Assignment 5

for Discrete Structures II

- 5.1 Let (A, \leq) , (C, \sqsubseteq) be posets. Prove that any continuous¹ function $f: A \to C$ is monotone. Hint: employ reasonable two element sets.
- 5.2 Find an example of a finite lattice (A, \leq) and a monotone function $f: A \to A$ which is not continuous. Hint: a small number of elements is sufficient.
- 5.3 Give an example of a complete lattice (A, \leq) and a monotone function $f: A \to A$ such that $f^{\omega}(\perp)$ is not a fixed point of f.

¹I.e., $f(\bigvee B) = \bigsqcup \{ f(x) \mid x \in B \}$ for any subset $B \subseteq A$.