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Outline of the talk

• The  problem of teaching theoretical C.S. in an
interdisciplinary context

• Relevant properties of Prolog
• Conceptual model: abstract machines, plus Prolog

for abstract syntax, semantics, compilation, etc.
• Example: What the teacher can squeeze out of an

interpreter for machine language written in Prolog
• Other applications of the principles
• A sample course schedule
• Experiences & conclusion
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The task: Teach C.S. students about

• Programming languages [basic theoretical
understanding]

• Theoretical understanding of computing
machines and computer languages

• (Idea of) precise semantics, 
1–1 expressions–to–meanings relation

• Which `expressions`, which `meanings`?
• Interpreters, compilers, etc. as practical

programming techniques
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Conditions for teaching C.S. at Roskilde Univ.

• Interdisciplinary studies
• Natural Science, Humanities, Social Science students,

all in the same lecture rooms & exercise sessions
• Mathematical backgrounds: From almost nothing to

excellent

• 50% student project works from day 1
• Few nominal course hours for "core material"
• Students competent learners

• Teacher's considerations to the extreme
• Address all students, inspire all students
• Maintain substance, avoid "superficial populism"
• Selection of protypical topics & examples very critical
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Need for pedagicocal framework & tools

• Overall theoretical model
• Precise (formal) description language
• Dynamic models: test/exercise/experiment

Our choice
• Simple model of abstract machines
• Prolog as

• Description language
• Experimentation tool ("dynamic model")
• Example programming language ≠ Java
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Why Prolog?

Familiar properties that we can rely on
• Core language has equiv. declarative and

procedural semantics
• Used in disciplined way, reasonable semantics

preserved for larger subset
• Easy to learn: students can write interesting

programs after one day
• Compare with Java to show that prog. lang. can

be elegant and highly expressive
(however, for the price of loosing robustness and

security,...)
More specifically for our goals...
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Prolog terms as repr. of abstr. syntax trees

Emphasize structure and textually pleasing:
a:= 221; b:= 493;
while(a =\= b, if(a>b, a:= a-b, b:= b-a))

works provided :- op(..., ..., :=)

Structurally inductive definitions straightfw'd:
stmnt(while(C,S), ...):-
          condition(C, ...), stmnt(S, ...), ... .

Such definitions are
• formal
• executable
• easily accessible with modest experience of Prolog
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Other properties of Prolog

• Aux. pred's for symbol tables etc. easy to supply
• Easy to add pragmatic issues to spec's

• e.g. turn interpreter into tracer or debugger
• add error messages (instead of just "no")

• Interactive Prolog environment invites to
incremental development
• Type in and test spec. rule by rule during your lecture!
• Exercises of modifying or extending spec. work well
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Abstract machines as super-concept

Def.: Abstract machine characterized by
• an input language (some set of phrases)
• memory which at any time keeps values...

(no explicit output component, part of "visible" mem.)

• A semantic function: Phrase x Mem -> Mem

Examples:
machine (language), pocket calculator, general

prog.lang., database transaction system,
program modules, general user interfaces
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Defining interpreters in Prolog

• Abstract syntax given by rules of form
cat0(op(T1,...,Tn)):- cat1(T1),...,catn(Tn).

• Each syn.tree has its own semantic relation
 e.g. State x State.

x:= x+1 => {..., <[x=7],[x=8]>, ...,

                          <[x=117,y=4],[x=118,y=4]>, ...}

• Def. interpreter given by rules extending syntax:
cat0(op(T1,...,Tn),SRel0):-

cat1(T1,SRel1),...,catn(Tn,SReln),... compose ... .

An example to see how it works in practice...
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Def. interp. for simple machine language

Program ≈ sequence of instr. ≈ Prolog list:
  [     push(2), store(t),
     7, fetch(x), ...
        equal, n_jump(7)]

Defining interpreter consists of rules of form
 sequence([FirstInstr|Rest],Prog,Stack,VarBinds,StackFin,VarBindsFin):-

... transform ... ,
sequence(Contin,Prog,NewStack,NewVarBinds,StackFin,VarBindsFin).

Most often Contin = Rest; argument Prog holds the whole
program to provide contextual meanings of labels
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Def. interp. for simple machine language, cndt

Standard instructions, no surprises:
sequence([add|Cont], Prog, [X,Y|S], B, Sn, Bn):-
    YplusX is Y + X,
    sequence(Cont, Prog, [YplusX|S], B, Sn, Bn).

Jumps: Non-standard continuation
sequence([jump(E)|_], P, S, B, Sn, Bn):-
    append(_, [E|Cont], P),
    sequence(Cont, P, S, B, Sn, Bn)).
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Def. interp. for simple machine language, cndt

Standard instructions, no surprises:
sequence([add|Cont], Prog, [X,Y|S], B, Sn, Bn):-
    YplusX is Y + X,
    sequence(Cont, Prog, [YplusX|S], B, Sn, Bn).

Jumps: Non-standard continuation
sequence([jump(E)|_], P, S, B, Sn, Bn):-
    append(_, [E|Cont], P),
    sequence(Cont, P, S, B, Sn, Bn)).

A little extra, making interp. into tracer adding

this initial rule:
    sequence([Inst|_],_,_,_,_,_):-
      write(Inst), write(' '), fail.



Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

14September 15, 2004

Exercises to def. int. for machine lang,

• Extend language and interpreter with
instructions for subroutines

• Write Prolog program that checks labels used
correctly (and what does this mean?)

• Write optimizer that replace patterns of
instructions by others
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Time for reflection:

• How long time will it take (lecture+exercises)
• How many important points were made explicit

and clear by this minimalist example?
• Was it difficult for the students to follow?
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Other notions presented in similar way

• Semantics of While-programs by def. interp.

• Compilation: As above but with semantics
expressed by code sequences.
Example: Compiling While-programs into our machine lang.

• Recursive procedures & type-checking (details later)

• Interactive LISP environment modelled with assert
• Vanilla self-interpreter for Prolog extended into

tracer and debugger

• Turing machines (with transition function as facts)
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A successful learning-by-doing approach
to recursion and typechecking

• Informal introduction to Pascal-like language;
recursive Quicksort as prototypical test program

• Informal explanation to type-requirements, type-
checking, and stack-based impl. of recursion

• Students' task in 1 week on 50% time:
• Write type-checker in Prolog
• Write defining interpreter and test on Quicksort program
• Document solution in short report

• All students succeeded in time
• Positive comments from students: Aha experience
• No difference between math and no-math students
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Sch'le of 7.5ECTS course, 10 course days + hw

1. Intro: Abstract and concrete syntax, semantics, pragmatics, language and
meta-language. Prolog workshop I: The core language, incl. structures.

2. Prolog workshop II: Lists, operators, assert/retract, cut, negation-as-
failure.

3. Abstract machines: Def. interpreter, translator. Prolog workshop II contd.
4. Language and meta-language, Prolog as meta-language.

Semantics of sequential and imperative languages; compilation
5. Declarations, type checking, recursive procedures
6. Do-it-your-self recursive procedures, interpreter and type checker
7. Discussing solution to above. Turing-machines, decidability and

computability, T.-universality, Halting problem, TMs in Prolog
8. Extra theme: Constraint Logic Programming, CHR
9. Traditional syntax analysis, FSA and recursive descent
10. Phases of traditional compiler, dissect impl. of Datalog in Java.

 Evaluation of the course
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Experience

• Lively interaction with students in lectures and exc's
• Equally successful and effective for all students in

our heterogeneous audience
• Difficult material becomes accessible for non-math

inclined students (usually judged unaccessible)
• Much easier to learn and master than, say, domain

theory — but recursive def's in Prolog essentially
express the same

• No loss for math. inclined students, in later project
work they may read Winskel's book on semantics or
A&S&U's book on compiling — very quickly!
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Conclusion

• This Prolog-based teaching methodology is
highly effective for university students of C.S.
(in Roskilde University's special context)

•  May also be proposed for
• Homogeneous audiences with solid math background

— as intro to hard-core theoretical CS
• IT-related univ. edications with otherwise no C.S.

theoretical elements
• Younger students, high school??


