
for reasons to be explained later we usually denote this by Aω.

A multi-argument function (an n-ary function, an n-place function)
can be understood as a function whose arguments are n-tuples, i.e. a
function f : A1 × · · · × An → B from a Cartesian product.

The image of a set C ⊆ A under a (partial) function f from A to B
is

f (C) = { f (a) | a ∈ C and f (a) exists }

– the set of those elements of B which f assigns to some elements of
C.

We say that a set C ⊆ A is closed under f : A → A iff f (x) ∈ C
for all x ∈ C, or put alternatively if f (C) ⊆ C. Set C is closed under
an n-ary function g : An → A iff g(a1, . . . , an) ∈ C for any elements
a1, . . . , an ∈ C (alternatively, when g(Cn) ⊆ C).

Example 6. Consider subsets of Σ∗, i.e. all sets of finite strings over some
finite alphabet Σ, or languages as we usually refer to them. The set of
all regular languages is closed under complementation; for any regular
language L ⊆ Σ∗ we have that its complement Σ∗ \ L is regular. Regular
languages are also closed under intersection and union. (Actually this
notion can be used to define regular languages: The set of regular languages
is the smallest set containing certain basic languages, and closed under
certain operations.)

A subset B ⊆ A corresponds to the function 1B : A → {0, 1} given
by

1B = { a 7→ 0 | a 6∈ B } ∪ { a 7→ 1 | a ∈ B }.
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(prove that it is indeed a function.) The function is called the charac-
teristic function of B. Conversely, any function from A to {0, 1} is the
characteristic function of an exactly one subset of A. For instance, if
A equals {a, b, c} then {b, c} ∈ 2A can be seen as the Boolean function
{a 7→ 0, b 7→ 1, c 7→ 1}, and ∅ ∈ 2A can be seen as the Boolean
function {a 7→ 0, b 7→ 0, c 7→ 0}. These notions also provide an
explanation of the powerset notation 2A since 2A may be viewed as
functions from A to a binary set, e.g. {0, 1} (recall that BA denotes
the function space A→ B).

Example 7. A Boolean valuation (interpretation or model) is a mapping from
an alphabet of propositional variables Var to a binary set Bool := {0, 1}. If
Var := {x, y, z} then Var → Bool is the set of all Boolean functions from
Var to Bool. There are obviously 2|Var| = 8 such functions, for instance

σ0 := {x 7→ 0, y 7→ 0, z 7→ 0}
σ1 := {x 7→ 1, y 7→ 0, z 7→ 0}
σ2 := {x 7→ 0, y 7→ 1, z 7→ 0}
σ3 := {x 7→ 1, y 7→ 1, z 7→ 0}
etc.

Note that a Boolean valuation is a characteristic function (of a subset of Var).
So such valuations may be equivalently represented as such subsets, e.g. σ3

by the set {x, y} ∈ 2Var. We refer to the latter as the set-representation of a
Boolean valuation or interpretation.

Basic orderings

We next consider some well-known and useful classes of relations.
In particular relations which allow us to order (in an intuitive sense)
elements.

Definition 4. A relation R ⊆ A× A is called a preorder (or quasi ordering)
if it is reflexive and transitive.

Example 8. The standard ordering ≤ on the natural numbers is a preorder.
So is the standard subset relation ⊆ on every powerset 2A.

Example 9. Let us consider a few more examples of preorders.

1. Let A be an arbitrary set whose elements are finite sets. Consider the
following relation � on A: B � C iff |B| ≤ |C| (i.e. B has no more
elements than C), for any B, C ∈ A. The relation is a preorder.

2. The relation � on the set Σ∗ of strings, given by

x � y iff for each symbol a
if a occurs in x then a occurs in y.
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is a preorder. (In other words, x � y iff the set of symbols occurring in x
is a subset of the set of symbols occurring in y.)

3. Define ≤7 ⊆N×N as follows

(x ≤7 y) iff (x mod 7) ≤ (y mod 7)

Then ≤7 is a preorder since it is both reflexive and transitive. Note that
≤7 is not antisymmetric since e.g. 6 ≤7 13 and 13 ≤7 6 but 6 6= 13.

Definition 5. A preorder R ⊆ A× A is called a partial order if it is also
antisymmetric.

Example 10. The relation ≤ on the natural numbers is a partial order, and
so is ⊆ on 2A.

Example 11. The relation “divides” on Z+ is a partial order; any positive
integer divides itself (reflexivity); if x and y divide each other, then x =

y (antisymmetry), and if x divides y and y divides z, then x divides z
(transitivity).

Example 12. Let Σ be an alphabet, and consider Σ∗, i.e. the set of all finite
strings over Σ. Let � ⊆ Σ∗ × Σ∗ defined by

u E v iff there is a w ∈ Σ∗ such that uw = v

(in other words, iff u is prefix of v). Then E is a partial order, usually called
the prefix order.

Example 13. Let Σ∗ be as previously. Let �s ⊆ Σ∗ × Σ∗ defined by

u Es v iff there are w, z ∈ Σ∗ such that zuw = v

(in other words, iff u is a substring of v). Then E is a partial order, we may
call it the substring order. Note that � ⊆ �s.

Example 14. Let A � B denote the space of all partial functions from A
to B. A partial function can be viewed as an under-specified total function;
in fact, we may order partial functions depending on how much information
they convey. For instance, consider the function space N�N and the four
partial functions

σ1 := {(0 7→ 1), (1 7→ 1}}
σ2 := {(0 7→ 1), (1 7→ 1), (2 7→ 2)}.
σ3 := {(0 7→ 1), (1 7→ 1), (2 7→ 2), (3 7→ 6)}.
σ4 := {(0 7→ 1), (1 7→ 1), (2 7→ 1), (3 7→ 1)}.

Then σ2 conveys more information than σ1. Similarly σ3 contains more
information than both σ2 and σ1. Now if we compare σ4 and σ2 we may say
that σ4 is more defined than σ2, but it does not contain more information
than σ2; they convey incomparable information since σ2(2) = 2 6= σ4(2) =
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1. Formally we may define our ordering of partial functions (often referred
to as the information ordering) simply as set inclusion on on the functions
viewed as sets (recall that we defined a partial function as a binary relation).
That is, given σ : A� B and σ′ : A� B

σ ≤ σ′ iff σ ⊆ σ′.

As we shall see later the information ordering is very important when for-
mally defining e.g. functions with infinite domains; the partial functions
σ1, σ2, σ3 are examples of increasingly better approximations of the facto-
rial function. The information ordering is also important when defining
semantics of programming languages.

A partial order is of course always a preorder, but the converse
does not generally hold. (Find out which preorders in the examples
above are not partial orders.) However, a preorder � ⊆ A× A
induces a partial order if lifted to a relation on equivalence classes.
Let

x ≡ y iff x � y ∧ y � x.

The relation ≡ is an equivalence (prove this). Let us denote the
equivalence class of x under ≡ by [x], this means

[x] = { y ∈ A | y ≡ x }.

Let us define
[x] �≡ [y] iff x � y.

Then �≡ is a partial order (prove this). We sometimes say that �
modulo ≡ is a partial order.

Example 15. Consider the set of propositional formulas F induced by a finite
set Var of propositional variables:

F ::= Var
F ::= ¬F | (F ∧ F) | (F ∨ F) | (F → F)

We say that an interpretation (i.e. a Boolean valuation) σ is a model of a
Boolean formula F if F is true in σ, and write Mod(F) for the set of all
models of F.

Now consider F under the entailment ordering: F1 |= F2 iff every model
of F1 is also a model of F2, or put equivalently iff Mod(F1) ⊆ Mod(F2).
The result is a preorder. The relation |= is clearly reflexive and transitive,
but not antisymmetric since e.g. (¬x ∨ y) |= (x → y) and (x → y) |=
(¬x ∨ y). On the other hand, we have the following (logical) equivalence
relation

F1 ⇔ F2 iff F1 and F2 have the same set of models

iff F1 |= F2 and F2 |= F1.

If we consider |= modulo⇔ then we have a partial order.
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We sometimes encounter an alternative notion of partial order,
sometimes called a strict partial order to distinguish it from the
previous notion:

Definition 6. A relation R ⊆ A× A which is irreflexive and transitive is
called a strict partial order.

If R ⊆ A× A is a partial order then R \ idA is a strict partial order
(where idA is the identity relation on A). Conversely, if R′ ⊆ A× A is
a strict partial order then R′ ∪ idA is a partial order (prove this). Note
that a strict partial order is always antisymmetric, vacuously (prove
this).

Example 16. The relation < on N and the relation ⊂ on 2A are examples of
strict partial orders.

Notation: From now on we normally use relation symbols like ≤,
�, v for non-strict partial orders. In such cases we occasionally write
y ≥ x as an alternative to x ≤ y, and if ≤ is a partial order then <

refers to the strict version of ≤, i.e. ≤ \ idA, assuming that ≤ ⊆ A× A.
As usual, the notation x 6≤ y means that x is not related to y by ≤, in
other words (x, y) 6∈ ≤. We say that two elements x, y are comparable
whenever x ≤ y or y ≤ x, and incomparable otherwise. We write x || y
when x and y are incomparable (assuming that the order is known).

Definition 7. If ≤ ⊆ A× A is a partial order then the pair (A,≤) is called
a partially ordered set, or poset.

By an ordered set we henceforth mean a poset or a (A,<), where
< ⊆ A× A is a strict partial order.

Definition 8. A subset B ⊆ A of a poset (A,≤) is called a chain (in
(A,≤)) if a ≤ b or b ≤ a for all a, b ∈ B. (In other words, if each two
elements of B are comparable by ≤.)

Definition 9. A poset (A,≤) such that A is a chain is called a total order
or linear order.

Note that if B ⊆ A is a chain in (A,≤) then C ⊆ B is always a
chain in (A,≤). We now define the dual notion of a chain where we
instead require that all elements are incomparable.

Definition 10. A subset B ⊆ A of a poset (A,≤) is called an anti-chain if
x ≤ y implies x = y, for all x, y ∈ B.

Equivalently, each two distinct elements x 6= y in an anti-chain are
incomparable, x || y.

We shall often use the terms chain and anti-chain also in the
context of strict partial orders. A (strict) chain is a subset B of a strict
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partial order (A,<), where either x < y or y < x for each distinct
elements x, y of B. If this holds for B = A then (A,<) is called a strict
total (or linear) order. B is called an antichain when x || y for each
distinct x, y ∈ B.

Example 17. Consider the poset (2{0,1,2},⊆), i.e., subsets of {0, 1, 2}
ordered by (non-proper) set inclusion. Then {{0}, {0, 1}, {0, 2}, {0, 1, 2}}
is a chain in (2{0,1,2},⊆). What is an example of an anti-chain?

Constructing orders

We survey some useful techniques for constructing posets from
existing, usually simpler, posets. However first we consider the
opposite; let A := (A,≤) be a poset and let B ⊆ A. Then B := (B,�)
is called the poset induced by A if

x � y iff x ≤ y for all x, y ∈ B.

We prove that B is indeed a poset.

Theorem 1. If A is a poset and B is induced by A, then B is a poset.

Proof. First consider reflexivity: let x ∈ B. Then x ∈ A and x ≤ x
since A is a poset. Hence, x � x. Second, consider antisymmetry:
Assume x, y ∈ B and x � y � x; hence, x ≤ y ≤ x. Since A is
antisymmetric x = y. Transitivity can be shown similarly.

An analogical property with a similar proof holds for strict par-
tial orders. In most cases we write simply that (B,≤) is the poset
induced by (A ≤) although ≤ in the former is different from ≤ in the
latter (unless of course A = B).

Definition 11. If there is no infinite chain in a poset (A,≤) then we say
that the poset of finite height (or length). Otherwise the height of the poset
is said to be infinite.

If (A,≤) is of finite height then its height (or length) is |C| − 1 where C
is the chain in A of the greatest number of elements.

Example 18. The height of (2{0,1,2},⊆) is 3, since e.g. ∅ ⊂ {0} ⊂
{0, 1} ⊂ {0, 1, 2} is a largest chain. The height of (2N,⊆) is infinite.

We next consider so-called componentwise orderings.

Theorem 2. Let (A,≤) be a poset, and consider a relation � on A × A
defined as follows

(x1, y1) � (x2, y2) iff x1 ≤ x2 ∧ y1 ≤ y2.

Then (A× A,�) is a poset.
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The proof is left as an exercise. The construction generalizes in a
natural way to obtaining a poset (A1 × A2,�) out of a pair of posets
(A1,≤1), (A2,≤2), and to constructing (A1 × · · · × An,�) (for n > 0).
Under such generalization, each componentwise ordering (An,�) is
a special case of pointwise ordering:

Theorem 3. Let (A,≤) be a poset, and consider a relation � on B → A
defined as follows

σ1 � σ2 iff σ1(x) ≤ σ2(x) for all x ∈ B.

Then (B→ A,�) is a poset.

The proof is similar to that for componentwise orderings.

Example 19. Given a set of Boolean variables Var, a (Boolean) valuation is
a function σ : Var→ Bool (see Example 7). Take the numerical ordering ≤
on Bool = {0, 1}. In the pointwise ordering σ1 � σ2 iff σ1(x) ≤ σ2(x), for
all x ∈ Var. For instance, {x 7→ 1, y 7→ 0, z 7→ 0} � {x 7→ 1, y 7→ 0, z 7→
1}.

We finally consider so-called lexicographical orderings. Let Σ =

{a1, . . . , an} be a finite alphabet under some strict total ordering
a1 < . . . < an. Let Σ∗ be the set of all finite (possibly empty) strings
over Σ and define (for x1, . . . , xi, y1, . . . , yj ∈ Σ) x1 · · · xi < y1 · · · yj to
hold iff, for some k such that 0 ≤ k ≤ i and k ≤ j,

• x1 · · · xk = y1 · · · yk and

• k = i < j (i.e. x1 · · · xi is a proper prefix of y1 · · · yj), or

k < i, k < j, and xk+1 < yk+1.

Note that y1 · · · yk is the longest common prefix of both strings.
This is the standard ordering of words that we encounter e.g. in
dictionaries. Prove that < is a strict total order.

Example 20. Let Σ = {a, b, c} with the total ordering a < b < c. Then e.g.

ε < a < aac < ab < abb < ac < · · ·

As usual ε denotes the empty string. Note that the set {w ∈ Σ∗ | ab < w <

abb } is infinite (there are infinitely many strings between ab and abb), and
that there are no string between a and aa.

Minimal Elements and Well-Founded Relations

We next introduce the notion of well-founded relations which pro-
vides the basis of many notions in mathematics and computer sci-
ence; both in the formalization of computation and as a means of
proving properties of programs.



chapter 1: ordered sets 12

Minimal, Maximal, Least, and Greatest elements

We first introduce the following auxiliary notions.

Definition 12. Consider a relation R ⊆ A× A and a subset B ⊆ A. An
element a ∈ B is called R-minimal in B if there is no b ∈ B (b 6= a) such
that b R a.

In other words, if b ∈ B and b R a then b = a. Similarly, a ∈ B is
called R-maximal in B if there is no b ∈ B such that a R b. We often
skip R- when the relation is clear from the context.

Example 21. Consider (2{0,1,2},⊂) and the set B = 2{0,1,2} \ {∅}. Then
{0}, {1}, and {2} are all ⊂-minimal elements in B.

When defining the notion of a well-founded relation in the forth-
coming section we actually only need the notion of R-minimality, but
for completeness we also define the following related notions.

Definition 13. Consider a relation R ⊆ A× A and a subset B ⊆ A. An
element a ∈ B is called least in B if a R b for all b ∈ B; it is called greatest
in B if b R a for all b ∈ B.

This definition implies that only reflexive relations admit least and
greatest elements. If we wish to speak of least and greatest elements
of an irreflexive relation < then we can easily circumvent this by
considering the least and greatest elements of ≤.

Example 22. Again, consider (2{0,1,2},⊂) and the set B = 2{0,1,2} \ {∅}.
Neither {0}, {1}, nor {2} is least in B. For example, {0} cannot be the
least element in B since {0} ⊆ {1} does not hold. However, clearly, this set
admits a greatest element, namely {0, 1, 2}.

We have the following relationship between minimal and least
elements for antisymmetric relations.

Theorem 4. If R is antisymmetric then a set has at most one least element,
and the least element is its unique minimal element.

Proof. Assume that b is a least element of B. Note that a ∈ B ∧ aRb
implies a = b. (Since b is least, we also have bRa, hence a = b since R
is antisymmetric.) By this implication, there is no a ∈ B such that aRb
and a 6= b, meaning that b is minimal.

If a is least in B then aRb. By the implication above, a = b. This
means b is the unique least element of B.

Let c be minimal in B. Since b is least, bRc. Thus b = c (otherwise c
not minimal). So, b is the unique minimal element of B.

An analogical property holds for greatest and maximal elements,
the proof is similar. The least element of a poset (if it exists) is some-
times denoted ⊥ and the greatest element is denoted >.
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Example 23. The poset (N,≤) has no maximal element, and no greatest
element, 0 is its minimal and its least element.

Consider the subset B = N \ {0, 1} of N ordered by relation “divides”.
The prime numbers are minimal elements of B. There is no least element,
there are no maximal (and no greatest) elements.

Example 24. The poset (2A,⊆) has a least and greatest element, namely ∅
and A. They are the only minimal and, respectively, maximal elements of the
poset. In this poset, the subset 2A \ {∅} has |A| minimal elements; namely
all singleton subsets of A.

Example 25. Consider the poset (Bool,≤) (cf. Example 19). The set
Var → Bool under the pointwise ordering is a poset; the valuation σ such
that σ(x) = 1 for all x ∈ Var is the greatest element and the valuation such
that σ(x) = 0 for all x ∈ Var is the least element.

Assume that < and ≤ are corresponding strict partial order and
partial order on A, i.e. ≤ = < ∪ idA. The following property follows
immediately from the definition: b is a <-minimal element of a
set B ⊆ A iff it is a ≤-minimal element of B. The same holds for
maximal elements.

Well-Founded Relations

We now define the important class of well-founded relations.

Definition 14. A relation R ⊆ A× A is said to be well-founded if there for
every non-empty set B ⊂ A exists an element m ∈ B such that bRm does
not hold for any b ∈ B.

Note that this property is almost the same as requiring that B
admits an R-minimal element, but the well-founded property is in
the literature typically defined in this way since it implies that R is
irreflexive, which is more natural in the context of induction (see
chapter 3 in the lecture notes). However, we sometimes wish to apply
the definition to reflexive relations ≤ in which case we simply say
that ≤ is well-founded if < is well-founded.

If R is a well-founded relation on A we sometimes say that (A, R)
is a well-founded set. And when R is clear from the context, we
sometimes say simply that A is a well-founded set.

Example 26. The relation < on N is well-founded, while < on Z is not.
Neither is {x ∈ Q | 0 ≤ x} under <, as e.g. a subset {x ∈ Q | 0 <

x < 1} does not have a minimal element The prefix relation E on Σ∗ is
well-founded, so is the substring relation Es (prove this).

The lexicographic ordering < on Σ∗ is not well-founded when |Σ| > 1.
Assume a, b ∈ Σ and a < b (in the underlying ordering of Σ); then the set
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{ aib | i ∈ N } ⊆ Σ∗ has no minimal element: · · · < ai+1b < aib < · · · <
ab < b.

The subset ordering ⊆ on 2N is not well-founded, as
{
{i ∈N | n < i}

∣∣
n ∈N

}
⊆ 2N has no minimal element: for each n ∈N, we have

{ i ∈N | n < i } ⊃ { i ∈N | n + 1 < i }.

We proceed by describing alternative characterizations of well-
founded relations. First, we need the following auxilliary notion.

Definition 15. Let A be a set. A sequence over A is a function f : X → A
where X is an integer interval, i.e., a set of consecutive integers (possibly
infinite).

For example, if X = N and f is the successor function f (x) =

x + 1 we define the sequence 1, 2, . . . of positive natural numbers.
A sequence is said to be finite if the domain of its defining function
is finite, and infinite otherwise. Note that a finite sequence with n
elements x1, x2, . . . , xn is nothing else than an n-tuple (x1, x2, . . . , xn)

in slight disguise.

Definition 16. Let < be an irreflexive binary relation over a set A. A
sequence x0, x1, x2, . . . over A such that x0 < x1 < x2 < . . . is called an
ascending chain in A.

A descending chain is defined analogically (. . . < x2 < x1 < x0).

Example 27. The sequence ∅ ⊂ {0} ⊂ {0, 1} ⊂ {0, 1, 2} ⊂ . . . is an
ascending chain in 2N.

Note that some chains (cf. Definition 8) cannot be represented as
ascending (descending) chains. Take for instance (Q,≤), and a chain
{−1/n | n ∈N } ∪ {0}; we have −1 < −1/2 < −1/3 < · · · < 0.

We have the following equivalent characterization of well-founded
relations.

Theorem 5. An irreflexive relation < ⊆ A× A is well-founded iff (A,<)

contains no infinite descending chains . . . < x2 < x1 < x0.

Proof. (⇒), by contraposition: Assume that in A there exists an
infinite descending chain . . . < x2 < x1 < x0. Then {x0, x1, x2, . . .} ⊆
A contains no minimal element. Thus (A,<) is not well-founded.

(⇐), by contraposition: Assume that (A,<) is not well-founded.
Hence there is some non-empty B ⊆ A which contains no minimal
element. Thus for each xi ∈ B there exists xi+1 ∈ B such that
xi+1 < xi. We then construct our infinite descending chain by picking
an (arbitrary) element x1 ∈ B, then pick an element x2 ∈ B such
that x2 < x1, and based on x2, an x3 ∈ B such that x3 < x2, and so
on.6 6 It is clear that choosing xi+1 < xi can

be made for each i ≥ 1. But can we
be sure that this construction actually
produces an infinite chain? Yes, if we
assume either the axiom of choice or its
weaker variant axiom of dependent choice
in our underlying theory of sets.
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Example 28. We show that ⊂ is well founded on any set A of finite sets.
Consider an element A ∈ A. Any descending chain beginning with A
consists of (some) subsets of A. But the set 2A of (all) subsets of A is finite,
hence the chain cannot be infinite.

The following examples illustrate some uses of well-founded sets.

Example 29. Consider an inductive definition of a language, e.g. the set of
all propositional formulas over some finite alphabet of propositional variables
Var:

F ::= Var
F ::= ¬F | (F ∧ F) | (F ∨ F) | (F → F)

Let ≺ be the “proper subformula” relation; G ≺ F iff G is a proper subfor-
mula of a formula F. For instance, x, y, ¬x, ¬y and ¬x ∨ y are all proper
subformulae of (¬x ∨ y) ∨ ¬y. Then ≺ is a well-founded relation.

Note that here we treat inductive definitions rather informally. To prove
that ≺ is well-founded it is sufficient to note that a proper formula of F is a
substring of F, and the substring relation (Example 13) is well-founded; the
latter is left as an exercise.

Example 30. Consider a transition system (C,⇒, I) with an initial set
I ⊆ C of configurations. Let ≺ ⊆ C+ × C+ be defined as follows7 7 C+ denotes the set of all non-empty

and finite words (i.e. sequences) of
configurations.c1 . . . cn ≺ c1 . . . cncn+1 iff cn ⇒ cn+1

Now let the set of traces T of (C,⇒, I) be the smallest set of words such that

• if c ∈ I then c ∈ T,

• if t ∈ T and t ≺ t′ then t′ ∈ T.

Then ≺ is a well-founded relation on T. Note that ≺+ is a strict partial
order (but ≺ is not)

Well-Orders

We have the following important instance of well-founded relations:

Definition 17. A strict total order (A,<) which is well-founded is called a
well-order.

Example 31. The following are examples of well-orders.

• The natural numbers under <.

• (N,≺), where 0 ≺ 2 ≺ 4 ≺ · · · 1 ≺ 3 ≺ 5 ≺ · · · . More formally,

i ≺ j iff i is even and j is odd, or
i < j and i, j are both even or both odd.
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The following strict partial orders are not well-orders.

• The non-negative rational numbers {x ∈ Q | 0 ≤ x} under <, as the
order is not well-founded, as shown in Example 26.

• (2A,⊂) (when |A| > 1), since ⊂ is not total.

• Consider the ordering ≤ from Example 25 on Boolean valuations
Var→ Bool, and the corresponding strict ordering < = ≤ \ idVar→Bool.
If |Var| > 1 then < is not total, and (Var → Bool,<) is not a well-
order.

• The set Σ∗ under the lexicographical order <. The order is total, but not
well-founded, as shown in Example 26.

• The set Σ∗ under the inverse lexicographical ordering <−1, since e.g.

. . . <−1 aaa <−1 aa <−1 a

has no minimal element.

Obviously, any subset (B,<) of a well-order (A,<) is a well-order.
(By Definition 14, as each subset of B is a subset of A.) Definitions
14, 17 state that each nonempty subset of a well-order has a minimal
element. Actually, there is only one such element:

Lemma 1. In a total order (or a strict total order), (1) a minimal element of a
subset is unique and (2) every non-empty subset of a well-order has a unique
minimal element.

Proof. Let (A, R) be a total order or a strict total order. Assume that
a 6= b and that a, b are minimal elements of a B ⊆ A. Thus aRb
or bRa. Hence b is not minimal, or a is not minimal. Contradiction;
the minimal element is unique. Now the second part of the lemma
follows from the definition of a well-order.

We will often write x0 < x1 < x2 < . . . for a well-order (A,<),
where A = {x0, x1, . . .} (and may be finite or infinite), and where x0

is the (unique) minimal element in A, and x1 is the (unique) minimal
element of A \ {x0}, etc.

Lemma 2. Let < be an arbitrary relation on A. If every non-empty subset of
(A,<) has a unique minimal element then < is transitive.

Proof. Assume that x < y and y < z. If x = y then x < z follows
immediately. Assume now that x 6= y. Note first that x 6= z, as
otherwise x < y < x and {x, y} has no minimal element. Now
{x, z} must contain a unique minimal element. Hence x < z or
z < x, as otherwise both x, y are minimal. Assume z < x. We have
x < y < z < x, thus {x, y, z} has no minimal element, contradiction.
Hence, z < x.



chapter 1: ordered sets 17

Theorem 6. The structure (A,<) is a well-order iff every non-empty subset
of A has a unique minimal element and < is irreflexive.

Proof. The direction⇒ is the content of Lemma 1. To prove⇐ we
assume that every non-empty subset of A has a unique minimal
element. By Lemma 2, < is transitive; thus it is a strict partial order.
Assume that it is not total. So there exist two incomparable elements
x, y ∈ A. But then {x, y} has two minimal elements, contradiction.

Hence, < is a strict total order and since every non-empty subset
of a contains a minimal element (A,<) is a well-order.

Exercises

1.1 Is R ◦ R−1 the identity relation (for an arbitrary relation R ⊆
A× A) ? Does R ◦ R−1 = R−1 ◦ R ?
Prove that the transitive closure of a relation is transitive.

1.2 Draw the Hasse diagram of {x, y, z} → Bool under the ordering
in Example 19. Compare the diagram to the Hasse diagram of the
poset (2{x,y,z},⊆).

1.3 Let (A,≤) be a preorder, and let x ≡ y iff x ≤ y and y ≤ x.
Prove that it is an equivalence relation and that ≤ lifted to the
equivalence classes of ≡, defined as [x] ≤≡ [y] iff x ≤ y (see p. 8),
is a partial order.

Before the latter, prove that ≤≡ is well defined; this means that if
we have [x] = [x′] and [y] = [y′] then [x] ≤≡ [y] iff [x′] ≤≡ [y′].

1.4 Prove Theorem 2.

1.5 Prove Theorem 3.

1.6 Prove that a strict partial order is always antisymmetric.

1.7 Is Z ordered like this 0 ≺ 1 ≺ 2 ≺ · · · − 3 ≺ −2 ≺ −1 a
well-order? (Here any positive number precedes any negative one.)

1.8 Prove that (N,≺) from Example 31 (even numbers precede odd
ones) is a well-order.

1.9 Let (A, R1) be a well-founded set, and let R2 ⊆ R1. Prove that
(A, R2) is well-founded.

1.10 Prove Lemma ?? ((A, R) is well-founded iff (A, R+) is well-
founded).
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1.11 Consider the prefix ordering and the substring ordering (Ex-
amples 12, 13). Show that they are partial orders and are well-
founded. It is sufficient to show this for one these relations, the
required properties for the other one follow immediately. Choose
the right relation.

1.12 Prove that any partial ordering (and any strict partial ordering)
on a finite set is well-founded
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