Assignment 4

for Discrete Structures 2

- 4.1 Explain what is wrong in the presented erroneous inductive proof on page 2.
- 4.2 Let $(A, \leq), (B \sqsubseteq)$ be complete lattices, and $f: A \to B$ be a monotonic function¹. Prove that

$$f(\bigvee C) \sqsupseteq \bigsqcup \{ f(x) \mid x \in C \}$$

for any subset $C \subseteq A$.

 \bigvee and \bigsqcup stand for the lub's, respectively, in (A, \leq) and in $(B \sqsubseteq)$.

[This problem is not related to induction, but rather to lattices and ccpo's. But a special case of this property is used in the lecture notes, as a lemma in the context of transfinite induction.]

4.3 Assume that $f: A \to A$ is a monotonic function on a complete lattice (A, \leq) . Prove that $f^{\beta} \leq f^{\alpha}$ for any ordinals $\beta < \alpha$.

Make it clear which induction principle you apply. You may use the fact (proved in the lecture note) that $f^{\alpha} \leq f^{\alpha+1}$. Note that it may be not necessary to refer to the inductive assumption in one of the cases within your proof.

¹I.e., if $x \leq y$ then $f(x) \sqsubseteq f(y)$.

An erroneous inductive proof

Let M be an infinite set, f a function on M, and $L \subseteq M$. Property P(L)says that f is constant on L. $P(L): \text{ If } x, y \in L \text{ then } f(x) = f(y)$ We "prove" P(L) for any finite non empty L. Base case, |L| = 1: $x, y \in L \implies x = y \implies f(x) = f(y)$. Inductive step: Assume P(L') holds for any |L'| = n. Let $|L| = n + 1, x, y \in L$. 1. $x = y \implies f(x) = f(y)$. 2. $x \neq y$ $L \setminus \{y\}$ $L: \underbrace{x \cdots z \cdots y}_{L \setminus \{x\}}$ $|L \setminus \{x\}| = n = |L \setminus \{y\}|,$ $f(x) = f(z) \text{ for each } z \in L \setminus \{y\},$ $f(y) = f(z) \text{ for each } z \in L \setminus \{x\}.$ Thus f(x) = f(z) = f(y).

1

Hence f(x) = f(y) for any $x, y \in L$.

What is wrong?