
paper by Henning Christiansen
presented by John Gallagher

September 15, 2004

Computer Science, building 42.1
Roskilde University

P.O. Box 260
DK-4000 Roskilde

DENMARK
www.ruc.dk/dat

Prolog as description and implementation
language in computer science teaching

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

2September 15, 2004

Outline of the talk

• The problem of teaching theoretical C.S. in an
interdisciplinary context

• Relevant properties of Prolog
• Conceptual model: abstract machines, plus Prolog

for abstract syntax, semantics, compilation, etc.
• Example: What the teacher can squeeze out of an

interpreter for machine language written in Prolog
• Other applications of the principles
• A sample course schedule
• Experiences & conclusion

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

3September 15, 2004

The task: Teach C.S. students about

• Programming languages [basic theoretical
understanding]

• Theoretical understanding of computing
machines and computer languages

• (Idea of) precise semantics,
1–1 expressions–to–meanings relation

• Which `expressions`, which `meanings`?
• Interpreters, compilers, etc. as practical

programming techniques

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

4September 15, 2004

Conditions for teaching C.S. at Roskilde Univ.

• Interdisciplinary studies
• Natural Science, Humanities, Social Science students,

all in the same lecture rooms & exercise sessions
• Mathematical backgrounds: From almost nothing to

excellent

• 50% student project works from day 1
• Few nominal course hours for "core material"
• Students competent learners

• Teacher's considerations to the extreme
• Address all students, inspire all students
• Maintain substance, avoid "superficial populism"
• Selection of protypical topics & examples very critical

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

5September 15, 2004

Need for pedagicocal framework & tools

• Overall theoretical model
• Precise (formal) description language
• Dynamic models: test/exercise/experiment

Our choice
• Simple model of abstract machines
• Prolog as

• Description language
• Experimentation tool ("dynamic model")
• Example programming language ≠ Java

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

6September 15, 2004

Why Prolog?

Familiar properties that we can rely on
• Core language has equiv. declarative and

procedural semantics
• Used in disciplined way, reasonable semantics

preserved for larger subset
• Easy to learn: students can write interesting

programs after one day
• Compare with Java to show that prog. lang. can

be elegant and highly expressive
(however, for the price of loosing robustness and

security,...)
More specifically for our goals...

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

7September 15, 2004

Prolog terms as repr. of abstr. syntax trees

Emphasize structure and textually pleasing:
a:= 221; b:= 493;
while(a =\= b, if(a>b, a:= a-b, b:= b-a))

works provided :- op(..., ..., :=)

Structurally inductive definitions straightfw'd:
stmnt(while(C,S), ...):-
 condition(C, ...), stmnt(S, ...),

Such definitions are
• formal
• executable
• easily accessible with modest experience of Prolog

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

8September 15, 2004

Other properties of Prolog

• Aux. pred's for symbol tables etc. easy to supply
• Easy to add pragmatic issues to spec's

• e.g. turn interpreter into tracer or debugger
• add error messages (instead of just "no")

• Interactive Prolog environment invites to
incremental development
• Type in and test spec. rule by rule during your lecture!
• Exercises of modifying or extending spec. work well

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

9September 15, 2004

Abstract machines as super-concept

Def.: Abstract machine characterized by
• an input language (some set of phrases)
• memory which at any time keeps values...

(no explicit output component, part of "visible" mem.)

• A semantic function: Phrase x Mem -> Mem

Examples:
machine (language), pocket calculator, general

prog.lang., database transaction system,
program modules, general user interfaces

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

10September 15, 2004

Defining interpreters in Prolog

• Abstract syntax given by rules of form
cat0(op(T1,...,Tn)):- cat1(T1),...,catn(Tn).

• Each syn.tree has its own semantic relation
 e.g. State x State.

x:= x+1 => {..., <[x=7],[x=8]>, ...,

 <[x=117,y=4],[x=118,y=4]>, ...}

• Def. interpreter given by rules extending syntax:
cat0(op(T1,...,Tn),SRel0):-

cat1(T1,SRel1),...,catn(Tn,SReln),... compose

An example to see how it works in practice...

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

11September 15, 2004

Def. interp. for simple machine language

Program ≈ sequence of instr. ≈ Prolog list:
 [push(2), store(t),
 7, fetch(x), ...
 equal, n_jump(7)]

Defining interpreter consists of rules of form
 sequence([FirstInstr|Rest],Prog,Stack,VarBinds,StackFin,VarBindsFin):-

... transform ... ,
sequence(Contin,Prog,NewStack,NewVarBinds,StackFin,VarBindsFin).

Most often Contin = Rest; argument Prog holds the whole
program to provide contextual meanings of labels

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

12September 15, 2004

Def. interp. for simple machine language, cndt

Standard instructions, no surprises:
sequence([add|Cont], Prog, [X,Y|S], B, Sn, Bn):-
 YplusX is Y + X,
 sequence(Cont, Prog, [YplusX|S], B, Sn, Bn).

Jumps: Non-standard continuation
sequence([jump(E)|_], P, S, B, Sn, Bn):-
 append(_, [E|Cont], P),
 sequence(Cont, P, S, B, Sn, Bn)).

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

13September 15, 2004

Def. interp. for simple machine language, cndt

Standard instructions, no surprises:
sequence([add|Cont], Prog, [X,Y|S], B, Sn, Bn):-
 YplusX is Y + X,
 sequence(Cont, Prog, [YplusX|S], B, Sn, Bn).

Jumps: Non-standard continuation
sequence([jump(E)|_], P, S, B, Sn, Bn):-
 append(_, [E|Cont], P),
 sequence(Cont, P, S, B, Sn, Bn)).

A little extra, making interp. into tracer adding

this initial rule:
 sequence([Inst|_],_,_,_,_,_):-
 write(Inst), write(' '), fail.

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

14September 15, 2004

Exercises to def. int. for machine lang,

• Extend language and interpreter with
instructions for subroutines

• Write Prolog program that checks labels used
correctly (and what does this mean?)

• Write optimizer that replace patterns of
instructions by others

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

15September 15, 2004

Time for reflection:

• How long time will it take (lecture+exercises)
• How many important points were made explicit

and clear by this minimalist example?
• Was it difficult for the students to follow?

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

16September 15, 2004

Other notions presented in similar way

• Semantics of While-programs by def. interp.

• Compilation: As above but with semantics
expressed by code sequences.
Example: Compiling While-programs into our machine lang.

• Recursive procedures & type-checking (details later)

• Interactive LISP environment modelled with assert
• Vanilla self-interpreter for Prolog extended into

tracer and debugger

• Turing machines (with transition function as facts)

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

17September 15, 2004

A successful learning-by-doing approach
to recursion and typechecking

• Informal introduction to Pascal-like language;
recursive Quicksort as prototypical test program

• Informal explanation to type-requirements, type-
checking, and stack-based impl. of recursion

• Students' task in 1 week on 50% time:
• Write type-checker in Prolog
• Write defining interpreter and test on Quicksort program
• Document solution in short report

• All students succeeded in time
• Positive comments from students: Aha experience
• No difference between math and no-math students

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

18September 15, 2004

Sch'le of 7.5ECTS course, 10 course days + hw

1. Intro: Abstract and concrete syntax, semantics, pragmatics, language and
meta-language. Prolog workshop I: The core language, incl. structures.

2. Prolog workshop II: Lists, operators, assert/retract, cut, negation-as-
failure.

3. Abstract machines: Def. interpreter, translator. Prolog workshop II contd.
4. Language and meta-language, Prolog as meta-language.

Semantics of sequential and imperative languages; compilation
5. Declarations, type checking, recursive procedures
6. Do-it-your-self recursive procedures, interpreter and type checker
7. Discussing solution to above. Turing-machines, decidability and

computability, T.-universality, Halting problem, TMs in Prolog
8. Extra theme: Constraint Logic Programming, CHR
9. Traditional syntax analysis, FSA and recursive descent
10. Phases of traditional compiler, dissect impl. of Datalog in Java.

 Evaluation of the course

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

19September 15, 2004

Experience

• Lively interaction with students in lectures and exc's
• Equally successful and effective for all students in

our heterogeneous audience
• Difficult material becomes accessible for non-math

inclined students (usually judged unaccessible)
• Much easier to learn and master than, say, domain

theory — but recursive def's in Prolog essentially
express the same

• No loss for math. inclined students, in later project
work they may read Winskel's book on semantics or
A&S&U's book on compiling — very quickly!

Prolog as desc. and impl. language by Henning Christiansen
presented by John Gallagher

20September 15, 2004

Conclusion

• This Prolog-based teaching methodology is
highly effective for university students of C.S.
(in Roskilde University's special context)

• May also be proposed for
• Homogeneous audiences with solid math background

— as intro to hard-core theoretical CS
• IT-related univ. edications with otherwise no C.S.

theoretical elements
• Younger students, high school??

