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F-intervals

F=FEU{-00,00}, ECR, E finite
F-interval : (a,b), {a,b} C F

F is the set of all F-intervals
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Approximations

If pisa subset of ™ then apx(p) is the smallest F-interval
containing p.

apr(X?2+Y?2<1)=([-1,1],[-1,1)



Constraint systems Narrowing

For every F-block u, the narrowing function p : F* —

V is a set of variables C
Fm of p satisfies 0’ (u) = apz(u N p)

e A constraint is an expression p(z1,...,%,), where
pCR"and every z; e VUE 0}

(ii) _ —
(iii) —
(iv)

o A system ¥ = (i,5), where i : VUFE — F and S is
a finite set of constraints

e A solution o : VU E — R of a system X satisfies
(i)-(v) - w, pounp, 7

—-Vrx e E,o(x)=x
- Ve eV,o(x) €i(x)

S
7 (u) C
(@1, n) €S, (0(21),. .., 0(zn)) € p Contractance p'(u) Cu

Correctness uNp=p(u)Np
Monotonicity v C v = 7' (u) C 7 (v)

Idempotence 7' (7' (u)) = 7 (u)
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Interval convexity

A constraint p is interval convex if for every F-block « and
everyi € {1,...,n}, m(pNu) is an F-interval.

add = {(z,y,2) e R®|x +y = 2}
is interval convex, but

mult = {(z,y,2) € R®| zy = 2}

is not.
Example:  Assume w = ([-2,3],[—4,5],[1,1]), then
1 1
mult N u = ([-2,3],[-3,—35] U [5,5],[1,1]) and
apz(mult Nu) = u.
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Choice points

Assume p=p1Up2, ie. c=c1Ver

1L P (u) = apz(unp) VP (u) = apz(un p),
disjunction implemented by choice point.

2. 7' (u) = apz(un(p1Upa)), splitting after propagation
(similar to labeling) creates choice point.

Example: mult = multt Umult™, where

multt = {(z,y,2) € R¥| 2 > 0,2y = 2}
and

mult™ = {(z,y,2) € R |z < 0,2y = 2}

Both are interval convex.

Newton

Extending Prolog, Newton combines constraints over reals,
integers and booleans.

Newton uses a relaxed implementation of narrowing called
box consistency.
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Box consistency

Box consistency is a relaxed version of arc consistency
that is less expensive to calculate. An interval constraint
o= C(Fy,...,F,) is box consistent wrt (Fy,...,E},)
and an integer 1 iff

C(F17"'7Fi—17[lvl+]7Fi+l7"'aF’Fb)
A
C(Fla"'7Fi—17[u_auLFi+17"~7Fn)
where | = left(F;) and u = right(F;).
This is equivalent to
Fi = apm({rieFi|C(F17"'7Fi—17
ap.’,l'({ri}), Fi+l7 ceey F’rl)})

Box consistency differs from arc consistency when p’
contains multiple instances of the same variable.
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Arc consistency revisited

A constraint ¢ is arc-consistent wrt (D1, ..., D) and an
integeri, 1 <i < niff

D, C {’f’i ‘ dry € Dl, Lo, Tl € Di*l)
Tit1 € Dr+1: <oy € Dn : C(F)}

Arc consistency for systems is defined in the natural way.

Generalized to intervals, a constraint p is arc consistent wrt
(F1,...,F,) and aninteger i, 1 <14 < n iff

F, = apx(F;n{r;|3m e F,...,1i21 € Fi_q,
Tit1 EFI‘+17“‘7T’IL€F’IL:FEP})

This is the fix point criteria for narrowing, i.e.

u="p(u) = apz(unp)
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Box consistency example

21 — @1+ 22 = 0 is not arc consistent wrt ([—1, 1], [0, 2])
because assigning z2 # 0 makes the constraint
unsatisfiable. I.e. the intervals should be narrowed to

X7 — X1+ X3 = 0is box consistent wrt ([—1,1],0,2]),

because
[-1,-1] = [-1,—-1] + [0, 2] = [0,0]
[1,1] —[1,1] + [0,2] = [0, 0]

[-1,1] — [-1,1] +[0,0] = [0, 0]

(-1,1] - [-1,1] + [2,2] = [0, 0]
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Implementation

The choice of interval extension determines the efficiency
of the propagation.

Natural Interval Extension Expensive to calculate,
the natural extension provides maximum propagation.
le. the natural interval extension of z(zo + 23) is

X1( X+ X3).

Distributed Interval Extension Rewriting the constraint

as a sum of terms allows for more efficient calculation
of box consistency, but weaker pruning. The distributed
interval extension of x (x5 + x3) is X1 X + X1 X3.

Taylor Interval Extension is silently ignored in this
presentation.
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Summary
Interval constraints allows for a coherent handling of multiple simultaneous variable
Result: 3b € Benchmarks(3S € OtherSolvers(better,(Newton, S)))
18

domain types.

Splitting

Sometimes propagation just ain't enough...

Splitting corresponds to labeling with domain splitting. To
achieve smaller boxes, the box given after propagation can
be divided into subranges. The solver is restarted for each
sub range, giving smaller new propagation opportunities.
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