
Lecture Notes:

Selected Topics in Discrete Structures

Ulf Nilsson

Dept of Computer and Information Science
Linköping University

581 83 Linköping, Sweden

ulfni@ida.liu.se
2004-03-09

Contents

Chapter 1. Ordered sets 1
1.1. Basic notions 1
1.2. Basic orderings 3
1.3. Constructing orders 5
1.4. Well-founded relations and well-orders 6
Exercises 10

Chapter 2. Algebraic structures 11
2.1. Lattices and complete lattices 11
2.2. Lattices as algebras 15
2.3. Complete partial orders 15
Exercises 16

Chapter 3. Ordinal numbers 19
3.1. Ordinal arithmetic 22
3.2. Ordinal powers of functions 23
Exercises 25

Chapter 4. Principles of induction 27
4.1. Well-founded induction 27
4.2. Transfinite induction 30
Exercises 31

Chapter 5. Fixed points 33
5.1. Basic notions 33
5.2. Knaster-Tarski’s theorem 34
5.3. Kleene’s fixed point theorem 36
Exercises 41

Chapter 6. Finite automata on infinite words 43
6.1. Basic notation 43
6.2. Büchi automata 43
6.3. Muller automata 47
Exercises 51

Bibliography 53

iii

CHAPTER 1

Ordered sets

1.1. Basic notions

We briefly summarize basic notions and notation used later on in these notes.
For a more elaborate and verbose exposition, see e.g. Grimaldi [Gri00].

The set of all natural numbers {0, 1, 2, . . .} is denoted N. The set of all integers
is denoted Z, and the subset of all positive integers is denoted Z+. The rational
numbers are denoted by Q and the real numbers by R. The cardinality of a set A
is denoted |A|.

By A × B we mean the Cartesian product of two sets A and B. That is,
the set {(a, b) | a ∈ A ∧ b ∈ B}. We generalize this to arbitrary finite products
A1 × . . .×An. When all Ai equal A we write simply An (n ≥ 0). The elements of
An are referred to as n-tuples. For instance, the triple (1, 4, 3) is an element of N3.

By a (finite) string (or word) over some alphabet Σ we mean an element u in
Σn, for some n ∈ N. The length of u ∈ Σn is n. The set of all finite-length strings
is denoted Σ∗ and is defined as

Σ∗ :=
⋃

i∈N
Σi.

The empty string (the only element in Σ0) is denoted ε. Given two strings u, v ∈ Σ∗

we write the concatenation of u and v as uv. The length of uv is the sum of the
lengths of u and v.

A binary relation R on A and B is a subset of A × B. When A = B we say
simply that R is a relation on A. If (a, b) ∈ R we say that a is related to b. We
usually write R(a, b) or a R b when a is related to b. A (non-binary) relation is
simply a subset of the Cartesian product A1 × . . .×An (n ≥ 0).

A binary relation R ⊆ A×A is said to be

• reflexive iff R(x, x) for every x ∈ A.
• irreflexive iff R(x, x) for no x ∈ A.
• antisymmetric iff x = y whenever R(x, y) and R(y, x).
• symmetric iff R(x, y) whenever R(y, x).
• transitive iff R(x, z) whenever R(x, y) and R(y, z).

The identity relation on A, i.e. the relation such that R(x, y) iff x = y and x ∈ A,
is denoted idA. The composition R1 ◦R2 of two binary relations R1 ⊆ A×B and
R2 ⊆ B × C is a binary relation on A× C defined by

R1 ◦R2 := {(a, c) ∈ A× C | ∃b ∈ B (R1(a, b) and R2(b, c))}.

The identity relation acts as left and right identity for relational composition; if
R ⊆ A×B then idA ◦ R = R ◦ idB = R. We adopt the standard notation for

1

2 1. ORDERED SETS

iterated composition of a relation R ⊆ A×A. Hence1

R0 := idA,
Rn+1 := Rn ◦R (n ∈ N),
R+ :=

⋃
n∈Z+ Rn,

R∗ :=
⋃

n∈NRn.

We refer to R+ as the transitive closure of R, and R∗ as the reflexive and transitive
closure of R.

Example 1.1. A transition system is a pair (C,⇒) where C is a set of configura-
tions, and ⇒ ⊆ C × C is a so-called transition relation. Transition systems provide
abstractions of computations; a step-wise process where we move from one configu-
ration to the next as described by the transition relation: c0 ⇒ c1 ⇒ c2 ⇒ . . . The
reflexive and transitive closure of ⇒, that is ⇒∗, expresses reachability: if c0 ⇒∗ cn

then cn is reachable, in zero or more steps, from c0.
A transition system may also be equipped with a set of initial configurations,

a set of terminal configurations, and occasionally also with labeled transitions (the
label typically modeling an event firing the transition, or fired by the transition).
In case of labeled transitions the transition relation is ternary, instead of binary,
and often written as c

a⇒ c′. 2

By the notation A → B we mean the space of all (total) functions from A to
B. A function f : A → B is a relation on A×B with the property that each a ∈ A
is related to exactly one element f(a) in B. Instead of writing (a, b) ∈ f we either
write (a 7→ b) ∈ f or use the standard notation f(a) = b. The graph of a function
is the set of all tuples belonging to the function (viewed as a set). For instance, the
graph of the factorial function looks as follows

{0 7→ 1, 1 7→ 1, 2 7→ 2, 3 7→ 6, 4 7→ 24 . . .}.
We say that a set B ⊆ A is closed under f : A → A iff f(x) ∈ B for all x ∈ B, or
put alternatively if f(B) ⊆ B. The notion of closedness extends in the natural way
to n-ary functions f : An → A.

Example 1.2. Consider subsets of Σ∗, i.e. all sets of finite strings over some
alphabet Σ, or languages as we usually refer to them. The set of all regular lan-
guages is closed under complementation; for any regular language L ⊆ Σ∗ we have
that its complement Σ∗ \ L is regular. Regular languages are also closed under
intersection and union. 2

A Cartesian product An may be seen as the space of all functions from {0, . . . , n−
1} to A. Hence, the n-tuple (a0, . . . , an−1) may be seen as the function {0 7→
a0, . . . , n− 1 7→ an−1} and vice versa. For instance, (5, 4, 2) ∈ N3 is isomorphic to
{0 7→ 5, 1 7→ 4, 2 7→ 2}. The function space N → A can thus be thought of as an
infinite product “A∞”, but for reasons to be explained later we usually denote this
by Aω.

The set of all subsets of a set A is called the powerset of A and is denoted 2A.
The elements of 2A may be seen as functions from A to a binary set, e.g. {0, 1}.
For instance, if A equals {a, b, c} then {b, c} ∈ 2A can be seen as the Boolean
function {a 7→ 0, b 7→ 1, c 7→ 1}, and ∅ ∈ 2A can be seen as the Boolean function

1Notice that the notation is ambiguous; An can denote both an n-fold Cartesian product of
a set, or an n-fold composition of a relation A.

1.2. BASIC ORDERINGS 3

{a 7→ 0, b 7→ 0, c 7→ 0}. (It is sometimes customary to write BA as an alternative
to the function space A → B which explains in part the notation 2A, i.e. functions
from A to a set of cardinality 2.)2

Example 1.3. A Boolean valuation (interpretation or model) is a mapping
from an alphabet of propositional variables Var to a binary set Bool := {0, 1}. If
Var := {x, y, z} then Var → Bool is the set of all Boolean functions from Var to
Bool. There are obviously 2|Var | = 8 such functions, for instance

σ0 := {x 7→ 0, y 7→ 0, z 7→ 0}
σ1 := {x 7→ 1, y 7→ 0, z 7→ 0}
σ2 := {x 7→ 0, y 7→ 1, z 7→ 0}
σ3 := {x 7→ 1, y 7→ 1, z 7→ 0}
etc.

We may equivalently represent e.g. σ3 by the set {x, y} ∈ 2Var . We refer to the
latter as the set-representation of a Boolean valuation or interpretation. 2

1.2. Basic orderings

We next consider some well-known and useful relations. In particular relations
which allow us to order (in an intuitive sense) elements.

Definition 1.4. A relation R ⊆ A×A is called a preorder (or quasi ordering)
if it is reflexive and transitive. 2

Example 1.5. The standard inequality ≤ on the natural numbers is a preorder.
So is the standard subset relation ⊆ on every powerset 2A. 2

Example 1.6. Define ≤7 ⊆ N× N as follows

(x ≤7 y) iff (x mod 7) ≤ (y mod 7)

Then ≤7 is a preorder since it is both reflexive and transitive. Note that ≤7 is not
antisymmetric since e.g. 6 ≤7 13 and 13 ≤7 6 but 6 6= 13. 2

Definition 1.7. A preorder R ⊆ A × A is called a partial order if it is also
antisymmetric. 2

Example 1.8. The relation ≤ on the natural numbers is a partial order, and
so is ⊆ on 2A. 2

Example 1.9. The relation “divides” on Z+ is a partial order; any positive
integer divides itself (reflexivity); if x and y divide each other, then x = y (an-
tisymmetry), and if x divides y and y divides z, then by necessity x divides z
(transitivity). 2

Example 1.10. Let Σ be an alphabet, and consider Σ∗; i.e. the set of all finite
strings over Σ. If u, v ∈ Σ∗ then uv denotes the concatenation of u and v. Now let
£ ⊆ Σ∗ × Σ∗ defined by

u E v iff there is a w ∈ Σ∗ such that uw = v.
Then E is a partial order, usually called the prefix order. 2

2The other reason is of course that |2A| = 2|A| for finite sets A. This holds also for function

spaces; there are |B||A| functions from A to B (for finite sets A, B).

4 1. ORDERED SETS

Example 1.11. Let A ³ B denote the space of all partial maps from A to
B. That is, any f ⊆ A × B such that if (x, y) ∈ f and (x, z) ∈ f then y = z. A
partial map can be viewed as an underspecificed total function; in fact, we may
order partial maps depending on how much information they convey. For instance,
consider the function space N ³ N and the four partial functions

σ1 := {(0 7→ 1), (1 7→ 1}}
σ2 := {(0 7→ 1), (1 7→ 1), (2 7→ 2)}.
σ3 := {(0 7→ 1), (1 7→ 1), (2 7→ 2), (3 7→ 6)}.
σ4 := {(0 7→ 1), (1 7→ 1), (2 7→ 1), (3 7→ 1)}.

Then σ2 conveys more information than σ1. Similarly σ3 contains more information
than both σ2 and σ1. Now if we compare σ4 and σ2 we see that σ4 is more
defined than σ2, but it does not contain more information than σ2; they convey
incomparable information since σ2(2) = 2 6= σ4(2) = 1. Formally we may define our
ordering of partial maps (often refered to as the information ordering) simply as set
inclusion on the graphs of the functions. That is, given σ : A ³ B and σ′ : A ³ B

σ ≤ σ′ iff σ ⊆ σ′.

As we shall see later the information ordering is very important when formally defin-
ing e.g. functions with infinite domains; the partial maps σ1, σ2, σ3 are examples
of increasingly better approximations of the factorial function. The information
ordering is also important when defining semantics of programming languages. 2

A partial order is of course always a preorder, but the converse does not gen-
erally hold. However, a preorder ¹ ⊆ A×A which is not antisymmetric induces a
partial order if lifted to a relation on equivalence classes. Let

x ≡ y iff x ¹ y ∧ y ¹ x

and define
[x] ¹≡ [y] iff x ¹ y.

Then ¹≡ is a partial order (prove this). We sometimes say that ¹ modulo ≡ is a
partial order.

Example 1.12. Consider the set of propositional formulas F induced by a
finite set Var of propositional variables:

F ::= Var
F ::= ¬F | (F ∧ F) | (F ∨ F) | (F → F)

We say that an interpretation (i.e. a Boolean valuation) σ is a model of a Boolean
formula F if F is true in σ, and write Mod(F) for the set of all models of F .

Now consider F under the entailment ordering: F1 |= F2 iff every model of F1

is also a model of F2, or put equivalently iff Mod(F1) ⊆ Mod(F2). The result is a
preorder. The relation |= is clearly reflexive and transitive, but not antisymmetric
since e.g. (¬x∨ y) |= (x → y) and (x → y) |= (¬x∨ y). On the other hand, we have
the following (logical) equivalence relation

F1 ⇔ F2 iff F1 and F2 have the same set of models
iff F1 |= F2 and F2 |= F1.

If we consider |= modulo ⇔ then we have a partial order. 2

1.3. CONSTRUCTING ORDERS 5

We sometimes encounter an alternative notion of partial order, sometimes called
a strict partial order to distinguish it from the previous notion:

Definition 1.13. A relation R ⊆ A × A which is irreflexive and transitive is
called a strict partial order. 2

If R ⊆ A×A is a partial order then R\idA is a strict partial order (where idA is
the identity relation on A). Note that a strict partial order is always antisymmetric
(prove this).

Example 1.14. The relation < on N and the relation ⊂ on 2A are examples
of strict partial orders. 2

Notation: From now on we normally use relation symbols like≤, ¹, v for non-
strict partial orders. In such cases we occasionally write y ≥ x as an alternative to
x ≤ y, and if ≤ is a partial order then < refers to the strict version of ≤, i.e. ≤\idA,
assuming that ≤ ⊆ A×A. As usual the notation x 6≤ y means that x is not related
to y. We say that two elements are comparable whenever x ≤ y or y ≤ x; and
incomparable otherwise. We write x || y when x and y are incomparable (assuming
that the order is known).

Definition 1.15. If ≤ ⊆ A×A is a partial order then the pair (A,≤) is called
a partially ordered set, or poset. 2

By an ordered set we henceforth mean a poset (strict or non-strict).

Definition 1.16. A poset (A,≤) is called a total order (or chain, or linear
order) if either a ≤ b or b ≤ a for all a, b ∈ A. 2

Definition 1.17. A poset (A,≤) is called an anti-chain if x ≤ y implies x = y,
for all x, y ∈ A. 2

We use the terms chain and anti-chain also in the context of strict partial
orders. A (strict) chain is a strict partial order (A,<) where either x < y or y < x
when x 6= y, for all x, y ∈ A. A (strict) anti-chain is a strict partial order (A,<)
where x || y for all x, y ∈ A.

1.3. Constructing orders

We survey some useful techniques for constructing posets from existing, usually
simpler, posets. However first we consider the opposite; let A := (A,≤) be a poset
and let B ⊆ A. Then B := (B,¹) is called the poset induced by A if

x ¹ y iff x ≤ y for all x, y ∈ B.
We prove that B is indeed a poset.

Theorem 1.18. If A is a poset and B is induced by A, then B is a poset. 2

Proof. First consider reflexivity: Let x ∈ B. Then x ∈ A and x ≤ x in since
A is a poset. Hence x ¹ x. Second, consider antisymmetry: Assume x, y ∈ B and
x ¹ y ¹ x; hence, x ≤ y ≤ x. Since A is antisymmetric x = y. Transitivity is
shown similarly. ¤

In most cases we write simply that (B,≤) is the poset induced by (A ≤)
although ≤ in the former is different from ≤ in the latter (unless of course A = B).

We next consider so-called componentwise orderings.

6 1. ORDERED SETS

Theorem 1.19. Let (A,≤) be a poset, and consider a relation ¹ on A × A
defined as follows

(x1, y1) ¹ (x2, y2) iff x1 ≤ x2 ∧ y1 ≤ y2.

Then (A×A,¹) is a poset. 2

The proof is left as an exercise.
Componentwise orderings can be generalized to arbitrary (finite) Cartesian

products. In principle it is possible to extend the notion also to infinite products,
but we usually refer to them as pointwise orderings:

Theorem 1.20. Let (A,≤) be a poset, and consider a relation ¹ on (B → A)
defined as follows

σ1 ¹ σ2 iff σ1(x) ≤ σ2(x) for all x ∈ B.

Then (B → A,¹) is a poset. 2

The proof is similar to componentwise orderings.

Example 1.21. Given a set of Boolean variables Var a (Boolean) valuation is
a mapping σ : Var → {0, 1} where we assume the natural ordering ≤ on Boolean
values. In the pointwise ordering σ1 ¹ σ2 iff σ1(x) ≤ σ2(x), for all x ∈ Var . For
instance, {x 7→ 1, y 7→ 0, z 7→ 0} ¹ {x 7→ 1, y 7→ 0, z 7→ 1}. 2

We finally consider so-called lexicographical orderings. Let Σ = {a1, . . . , an} be
a finite alphabet under some strict total ordering a1 < . . . < an. Let Σ∗ be the set
of all finite (possibly empty) strings over Σ and define x1 . . . xi < y1 . . . yj to hold
iff

• i < j and x1 . . . xi = y1 . . . yi, or
• there is some k < i such that xk+1 < yk+1 and x1 . . . xk = y1 . . . yk.

This is the standard total ordering of words that we encountered e.g. in dictionaries.
Note that < is a strict total order.

Example 1.22. Let Σ = {a, b, c} with the standard total ordering. Then e.g.

ε < a < aa < ab < abb < ac < . . .

As usual ε denotes the empty string. 2

1.4. Well-founded relations and well-orders

We next introduce the notion of well-founded relations which provides the basis
of many computer science notions; both in the formalization of computation and
as a means of proving properties of programs. Last but not least, it also provides
a basis for unambiguous definition of (infinite) sets, functions and relations.

We first introduce the following auxiliary notions.

Definition 1.23. Consider a relation R ⊆ A×A. An element a ∈ A is called
R-minimal (or simply minimal when R is clear from the context) if there is no
b ∈ A such that b R a. Similary, a ∈ A is called maximal if there is no b ∈ A such
that a R b. 2

Definition 1.24. An element a ∈ A is called least if a R b for all b ∈ A; it is
called greatest if b R a for all b ∈ A. 2

1.4. WELL-FOUNDED RELATIONS AND WELL-ORDERS 7

The least element of a set (if it exists) is sometimes denoted ⊥ and the greatest
element is denoted >.

It should be pointed out that minimal and least elements do not coincide. In
particular, a partial order can have no minimal element since it is reflexive, but
it can have 0 or 1 least elements; that is, least elements are unique if they exist.
For strict partial orders the situation is almost the opposite; there can be no least
element, since the relation is irreflexive, but there can be any number of minimal
elements (including 0).

Example 1.25. The poset (N,≤) has no greatest element, but it does have
a least element (namely 0). Note that (N,≤) has neither a maximal nor, more
surpringly, a minimal element since ≤ is reflexive (and 0 ≤ 0). Note also that
(N, <) has a minimal element (namely 0), but no least (nor maximal, nor greatest)
element. 2

Example 1.26. The poset (2A,⊆) has a least and greatest element, namely ∅
and A. But it does not have any minimal or maximal elements. For (2A,⊂) there
is a unique minimal element, ∅, and a unique maximal element, A.

The strict poset (2A \ {∅},⊂) has |A| minimal elements; namely all singleton
subsets of A. 2

Example 1.27. Consider the poset (Bool,≤). The set Var → Bool under the
pointwise ordering is a poset; the valuation σ such that σ(x) = 1 for all x ∈ Var
is the greatest element and the valuation such that σ(x) = 0 for all x ∈ Var is the
least element. 2

Note that in some books an element a ∈ A is said to be minimal if there is no
b 6= a in A such that b R a. In that case a least element is always minimal if (A, R)
is a poset. Similarly, an element a ∈ A is sometimes said to be least if a R b for all
b 6= a in B. In the following we rely on the first definitions unless otherwise stated.

Definition 1.28. A relation R ⊆ A×A is said to be well-founded if every
non-empty subset of A contains an R-minimal element. 2

If R is a well-founded relation on A we sometimes say that (A,R) is a well-
founded set. And when R is clear from the context, we sometimes say simply that A
is a well-founded set. Note that we make no special assumptions about R; it has to
be irreflexive since otherwise there must be some singleton set {x} ⊆ A which has
no minimal element, but we do not require R to be transitive (although in practice
it often is).

We have the following important instance of well-founded relations:

Definition 1.29. A strict total order (A,<) which is well-founded is called a
well-order. 2

Example 1.30. The relation < on N is a well-order, while < on Z is not, since
Z has no minimal element. 2

It follows that every subset of a well-order, including the set itself, has a unique
minimal element. Moreover, the following theorem is easy to prove.

Theorem 1.31. Any subset (B,<) of a well-order (A,<) is a well-order. 2

We will often write x0 < x1 < x2 < . . . for a well-order (A,<) where x0 is the
(unique) minimal element in A, and x1 is the (unique) minimal element of A\{x0}
etc.

8 1. ORDERED SETS

Example 1.32. The following are examples of well-orders
• The natural numbers under <.
• The set Σ∗ under the lexicographical order < on a finite alphabet Σ.

The following relations are not well-ordered
• The rational numbers Q under <, since e.g.

. . . <
1
4

<
1
3

<
1
2

< 1

has no minimal element.
• The set Σ∗ under the inverse lexicographical ordering <−1 (written =),

since e.g.
. . . = aaa = aa = a

has no minimal element.
2

Lemma 1.33. If every non-empty subset of (A,<) has a unique minimal element
then < is transitive. 2

Proof. Assume that x < y and y < z. Assume also that x 6< z. Since
{x, z} must contain a unique minimal element it follows that z < x. By the inital
assumption x < y < z < x, which means that {x, y, z} contains no minimal element,
contradicting the antecendent of the lemma. Hence x < z. ¤

Theorem 1.34. The structure (A,<) is a well-order iff every non-empty subset
of A has a unique minimal element. 2

Proof. The direction ⇒ follows trivially. To prove ⇐ we assume that every
non-empty subset of A has a unique minimal element. We prove first that < is a
strict total order. Since < is transitive by Lemma 1.33, it remains to be shown that
it is also irreflexive and a total order.

• Assume that < is not irreflexive. Then there is some x ∈ A such that
x < x. But then {x} contains no minimal element. Contradiction!

• Assume that < is not a total order. That is, that there are x 6= y such that
x || y. But then {x, y} contains two minimal elements. Contradiction!

Hence, < is a strict total order and since every non-empty subset of a contains a
minimal element (A,<) is a well-order. ¤

The following notions are important e.g. in the verification of termination of
programs and discrete dynamic systems:

Definition 1.35. Let (A,≤) be a poset. A well-order x0 < x1 < . . . where
{x0, x1, . . .} ⊆ A is called an ascending chain in A. 2

Example 1.36. The well-order ∅ ⊂ {0} ⊂ {0, 1} ⊂ {0, 1, 2} ⊂ . . . is an ascend-
ing chain in 2N. 2

Definition 1.37. A poset in which every non-empty chain has a maximal
element is called Noetherian, and is said to satisfy the ascending chain condition.
Dually, a poset where every non-empty chain has a minimal element (i.e. where
every chain is a well-order) is said to satisfy the descending chain condition. 2

We have the following equivalent characterization of well-founded relations.

1.4. WELL-FOUNDED RELATIONS AND WELL-ORDERS 9

Theorem 1.38. A relation < ⊆ A×A is well-founded iff (A,<) contains no
infinite descending chains . . . < x2 < x1 < x0 (i.e. (A,<) satisfies the descending
chain condition). 2

Proof. (⇒): Assume that (A, <) is well-founded and that there exists an
infinite descending chain . . . < x2 < x1 < x0. Then {x0, x1, x2, . . .} contains no
minimal element contradicting the assumption that < is well-founded.

(⇐): First assume that (A,<) contains no infinite descending chain. Secondly
assume that (A,<) is not well-founded. Hence there is some non-empty B ⊆ A
which contains no minimal element. Now B must contain a descending chain yn <
. . . < y0 where (n ≥ 0); since B contains no minimal element there must be some
yn+1 ∈ B such that yn+1 < yn which implies that all finite descending chains can be
extended in infinity. Hence there must be an infinite descending chain contradicting
our initial assumption. ¤

The following examples illustrate some uses of well-founded sets.

Example 1.39. Consider an inductive definition of a language, e.g. the set of
all propositional formulas over some finite alphabet of propositional variables Var :

F ::= Var
F ::= ¬F | (F ∧ F) | (F ∨ F) | (F → F)

Let ≺ be the “proper subformula” relation; G ≺ F iff G is a proper subformula of
F . For instance, x, y, ¬x, ¬y and ¬x∨y are all proper subformula of (¬x∨y)∨¬y.
Then ≺ is a well-founded relation. (Prove this!) 2

Example 1.40. Consider a transition system (C,⇒, I) with an initial set I ⊆ C
of configurations. Let ≺ ⊆ C+ × C+ be defined as follows3

c1 . . . cn ≺ c1 . . . cncn+1 iff cn ⇒ cn+1

Now let the set of traces T of (C,⇒, I) be the smallest set of words such that
• if c ∈ I then c ∈ T ,
• if t ∈ T and t ≺ t′ then t′ ∈ T .

Then ≺ is a well-founded relation on T . 2

We conclude this chapter defining the notions of down-sets, or order ideals, and
the dual notions of up-sets, and order filters.

Definition 1.41. Let (A,≤) be a poset. A set B ⊆ A is called a down-set (or
an order ideal) iff

y ∈ B whenever x ∈ B and y ≤ x.

A set B ⊆ A induces a down-set, denoted B↓,
B↓ := {x ∈ A | ∃y ∈ B, x ≤ y} .

By O(A) we denote the set of all down-sets in A,

{B↓ | B ⊆ A} .

2

A notion of up-set, also called order filter, is defined dually.

3As usual C+ denotes the set of all non-empty and finite words (i.e. sequences) of
configurations.

10 1. ORDERED SETS

Exercises

1.1 Draw the Hasse diagram of {x, y, z} → Bool under the ordering in Ex-
ample 1.3. Compare the diagram to the Hasse diagram of the poset
(2{x,y,z},⊆).

1.2 Show that the prefix ordering in Example 1.10 is a partial order.
1.3 Let (A,≤) be a preorder, and let x ≡ y iff x ≤ y and y ≤ x. Prove that

≤ lifted to the equivalence classes of ≡ is a partial order.
1.4 Prove that a strict partial order is always antisymmetric.
1.5 Let (A,R1) be a well-founded set, and let R2 ⊆ R1. Show that (A,R2) is

well-founded.
1.6 Let (A,R) be well-founded set. Prove that (A,R+) also is well-founded.
1.7 Prove Theorem 1.19.
1.8 Prove Theorem 1.20.
1.9 Prove that the subformula relation ≺ in Example 1.39 is well-founded.

CHAPTER 2

Algebraic structures

In this chapter we study two types of partially ordered sets which are
extensively used in many areas of computer science; we first consider the more
general notion of lattices and complete lattices, followed by the more specialized
notion of complete partial orders, or cpo’s.

2.1. Lattices and complete lattices

We survey basic definitions and and fundamental properties of lattices. For
more elaborate expositions, see Birkhoff [Bir67] or Grätzer [Grä78].

We first introduce the auxiliary notion of (least) upper bound and (greatest)
lower bound.

Definition 2.1. Let (A,≤) be a poset and B ⊆ A. Then x ∈ A is called an
upper bound of B iff y ≤ x for all y ∈ B (often written B ≤ x by abuse of notation).
The notion of lower bound is defined dually. 2

Note that the set of all lower bounds of {x}, or simply x, is identical to {x}↓,
i.e. the down-set of x. More generally, the set of all lower bounds of B ⊆ A equals

⋂

x∈B

{x}↓.

Definition 2.2. Let (A,≤) be a poset and B ⊆ A. Then x ∈ A is called a
least upper bound of B iff B ≤ x and x ≤ y whenever B ≤ y. The notion of greatest
lower bound is defined dually. 2

Least upper bounds (and greatest lower bounds) are unique, if they exist.

Definition 2.3. A lattice is a poset (A,≤) where every pair of elements x, y ∈
A has a least upper bound, denoted x∨y, and greatest lower bound, denoted x∧y.
2

The least upper bound (abbr. lub) x ∨ y is sometimes called the join or supre-
mum of x and y, and the greatest lower bound (glb) x ∧ y is sometimes called the
meet or infimum of x and y. Alternative notations are sup(x, y) and inf(x, y).

Figure 1 depicts two posets as Hasse diagrams. The leftmost poset is a lattice,
while the rightmost is not. (Why?)

Example 2.4. The following are examples of lattices
• The set 2A under ⊆ is a lattice with least upper bound ∪ and greatest

lower bound ∩.
• The set Z under ≤ is a lattice with the function min as greatest lower

bound, and the function max as least upper bound.

11

12 2. ALGEBRAIC STRUCTURES

Figure 1. A lattice (left) and a poset which is not a lattice (right)

• The set of regular languages over some alphabet Σ is a lattice with inter-
section as greatest lower bound and union as least upper bound (recall
that regular languages are closed under both intersection and union).

While the set of all regular languages over some alphabet is a lattice, the set of
all context-free languages is not. Context-free languages are closed under union
(if L1 and L2 are context-free languages then there are context-free grammars G1

and G2 describing them, and L1 ∪ L2 can be obtained by taking the union of
G1 and G2 after renaming of the non-terminals so that G1 and G2 have disjoint
nonterminal alphabets apart from the start symbol). However, context-free lan-
guages are not closed under intersection; for example, both L1 =

{
aibicj | i, j ≥ 1

}
and L2 =

{
aibjcj | i, j ≥ 1

}
are context-free (both can be described by context-

free grammars), but their intersection L1 ∩ L2 =
{
aibici | i ≥ 1

}
is the standard

example of a language which is not context-free. 2

A lattice which is closed under only one of ∧ and ∨ is called a semi-lattice
(join-semi-lattice or meet-semi-lattice).

A lattice involves a poset and two operations. Hence a lattice really is a struc-
ture (A,≤,∧,∨). However, the two operations actually follow from ≤ (if they exist)
and vice versa. That is, a lattice is given unambiguously either by the partial order
or the two bounds. (We will discuss this in some detail in the next section.) As a
consequence we sometimes say that (A,≤) is a lattice assuming implicitly the exis-
tence also of ∧ and ∨; sometimes we say instead that (A,∧,∨) is a lattice assuming
tacitly the ordering ≤.

Definition 2.5. Let (A,≤) be a lattice. An element a ∈ A is said to cover an
element b ∈ A iff a > b and there is no c ∈ A such that a > c > b. 2

Example 2.6. The element {0, 1} covers {0} in the lattice (2{0,1,2},⊆). But it
is not the only element covering {0}, since {0} is also covered by {0, 2}. 2

Definition 2.7. The length of a poset (A,≤) (and hence lattice) is |C| − 1
where C is the longest chain in A. 2

A poset/lattice is finite length (or height) if |C| is a natural number.

Example 2.8. The length of (2{0,1,2},⊆) is 3, since e.g. ∅ ⊂ {0} ⊂ {0, 1} ⊂
{0, 1, 2}. The length of the lattice (2N,⊆) is infinite. 2

2.1. LATTICES AND COMPLETE LATTICES 13

We next define the notion of complete lattice, which provides an important
instance of ordinary lattices.

Definition 2.9. A complete lattice is a poset (A,≤) where every subset B ⊆ A
(finite or infinite) has a least upper bound

∨
B and a greatest lower bound

∧
B.

The element
∨

A is called the top element and is usually denoted >. The element∧
A is called the bottom element and is denoted ⊥. 2

Every complete lattice is a lattice since every pair of elements has a least upper
and greatest lower bound, but the converse does not hold in general as illustrated
by the following example.

Example 2.10. The set of all natural numbers N under the standard non-strict
ordering ≤ is a lattice; any pair of natural numbers has a least upper bound (namely
the supremum of the two), and a greatest lower bound (namely the infimum of the
two). However, it is not a complete lattice; any finite subset has a least upper,
and greatest lower bound, but the set of all natural numbers does not have a least
upper bound. (However, it does have a greatest lower bound.) On the other hand,
if we add a top element > to the natural numbers we have a complete lattice. 2

Example 2.11. The powerset 2A of any set A is a complete lattice under
standard set inclusion ⊆. Let {Ai}i∈I ⊆ 2A, then we have the least upper bound

⋃

i∈I

Ai := {a | a is a member of some Ai} .

The greatest lower bound is defined dually
⋂

i∈I

Ai := {a | a is a member of every Ai} .

2

Example 2.12. The set of all regular languages is not a complete lattice; there
is a least and greatest element, namely ∅ and Σ∗, and the union of finitely many
regular languages is regular, but the infinite union is in general not regular. For
instance, all of the following singleton languages are trivially regular

L0 = {ε}
L1 = {ab}
L2 = {aabb}
L3 = {aaabbb}
etc.

Moreover, the union of any finite subset of {L0, L1, . . .} is also regular, but the
infinite union, i.e. {anbn | n ≥ 0} is a standard example of a language which is not
regular (but rather context-free). 2

In the following special case a lattice is trivially complete. The proof is by
induction proving that any finite set of elements has a lub (glb) if any pair of
elements has.

Theorem 2.13. Any finite lattice is a complete lattice. 2

We finally survey some special lattices that enjoy additional algebraic proper-
ties.

14 2. ALGEBRAIC STRUCTURES

Definition 2.14. Let (A,≤) be a lattice with ⊥ and > . We say that a ∈ A
is the complement of b ∈ A iff a ∨ b = > and a ∧ b = ⊥. 2

It follows that the complement of ⊥ is >, and vice versa (provided that they
exist, of course).

Definition 2.15. We say that a lattice is complemented if every element has
a complement. 2

The lattice of regular languages over some alphabet Σ is a complemented lattice;
in this particular case each complement is unique. However, the complement of an
element in a complemented lattice need not be unique (see exercises). If the the
complement of all elements x is unique, it is denoted x′; hence, x ∧ x′ = ⊥ and
x ∨ x′ = >.

Definition 2.16. A lattice (A,≤) is said to be distributive iff a ∧ (b ∨ c) =
(a ∧ b) ∨ (a ∧ c) for all a, b, c ∈ A. 2

It can be shown that ∨ distributes over ∧ iff ∧ distributes over ∨; hence, in a
distributive lattice we also have that a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) (see exercises).
One can also show that in a complemented, distributive lattice the complement of
each element is unique. Suppose that both b and c are complements of a, then

b = b ∧ > = b ∧ (a ∨ c) = (b ∧ a) ∨ (b ∧ c) = ⊥ ∨ (b ∧ c) = b ∧ c

Hence b ≤ c. By an analogous argument c ≤ b, in which case by necessity b = c,
hence the complement of a must be unique.

Definition 2.17. A lattice (A,≤) is said to be Boolean iff it is complemented
and distributive. 2

Example 2.18. The set of all regular languages over some alphabet Σ has a
top and bottom element (namely Σ∗ and ∅). Moreover, every regular language has
a complement (recall that regular languages are closed under complementation).
Finally it can be shown that the lattice of regular languages is distributive, and
hence Boolean. 2

Example 2.19. Not surprisingly, Boolean algebras and Boolean lattices coin-
cide; that is, a Boolean algebra (B, +, ·,′ , 0, 1) is a Boolean lattice with least upp
bound +, greatest lower bound ·, complement ′, bottom element 0 and top ele-
ment 1. Recall also that a Boolean algabra is an algebraic structure satisfying the
following laws,

Commutative laws: a + b = b + a a · b = b · a
Distributive laws: a · (b + c) = (a · b) + (a · c) a + (b · c) = (a + b) · (a + c)
Identity laws: a + 0 = a a · 1 = a
Inverse laws: a + a′ = 1 a · a′ = 0

for all a, b, c ∈ B. 2

Definition 2.20. Let A be a set and B ⊆ 2A. If (B,⊆) is a lattice, then we
refer to it as a lattice of sets. If it is a complete lattice we call it a complete lattice
of sets. 2

Theorem 2.21. We have the following results for lattices of sets:
(1) Any lattice of sets is distributive.

2.3. COMPLETE PARTIAL ORDERS 15

(2) (2A,⊆) is distributive, and Boolean.
2

The proofs are left as exercises.

2.2. Lattices as algebras

Our definition of lattice is based on partially ordered sets. However, there is
an equivalent algebraic definition. Consider an algebra (A,⊗,⊕) with operations
⊗ : A × A → A and ⊕ : A × A → A. The algebraic structure (A,⊗,⊕) is a lattice
if the operations satisfy the following laws, for all a, b, c ∈ A.

(L1) Idempotency: a⊗ a = a⊕ a = a
(L2) Commutativity: a⊗ b = b⊗ a and a⊕ b = b⊕ a
(L3) Associativity: a⊗ (b⊗ c) = (a⊗ b)⊗ c and a⊕ (b⊕ c) = (a⊕ b)⊕ c
(L4) Absorption: a⊗ (a⊕ b) = a and a⊕ (a⊗ b) = a

Now let a ≤ b iff a⊗ b = a (or a⊕ b = b); then it follows that the ordered set (A,≤)
is a lattice, i.e. every pair of elements a, b ∈ A has a least upper bound (namely
a⊕ b) and a greatest lower bound (namely a⊗ b). The proof of this equivalence is
left as an exercise.

2.3. Complete partial orders

Lattices possess many appealing properties, but the requirement that any pair
of elements, or any subset of elements, has both a lub and glb is often an unnec-
essarily strong requirement. A number of results in computer science rely only on
the fact that all ascending chains have least upper bounds.

Definition 2.22. A partial order (A,≤) is said to be complete if it has a
bottom element ⊥ and if each ascending chain

a0 < a1 < a2 < . . .

has a least upper bound
∨{a0, a1, a2, . . .}. 2

Example 2.23. The set N of natural numbers under ≤ is not a complete partial
order. It does have a least element, namely 0, but no infinite ascending chain

n1 < n2 < n3 < . . .

has a least upper bound. However, N extended with a top element ω where n < ω
for all n ∈ N is a complete partial order. (The reason for using the symbol ω should
be clear in Chapter 3. For now, think of it simply as the set of all natural numbers;
i.e. a synonym of N.) 2

Example 2.24. Consider the set of finite strings Σ∗ over some alphabet Σ, and
the prefix ordering

u E v iff there is a w ∈ Σ∗ such that uw = v.
Every S ⊆ Σ∗ has a greatest lower bound

∧
S; namely the longest string which is a

prefix of all w ∈ S (possibly ε). However, not all S ⊆ Σ∗ have a least upper bound,
i.e. the shortest string which every w ∈ S is a prefix of. Even worse, not even every
ascending chain w1 C w2 C . . . has a least upper bound. All finite chains have;
namely the longest string in the set, but if we consider an infinite ascending chain

a C aa C aaa C aaaa C . . .

16 2. ALGEBRAIC STRUCTURES

then there is no finite string which has all strings in the chain as prefixes. Hence
(Σ∗, E) is not a complete partial order. On the other hand, if we “throw in” an
extra top element > greater than all finite strings then we have a complete partial
order.

Instead of throwing in just any top element >, we may define a notion of
infinite strings by viewing strings as functions: for instance, consider a finite string
w := 010101 ∈ Bool∗. This may be viewed as a function in {0, . . . , 5} → Bool
where w(0) = w(2) = w(4) = 0 and w(1) = w(3) = w(5) = 1. More conveniently,
we may view strings as partial maps in N ³ Bool, defined for a prefix of the
natural numbers 0 < 1 < 2 < . . . An infinite string is simply a total map.

We use the notation Σω for the set of all infinite strings over some alphabet Σ,
and Σ∞ for the set of all finite or infinite strings over Σ. Note that the notation Σω

is consistent in that Σω is a map from natural numbers, i.e. ω = N, to Σ. Note also
that u is a prefix of v iff u ⊆ v, and that this extends to infinite chains of prefixes.
Hence if we have a prefix chain of strings

w0 C w1 C w2 C . . .

then the least upper bound is simply the infinite union of w0, w1, w2, . . . viewed
as (partial) maps. The result is an infinite string (i.e. a total map) if the chain is
infinite, and a finite string (partial map) if the chain is finite. For instance, the
least upper bound of

0 < 01 < 010 < 0101 < 01010 < 010101 < . . .

is the infinite string of alternating ones and zeros starting with zero. That is the
function w where

w(n) =
{

0 if n is even
1 if n is odd.

Infinite strings (or traces) have attracted a great deal of attention in the field of
concurrency theory, and we return to them in Chapter 6 2

Exercises

2.1 Which of the following structures are complete lattices? Give a counter-
example if not, otherwise describe the operations of least-upper-bound
and greatest-lower-bound and the top and bottom elements:
(1) The set of all finite strings Σ∗ under the (non-strict) lexicographical

order, where e.g. a v ab v abb v ac.
(2) The set N under the partial order m ¹ n iff there exists an i ∈ N

such that m · i = n.
(3) The set of all equivalence relations on a set A, ordered by set inclu-

sion.
2.2 Which of the following Hasse diagrams represent lattices?

2.3 Prove that the following definitions of a lattice are equivalent:

EXERCISES 17

• A poset (A,≤) where all x, y ∈ A have a lub and glb.
• A poset (A,≤) where every finite and non-empty subset has a lub

and glb.
2.4 Consider a lattice (A,≤) with lub ∨ and glb ∧. Show that the following

conditions are equivalent:
(1) a ≤ b,
(2) a ∧ b = a,
(3) a ∨ b = b.

2.5 If possible give an example of a 5-element lattice which is distributive,
and one which is not.

2.6 Prove that if a lattice (A,≤) satisfies a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all
a, b, c ∈ A, then it also satisfies a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c).

2.7 If possible give an example of a 5-element complemented lattice which has
unique complements, and one which has not.

2.8 Use the algebraic laws L1 − L4 to prove that a⊗ b = a iff a⊕ b = b.
2.9 Prove that the componentwise product of two complete lattices is a com-

plete lattice as well.
2.10 Let (A,≤) be a non-empty poset. Prove that the following are equivalent:

(1) (A,≤) is a complete lattice,
(2)

∧
B exists for every B ⊆ A,

(3)
∨

A, and
∧

B exist for every non-empty B ⊆ A.
2.11 Prove that (O(A),⊆) is a complete lattice.
2.12 Prove that the two definitions of a lattice – the one based on an ordered

set (A,≤) with least upper and greatest lower bounds, and the algebraic
one (A,⊗,⊕) – are equivalent. That is
(1) Given a lattice (A,≤) where x ≤ y iff x⊗ y = x (or x⊕ y = y), prove

that the algebra (A,⊗,⊕) satisfies L1 − L4.
(2) Given an algebra (A,⊗,⊕) satisfying L1 − L4, prove that (A,≤),

where x ≤ y iff x ⊗ y = x (or x ⊕ y = y), is a poset and that each
x, y ∈ A has a least upper and greatest lower bound.

2.13 Prove Theorem 2.21.
2.14 Give an example of a cpo with a top element which is not a complete

lattice.

CHAPTER 3

Ordinal numbers

The natural numbers are often viewed as abstractions of finite sets.
For instance, 7 is an abstraction of the set of weekdays or the set of mortal sins.
But natural numbers can also be used to describe the position of an element in a
sequence or a chain. For instance, July is the 7th month in the total order of all
months ordered in the standard manner

January<February<March<April< . . . <December.
Actually instead of saying that 7 is the position of July, we may view it as the
length of the (strict) chain which includes July and all its predecessors

January<February<March<April<May<June<July.
In the very first example 7 denotes the equivalence class of all sets of size 7, in which
case we talk of the cardinal number 7. In the second case 7 denotes the equivalence
class of all strict chains of length 7. In this case we refer to 7 as an ordinal number,
or simply ordinal. Hence, ordinal numbers carry more information than cardinal
numbers, namely order in addition to size. This idea is fairly straightforward for
finite sets and finite chains, but intuition is usually blurred when considering infinite
sets and chains.

For cardinal numbers we say that two (possibly infinite) sets A and B have
the same cardinality iff there exists a bijective mapping f : A → B (and hence a
bijective mapping f−1 : B → A). If there exists a bijection we also say that A
and B are isomorphic (from Greek “of the same form”) or similar. We often write
A ∼ B in this case. We know for instance that N ∼ Z ∼ Q but N 6∼ R. It is easy to
prove that ∼ is an equivalence relation, and each equivalence class of this relation
is a cardinal number: the least cardinal number, written 0, is the equivalence class
that contains ∅ (and nothing else); the next cardinal number, written 1, is the
equivalence class of all singleton sets, etc. The least infinite cardinal number is
written ℵ0 and contains the set of all natural numbers, as well as all other infinite,
denumerable sets.

We can extend this notion of structural similarity to ordered sets (the same
idea applies to reflexive as well as irreflexive orders).

Definition 3.1. A function f from (A,<) to (B,≺) is called monotonic (iso-
tone, order-preserving) iff x < y implies f(x) ≺ f(y) for all x, y ∈ A. 2

We sometimes say that f is an order-homomorphism (or order-morphism) from
(A,<) into (B,≺) when f is monotonic.

Definition 3.2. An order-homomorphism f from (A, <) into (B,≺) is called
• a monomorphism if f is injective;
• an epimorphism if f is onto (surjective);
• an isomorphism if f is bijective (injective and onto).

19

20 3. ORDINAL NUMBERS

2

Definition 3.3. Two ordered sets A := (A,<) and B := (B,≺) are said to
be (order-)isomorphic if there exists an order-isomorphism f : A → B. We write
A ' B when A and B are isomorphic. 2

One can easily show that 'must be an equivalence relation by using elementary
properties of bijective mappings.

Consider the following examples of strict chains:
(1) Z ordered as . . . < −2 < −1 < 0 < 1 < 2 <
(2) Z ordered as 0 < −1 < 1 < −2 < 2 < . . .
(3) N ordered as 0 < 1 < 2 < 3 < 4 < . . .
(4) N ordered as 1 < 2 < 3 < 4 < . . . < 0

Abstracting away from order it is evident that all four orders have the same car-
dinality, namely |N| = |Z| = ℵ0. However, structurally they are pair-wise different
with except of (2) and (3). The first order has neither a minimal nor a maximal
element. Hence it cannot be isomorphic to a chain with a minimal (or maximal)
element. The last order has both a minimal and a maximal element and is there-
fore not isomorphic to any of the other three; the two middle orderings have only a
minimal element. In fact, they are isomorphic – there exists a bijective and order-
preserving mapping from Z to N (and hence also in the other direction), namely

f(n) =
{

2n if n ≥ 0,
−2n− 1 if n < 0.

Yet another important difference between (1) and the other ones is that the former
has no minimal element, while the latter three all do. In fact, any subset of the last
three has a minimal element. That is, the last three ones are well-orders. Just as a
cardinal number represents the equivalence class of all isomorphic sets, an ordinal
number, or simply ordinal, is an equivalence class of all isomorphic well-orders. For
instance, the well-order

January<February<March<April
represents the same ordinal number as

0 < 1 < 2 < 3 or 1 < 2 < 3 < 4 or aa ¿ ab ¿ abc ¿ aca

This ordinal is usually denoted 4, and it is the equivalence class of all isomorphic
well-orders with four elements. Although the equivalence class is infinite the ordinal
4 is said to be finite since each well-order in the class is finite.

The least ordinal number is clearly ∅ (i.e. the empty well-order). We usually
write this ordinal as 0. This ordinal is special since it is the only ordinal that is a
singleton. The second ordinal is the set of all well-orders of cardinality one; that
is, all singleton sets, for instance {∅} or {0} or {April} (of course, in a singleton set
the ordering is trivial). This ordinal is usually written 1. The third ordinal, written
2, is any well-ordered binary set. For instance, {0, 1} or {1, 3} under the standard
ordering, or {∅, {∅}} under set membership (since ∅ ∈ {∅}). The fourth ordinal is
any well-ordered set of cardinality 3. For instance, 0 < 1 < 2, or ∅ ∈ {∅} ∈ {∅, {∅}}.
Not surprisingly, this ordinal is usually written 3. Like cardinal numbers, finite
ordinals are not very exciting; the ordinal of a finite well-ordered set is simply the
cardinality of the well-ordered set.

Based on ordinary set theory John von Neumann gave an elegant definition of
the class of all ordinals, or to be more precise: a definition of a representative of all

3. ORDINAL NUMBERS 21

ordinals. That is, every von Neumann ordinal is a well-order, and every well-order
is isomorphic to a von Neumann ordinal. The definition of von Neumann is based
on a technique called transfinite induction which will be discussed in some detail at
the end of this chapter. For now, we note that the smallest ordinal is the empty set
∅ which is the unique representative of 0. This is also the smallest von Neumann
ordinal. The basic idea is to order sets under set membership, hence since {∅} is a
singleton and since ∅ ∈ {∅}, the set {∅} represents the ordinal 1. To represent the
third ordinal (i.e. 2) we pick {∅, {∅}} since

∅ ∈ {∅, {∅}} and {∅} ∈ {∅, {∅}}.
More generally if A is a von Neumann ordinal, then A∪{A} is the next von Neumann
ordinal. Moreover if α is the ordinal number of the von Neumann ordinal A then
we often write α + 1 for the ordinal number of A ∪ {A}. (We will introduce a
general notion of addition involving ordinals in the next section.) While abusing
notation it is customary to identify a von Neumann ordinal with its ordinal number;
thus, instead of writing correctly that {∅, {∅}} ∈ 2 we often write instead that
{∅, {∅}} = 2. Hence, by abuse of notation we will write incorrectly that 1 = {0},
and 2 = 1 ∪ {1} = {0,1} etc. That is, a von Neumann ordinal is the set of all of
its predecessors. The finite ordinal numbers thus look as follows (recall that the
ordinal 3 also can be written as 2 + 1)

Ordinal von Neumann representation
0 ∅
1 {∅} = 0 ∪ {0} = {0}
2 {∅, {∅}} = 1 ∪ {1} = {0,1}
3 {∅, {∅}, {∅, {∅}}} = 2 ∪ {2} = {0,1,2}
4 {∅, {∅}, {∅, {∅}}, {∅, {∅}, {∅, {∅}}} = 3 ∪ {3} = {0,1,2,3}

etc.

Note that e.g. 3 ∈ 4 since 4 = 3∪{3} (i.e. 4 = 3+1). The canonical representation
of finite ordinals is thus well-ordered by set membership ∈.

More generally, if {Ai}i∈I is a set of von Neumann ordinals then
⋃

i∈I

Ai

is also a von Neumann ordinal. For example, 0 ∪ 1 = 1 and 1 ∪ 3 = 3. Next
consider the infinite set {0,1,2, . . .} of all finite von Neumann ordinals. Since

0 ∪ 1 ∪ 2 ∪ . . . = {0,1,2, . . .}
it follows that {0,1,2, . . .} is a von Neumann ordinal. Since, all finite von Neumann
ordinals are members in this set it also follows that this ordinal is strictly greater
than all finite von Neumann ordinals. The ordinal number of this set is usually
denoted ω, which is the least infinite ordinal. Another example of a representative
of the ordinal ω is the well-order 0 < 1 < 2 < 3 < . . . on the natural numbers. The
ordinal ω is often viewed as a synonym of N but it is more accurate to think of it
as the well-ordered set (N, <).

The ordinal ω differs from all previous ordinals (except 0) in that it is not a
successor of any previous ordinal, but rather the limit of all finite ordinals. It is
therefore called a limit ordinal. Note that e.g. 1 ∈ 2 ∈ 3 ∈ 4 ∈ . . . is isomorphic
to 0 ∈ 1 ∈ 2 ∈ 3 ∈ . . ., so its ordinal number is also ω. In fact, if we have a

22 3. ORDINAL NUMBERS

bijective map f : A → N (i.e. |A| = ℵ0) then any ordered set (A,≺), where x ≺ y
iff f(x) < f(y), has the ordinal number ω.

Now ω has a successor ordinal represented e.g. by {0,1,2,3, . . . , ω} which is
denoted ω + 1 since it is the successor ordinal of ω and this ordinal also has a
successor, e.g. represented by {0,1,2,3, . . . , ω, ω + 1} sometimes denoted ω + 2 or
(ω + 1) + 1. Continuing we eventually obtain the ordinal

{0,1,2,3, . . . , ω, ω + 1, ω + 2, ω + 3, . . .}
This (limit) ordinal is written ω + ω or ω · 2. The cardinality of this ordinal is the
same as the cardinality of ω but they are not the same ordinals.

The complete definition of von Neumann ordinals can now be formulated as
follows using definition by transfinite induction:

• ∅ is a von Neumann ordinal,
• if A is a von Neumann ordinal then so is its successor A ∪ {A},
• if {Ai}i∈I is a set of von Neumann ordinals then so is

⋃

i∈I

Ai.

From now on we usually refer to von Neumann ordinals simply as ordinals unless
stated otherwise.

3.1. Ordinal arithmetic

Assume that we have two disjoint well-ordered sets A and B. Then it is easy to
create a new well-ordered set A∪B where a < b for all a ∈ A and b ∈ B. This idea
can be used to define a notion of addition of ordinal numbers. To add two ordinals
α and β we pick two disjoint well-orders A resp. B from α resp. β and create a new
well-order where all a < b for all a ∈ A and all b ∈ B. The ordinal number of the
resulting well-order is denoted α + β.

Example 3.4. Let A be 0 < 1 < 2 < 3 and B be 4 < 5 < 6. Then the ordinal
number of the well-order 0 < 1 < 2 < 3 < 4 < 5 < 6 is 7 and so is the ordinal
number of 4 < 5 < 6 < 0 < 1 < 2 < 3. Hence, 4 + 3 = 3 + 4 = 7. 2

It is easy to see that the ordinal number of the new well-order is independent
of the choice of A and B as long as they are disjoint. (If they are not disjoint the
result is not even a well-order.)

Contrary to what is suggested by the example the cummutative law does not
hold in general for addition of ordinals. Consider the ordinals ω and 1, and consider
first ω + 1. The well-order 1 < 2 < 3 < 4 < . . . has ordinal number ω, and the
well-order 0 has ordinal number 1. But the well-order 1 < 2 < 3 < 4 < . . . < 0 is
isomorphic to 0 < 1 < 2 < . . . < ω which has ordinal number ω+1; which hopefully
explains why we denote the successor ordinal of ω by ω + 1. If we instead consider
1 + ω we note that the well-order 0 < 1 < 2 < 3 < 4 < . . . has ordinal number ω
and is not isomorphic to 1 < 2 < 3 < 4 < . . . < 0. Hence, 1 + ω 6= ω + 1.

Note also that the following holds (in contrast to addition of cardinal numbers).

Theorem 3.5. If β 6= 0 then α < α + β for all ordinals α. 2

We have outlined how to do addition of two ordinals, thus obtaining a new
ordinal. It is also possible to multiply ordinals: Let α and β be two ordinals,
and assume that A resp. B are well-orders in α resp. β. We then define α · β to

3.2. ORDINAL POWERS OF FUNCTIONS 23

be the ordinal number of the Cartesian product of the sets A and B, under the
reverse lexicographical order. More precisely, α · β is the ordinal number of set
{(a, b) | a ∈ A and b ∈ B} under the ordering

(a1, b1) ≺ (a2, b2) iff either b1 < b2, or b1 = b2 and a1 < a2.
Hence, 2 · ω is

(0, 0) ≺ (1, 0) ≺ (0, 1) ≺ (1, 1) ≺ (0, 2) ≺ (1, 2) ≺ . . .

which is isomorphic to ω, that is 2 · ω = ω. If we instead consider ω · 2 we get

(0, 0) ≺ (1, 0) ≺ (2, 0) ≺ (3, 0) ≺ . . . ≺ (0, 1) ≺ (1, 1) ≺ (2, 1) ≺ (3, 1) ≺ . . .

which is isomorhic to ω +ω. Hence, ω ·2 = ω +ω 6= 2 ·ω. The finite n-fold product
of α is often written αn. More generally, it is also possible to define αβ for all
ordinals α and β (see e.g. [Hal61] for an extensive exposition of ordinal numbers
and ordinal arithmetic).

3.2. Ordinal powers of functions

An inductive definition of a set S ⊆ A consists of one or more base cases
defining a set B ⊆ S ⊆ A; an inductive definition also consists of one or more
inductive cases, saying how to induce new members in the set from existing ones.
We may view this as a function R : 2A → 2A which given X ⊆ S ⊆ A induces the
new members R(X) into S, i.e. R(X) ⊆ S. An inductively defined set S is then the
least set S satisfying,

(1) B ⊆ S, and
(2) R(S) ⊆ S.

In fact, by requiring S to be the least set satisfying (1) and (2) we prefer to have
S = B ∪ R(S). For example, consider the standard inductive definition of the set
E of even natural numbers.

(1) {0} ⊆ E, and
(2) if X ⊆ E then {n + 2 | n ∈ X} ⊆ E

The inductive case can be formulated as a function R : 2N → 2N where R(X) :=
{n + 2 | n ∈ X} and we can define a function f : 2N → 2N where

f(X) := {0} ∪ R(X),

The set E can be obtained by the following infinite union

E :=
⋃

n≥0

fn(∅).

That is, the least upper bound of the ascending chain ∅ ⊂ {0} ⊂ {0, 2} ⊂ {0, 2, 4} ⊂
. . .. This is a general scheme for constructing inductively defined sets which will be
discussed further in Chapter 5.

We next outline some notions useful for generalized definition of infinite and
transfinite (beyond infinity) sets. Consider a function f : A → A on a complete
lattice (A,≤). The (ascending) ordinal powers of f are defined as follows:

f0(x) := x
fα+1(x) := f(fα(x)) for successor ordinals α + 1
fα(x) :=

∨
β<α fβ(x) for limit ordinals α

24 3. ORDINAL NUMBERS

When x equals ⊥ we simply write fα instead of fα(⊥). That is:

f0 := ⊥
fα+1 := f(fα) for successor ordinals α + 1
fα :=

∨
β<α fβ for limit ordinals α

The definition of fα(x) applies also when A is a cpo if f is monotonic and x ≤ f(x).
For complete lattices we also have a corresponding dual notion of descending ordinal
powers:

f0(x) := x
fα+1(x) := f(fα(x)) for successor ordinals α + 1
fα(x) :=

∧
β<α fβ(x) for limit ordinals α

Example 3.6. Consider our inductive definition of the even natural numbers
again. The finite ordinal powers of

f(X) := {0} ∪ {n + 2 | n ∈ X}
look as follows,

f0(∅) = ∅
f1(∅) = {0}
f2(∅) = {0, 2}
f3(∅) = {0, 2, 4}
. . .
fn(∅) = {0, 2, 4, . . . , 2(n− 1)}

Consequently
fω(∅) = {0, 2, 4, 6, 8, . . .}.

Note also that
fω+1(∅) = {0, 2, 4, 6, 8, . . .}.

In fact, for any ordinal α we have

fω+α(∅) = fω(∅).
2

Example 3.7. Consider a transition system (C,→, I) with initial configura-
tions I; i.e. I ⊆ C. Let step : 2C → 2C be a step function

step(x) := I ∪ {c ∈ C | ∃c′ ∈ x such that c′ → c}
Then

step0(∅) = ∅
step1(∅) = step(∅) = I
step2(∅) = step(step1(I)) = step(I).

That is, for finite ordinals n, stepn(∅) is the set of all configurations reachable
in fewer than n steps from some initial configuration. Moreover, the least infinite
ordinal power, corresponding to the limit ordinal ω is

stepω(I) =
⋃

n<ω

stepn(I).

The limit ordinal is the set of all configurations reachable in a finite (but unbounded)
number of steps from an initial configuration. 2

EXERCISES 25

Example 3.8. Consider a relation R ⊆ A×A. Let (R◦)(S) be defined as R◦S,
i.e. the function which composes the relation R with the relation S ⊆ A×A. That
is, (R◦) : 2A×A → 2A×A. The ordinal powers of (R◦) are as follows

(R◦)0(S) = S
(R◦)α+1(S) = (R◦)((R◦)α(S)) = R ◦ (R◦)α(S)
(R◦)α(S) =

⋃
β<α(R◦)β(S) for limit ordinals α.

And
(R◦)0(idA) = idA

(R◦)1(idA) = R ◦ idA = R
(R◦)2(idA) = R ◦R ◦ idA = R ◦R
(R◦)3(idA) = R ◦R ◦R
etc.

It follows that (R◦)ω(idA) is the reflexive and transitive closure of R. Similarly
(R◦)ω(R) is the transitive closure of R. 2

Exercises

3.1 Prove that ∼ (having the same cardinality as) is an equivalence relation
on the class of all sets.

3.2 Give an example of a well-order of N with the ordinal number ω + ω + ω
(or ω · 3).

3.3 Give an example of a well-order of N with the ordinal number ω ·ω (i.e. in-
tuitively an infinite sequence of infinite sequences of natural numbers).

CHAPTER 4

Principles of induction

Standard mathematical induction on the natural numbers N = {0, 1, 2, . . .}
states that if a property P is true of 0, and if whenever P is true of n ≥ 0 then P is
true also of n+1, then P is true of all natural numbers. Formulated as a derivation
rule the principle can be stated as follows

P (0) ∀n ∈ N (P (n) ⇒ P (n + 1))

∀n ∈ N P (n)
.

The principle of mathematical induction actually applies to any well-ordered set
isomorphic to ω. However, the induction hypothesis P (n) is sometimes not suffi-
ciently strong to prove P (n + 1) for all n ∈ N. In that case we may generalize the
induction scheme to so-called strong induction, where we strengthen the induction
hypothesis as follows

P (0) ∀n ∈ N (P (0) ∧ . . . ∧ P (n) ⇒ P (n + 1))

∀n ∈ N P (n)

or stated more economically

∀n ∈ N (P (0) ∧ . . . ∧ P (n− 1) ⇒ P (n))

∀n ∈ N P (n)
.

Again, this principle applies to any well-ordered set isomorphic to ω. However, what
happens if we want to prove a property of an infinite set which is not isomorphic
to (N, <)? For instance

• the set 2N under ⊂
• (N, <) extended with a top element >.

In this chapter we consider two induction schemes which extend standard induction
and which are often more adequate in computer science applications; so-called well-
founded induction and transfinite induction.

4.1. Well-founded induction

We first consider an induction scheme which subsumes most of the standard
inductions; namely well-founded induction. While standard induction applies to
well-ordered sets isomorphic to the natural numbers, well-founded induction applies
to any well-founded set. If this motivation is not convincing enough we first show
informally that any (standard) inductive definition gives rise to a well-founded set.
Hence, well-founded induction can be used to prove properties of any inductively
defined set, including functions and relations.

27

28 4. PRINCIPLES OF INDUCTION

Recall that a well-founded relation ≺ ⊆ A×A is a relation where each non-
empty subset of A has a minimal element. A straightforward consequence of
this is that A can contain no infinite descending chain . . . x2 ≺ x1 ≺ x0 since
{x0, x1, x2, . . .} must contain a minimal element.

A well-founded set (A,R) is typically defined by inductive definitions (see
e.g. Aczel [Acz77]); and an (unambiguous) inductive definition typically gives rise
to a well-founded set: As discussed in previous chapters, an inductive definition of
A typically consists of three (types of) statements

• one or more base cases, B, saying that B ⊆ A,
• one or more inductive cases, saying schematically that if x ∈ A and y is

in some relation with x, i.e. R(x, y), then y ∈ A,
• an extremal condition stating that A contains no more elements than those

given by the base and inductive case. One way of stating this is to say that
A is the least set satisfying the base and inductive case. (This presumes of
course that there is such a least set; a problem that we address in Chapter
5.)

Now let us write R(X) for {y | ∃x ∈ X, R(x, y)}, i.e. the set of all elements that can
be induced from X. Then an inductive definition of A states that A is the least set
X such that

B ⊆ X and R(X) ⊆ X, that is, B ∪ R(X) ⊆ X

Provided that R contains no cycles x0 R x1 R . . . R xn = x0 (n ≥ 1) the result is
a well-founded set (A,R) with minimal elements B. One way of guaranteeing this
is to make sure that R is a strict partial order. And if R is not a strict poset, it
is always possible to find a subrelation R′ ⊆ R which is well-founded, and which
ı́nduces the same set.

Example 4.1. Consider the definition of the factorial function. We define
fact : N→ N to be the least set closed under the following

(1) (0 7→ 1) ∈ fact ,
(2) if (n 7→ m) ∈ fact and n′ = n + 1,m′ = (n + 1)m then (n′ 7→ m′) ∈ fact

Since (0 7→ 1) ∈ fact it follows that (1 7→ 1) ∈ fact ; hence (2 7→ 2) ∈ fact ; hence
(3 7→ 6) ∈ fact etc. Actually, claiming this to be the definition of the factorial
function is a bit bold; we have only defined a set and it remains to be shown that
fact is a function, but it is easy to see that fact must be a function on N→ N.

The inducing relation R is a relation between pairs of natural numbers where

R((n,m), (n′,m′)) iff n′ = n + 1 and m′ = (n + 1)m.

The relation R must be acyclic since if R((n, m), (n′,m′)) then n < n′. Hence, fact
is well-founded under R.1 2

We now state the principle of well-founded induction, which applies to any
well-founded set. Let (A,≺) be a well-founded set and P a property of A.

(1) If P holds of all minimal elements of A, and
(2) whenever P holds of all x such that x ≺ y then P holds of y,

1The inductive case obviously could have been stated more succinctly as: if (n, m) ∈ fact
then (n + 1, (n + 1)m) ∈ fact .

4.1. WELL-FOUNDED INDUCTION 29

then P holds of all x ∈ A. Expressed in the form of a derivation rule the principle
can be expressed as follows (note that the condition that P holds for all minimal
elements actually is a special case of the inductive case, as in strong induction)

∀y ∈ A (∀x ∈ A (x ≺ y ⇒ P (x)) ⇒ P (y))

∀x ∈ A P (x)
.

As pointed out well-founded induction encompasses most other forms of induction
including “standard” induction and strong induction over subsets of the integers,
and the notion of structural induction illustrated by the following example:

Example 4.2. Consider the standard definition of a language of propositional
logic given a finite set Var of propositional variables.

F ::= Var
F ::= ¬F | (F ∧ F) | (F ∨ F) | (F → F) | . . .

This inductive definition induces an irreflexive subformula ordering: if G is a direct
subformula of F then G ≺ F . For instance, ¬A ≺ (B ∧ ¬A) and B ≺ (B ∧ ¬A),
but A 6≺ (B ∧ ¬A). The set (F,≺) of formulas is well-founded since any subset of
formulas by necessity contains some minimal formulas.

Now, let σ> be the valuation such that σ>(x) = 1 for all x ∈ Var . A propo-
sitional formula F is said to be positive iff F is true in σ>, written σ> |= F . For
instance, given Σ = {x, y} then x∧ y is positive and so is x∨ y, but neither ¬x nor
¬(x ∧ y) are positive.

We now prove, using well-founded induction, that the following subset of for-
mulas are positive

P ::= Var
P ::= (P ∧ P) | (P ∨ P) | (P → P)

Base case: All minimal elements of P (the propositional variables) are clearly
positive. That is, if x ∈ Var then σ> |= x.

Inductive case: Assume that we have a non-atomic formula F ∈ P all of
whose proper subformulas are positive. If F is of the form F1 → F2 then by
assumption σ> |= F1 and σ> |= F2. Hence, σ> |= F1 → F2, i.e. F is positive. The
remaining two cases are analogous.

Note: Being a member in P is a sufficient, but not necessary, condition for
being a positive formula, since e.g. ¬x ∨ y is positive but not contained in P . 2

Well-founded sets are used extensively when proving convergence, in particular
termination, of computations.

Example 4.3. One can show that Z+×Z+ is well-founded under the ordering

(m1, n1) ¿ (m2, n2) iff max(m1, n1) < max(m2, n2).

Now consider the standard recursive algorithm for computing the greatest common
divisor (assuming an initial configuration gcd(m,n) with m,n > 0):

(T1) gcd(m,m) ⇒ m
(T2) gcd(m,n) ⇒ gcd(m− n, n) if m > n
(T3) gcd(m,n) ⇒ gcd(m,n−m) if m < n

We prove termination by well-founded induction on ¿. The only minimal element
is (1, 1), and gcd(1, 1) clearly terminates due to T1.

30 4. PRINCIPLES OF INDUCTION

Next assume that we have gcd(m,n) with m + n > 2 and that gcd(i, j) termi-
nates for all (i, j) ¿ (m,n). There are three cases to consider:

(1) If m = n then gcd(m,n) terminates trivially due to T1.
(2) if m > n > 0 then clearly (m − n, n) ¿ (m, n). That is, gcd(m − n,m)

terminates by the induction hypothesis. Hence, gcd(m, n) must terminate
since only T2 is applicable.

(3) If n > m > 0 then clearly (m,n−m) ¿ (m,n). Since gcd(m,n−m) ter-
minates by the induction hypothesis, then also gcd(m,n) must terminate
since only T3 is applicable.

Hence, gcd(m,n) terminates for all m,n ∈ Z+. 2

Remark: Well-founded relations are often used indirectly e.g. in termination
proofs. Consider a transition system (C,⇒) and assume that we want to prove that
there are no infinite computations x0 ⇒ x1 ⇒ . . . ⇒ xn ⇒ We may prove this
by exhibiting a so-called norm function f from C to some well-founded relation
(A,≺), often the natural numbers under <, or a lexicographical well-order. Now
computations starting with a terminal configuration are trivially finite. Moreover,
if we can prove that f(xi+1) ≺ f(xi) whenever xi ⇒ xi+1, then we know for sure
that there can be no infinite computations, since a well-founded set can have no
infinite descending chain.

Example 4.4. Consider the transitions T1 − T3 again and define the following
norm function sum : (N× N) → N.

sum(m,n) := m + n.

As pointed out above, T1 can be applied at most once; hence all infinite compu-
tations are due to T2 and/or T3. First consider T2: assuming that m > n > 0,
then

sum(m− n, n) = m− n + n = m < m + n = sum(m,n).
Next consider T3: assuming that n > m > 0, then

sum(m,n−m) = m + (n−m) = n < m + n = sum(m,n).

Hence, whenever (mi, ni) ⇒ (mi+1, ni+1) then sum(mi+1, ni+1) < sum(mi, ni).
Thus, there can be no infinite computations assuming an initial configuration
gcd(m,n) where m,n > 0. (A norm-function based on the measure max in the
previous example works equally well.) 2

4.2. Transfinite induction

Ordinals are well-orders which are well-founded sets. Hence, well-founded in-
duction applies to properties of the ordinal numbers. However, the induction scheme
can be somewhat simplified when reasoning about properties of ordinals; and espe-
cially, sets defined by ordinal powers. The resulting induction scheme is called the
principle of transfinite induction.

Let P a property of ordinals, then P is true of every ordinal if
• P is true of 0,
• P is true of α + 1 whenever P is true of α,
• P is true of β whenever β is a limit ordinal and P is true of every α < β.

(The first case is actually a special case of the last case.)
We illustrate the transfinite induction scheme by proving the following theorem.

EXERCISES 31

Theorem 4.5. Let (A,≤) be a complete lattice and assume that f : A → A is
monotonic. We prove that fα ≤ fα+1 for all ordinals α. 2

Before giving the proof we give the following lemma whose proof is left as an
exercise.

Lemma 4.6. Let (A,≤) be a complete lattice and assume that f : A → A is
monotonic. If B ⊆ A then f(

∨
B) ≥ ∨ {f(x) | x ∈ B}. 2

We now prove Theorem 4.5.

Proof. The property clearly holds for α = 0 since f0 = ⊥ ≤ f1 = f(⊥).
Now assume that fβ ≤ fβ+1. Since f is monotonic it follows that f(fβ) ≤

f(fβ+1), that is fβ+1 ≤ fβ+2.
Finally assume that β is a limit ordinal and assume that the property holds for

all α < β; that is fα ≤ fα+1 for all α ≤ β. Now using the Lemma 4.6 we get

fβ+1 = f(
∨ {fα | α < β})

≥ ∨ {f(fα) | α < β} (by Lemma 4.6)
≥ ∨ {fα | α < β}
= fβ .

Hence, fα ≤ fα+1 for all ordinals α. ¤

Exercises

4.1 Give a sufficient and necessary syntactic condition for being a positive
formula and prove this.

4.2 Prove that N× N under the ordering

(x1, x2) ¿ (y1, y2) iff max(x1, x2) < max(y1, y2)

is well-founded.
4.3 Prove that the following program for concatenation of strings of a’s is

associative. That is, aconc(x, aconc(y, z)) = aconc(aconc(x, y), z) for all
strings x, y, z ∈ {a}∗.

aconc(ε, y) ⇒ y
aconc(a.x, y) ⇒ aconc(x, a.y).

4.4 Prove termination of Ackermann’s function on N.
ack(0, y) := y + 1
ack(x, 0) := ack(x− 1, 1) (x > 0)
ack(x, y) := ack(x− 1, ack(x, y − 1)) (x > 0, y > 0).

Hint: Exhibit a well-founded order on N × N and prove by well-founded
induction that each recursive call ack(m,n) ∈ N× N must terminate.

4.5 Does the greatest common divisor program in Example 4.3 terminate if
the domain is extended to N× N?

4.6 Prove, using well-founded induction, that every natural number n ≥ 2 is
a product of prime numbers. (Well-founded induction reduces to strong
mathematical induction in this case).

4.7 Prove Lemma 4.6.

32 4. PRINCIPLES OF INDUCTION

4.8 A set/class A is said to be transitive iff C ∈ A whenever B ∈ A and
C ∈ B. Prove, using transfinite induction, that the class of von Neumann
ordinals is transitive.

4.9 Let (A,≤) be a cpo and let f : A → A be monotone. Prove, using trans-
finite induction, that fα(⊥) ≤ fα+1(⊥) for any ordinal α.

4.10 Let (A,≤) be a complete lattice and assume that f : A → A is monotonic.
(That is, f(x) ≤ f(y) whenever x ≤ y). Let a ∈ A and assume that a ≤
f(a). Show that there must be some ordinal α such that fα+1(a) = fα(a).

Remark: We call x a fixed point of f iff f(x) = x. Now, since
⊥ ≤ f(⊥) all monotonic maps on complete lattices must have at least one
fixed point. (We prove an even stronger result for monotonic maps on
complete lattices in the next chapter.)

CHAPTER 5

Fixed points

In this chapter we consider the problem of finding solutions to equations
of the form

f(x) = x

where f : A → A. An element a ∈ A such that f(a) = a is called a fixed point of
f . Note that our problem is more far-reaching than this. If we want to solve an
equation f(x) = 0, this can be reformulated as the problem of solving the equation
f(x)+x = x; hence, if we define g(x) := f(x)+x we have again the problem g(x) =
x. Of course, our function may not have any fixed points (e.g. f(n) := n + 1), or it
may have more than one fixed point (e.g. f(n) := n). The problem of determining
if a function has a fixed point is undecidable in general and in this chapter we
focus on two sufficient conditions under which we can guarantee the existence of
fixed points, and in some cases even computer them (or at least approximate them
arbitrarily well).

For a historic account of the use of fixed points in semantics of programming
languages and logics, see Lassez et al. [LNS82].

5.1. Basic notions

We summarize some basic properties of functions on ordered sets.

Definition 5.1. Let (A,≤) be a poset. A function f : A → A is said to be
• monotone (order-preserving) iff f(x) ≤ f(y) whenever x ≤ y.
• antimonotone iff f(x) ≥ f(y) whenever x ≤ y.
• inflationary iff x ≤ f(x) for all x ∈ A.
• idempotent iff f(f(x)) = f(x) for all x ∈ A.

2

A trivial case where we can always guarantee the existence of fixed points is
when the map is idempotent.

Theorem 5.2. Let (A,≤) be a non-empty cpo and f : A → A idempotent.
Then f has a (not necessarily unique) fixed point. 2

We also introduce the notion of continuous maps. We first attempt a generic
definition which is subsequently adapted to complete lattices and cpo’s.

Definition 5.3. A function f : A → A is continuous if it preserves existing
least upper bounds; i.e. if B ⊆ A and

∨
B exists, then

∨ {f(x) | x ∈ B} exists and
equals f(

∨
B). 2

In the case of a complete partial order – which only guarantees the existence
of suprema for ascending chains – we may specialize this as follows.

33

34 5. FIXED POINTS

Definition 5.4. Let (A,≤) be a cpo. A function f : A → A is called (chain-)
continuous if

f(
∨{x0, x1, x2, . . .}) =

∨{f(x0), f(x1), f(x2), . . .}
for every ascending chain x0 < x1 < x2 < . . . in A. 2

In the case of a complete lattice – where every subset has a supremum – we
get:

Definition 5.5. Let (A,≤) be a complete lattice. A function f : A → A is
continuous if

f(
∨

B) =
∨{f(x) | x ∈ B}

for every B ⊆ A. 2

A continuous map is always monotone (prove this), but the converse is not true
in general. However, if (A,≤) is finite the two concepts coincide.

Theorem 5.6. If f : A → A is monotone and A is finite, then f must be
continuous. 2

For a cpo or a lattice we may weaken the condition that A is finite to the
condition that A contains no infinite ascending chains (i.e. is finite-length in case
of a lattice).

5.2. Knaster-Tarski’s theorem

In this section we prove a classic fixed point theorem due to Knaster-Tarski
(see [Tar55]) which concerns the existence of (least and greatest) fixed points of
monotone maps on complete lattices. We also give, without proof, a similar result
concerning the existence of (least) fixed points of monotone maps on cpo’s.

Definition 5.7. Let (A,≤) be a poset and consider a map f : A → A. An
x ∈ A such that f(x) ≤ x is called a pre-fixed point of f . Similarly x ∈ A is called
a post-fixed point of f iff x ≤ f(x). 2

Example 5.8. As defined previously a set B ⊆ A is closed under the map
f : A → A iff f(x) ∈ B whenever x ∈ B. We may “lift” f to F : 2A → 2A as follows

F (X) := {f(x) | x ∈ X} .

Then B ⊆ A is closed under f iff B is a pre-fixed point of F , i.e. if F (B) ⊆ B. (In
many cases the same symbol f is used for both functions, by abuse of notation.) 2

We now state and prove the Knaster-Tarski fixed point theorem.

Theorem 5.9. Let (A,≤) be a complete lattice and f : A → A monotone.
Then

∧{x ∈ A | f(x) ≤ x} is the least fixed point of f , and
∨{x ∈ A | x ≤ f(x)}

is the greatest fixed point of f . 2

Proof. We prove the first part of the theorem. The second result can be
shown dually. Consider the set S := {x ∈ A | f(x) ≤ x} of all pre-fixed points of f .
The set S clearly is non-empty since at least f(>) ≤ >. Now let y :=

∧
S. Then by

definition y ≤ x for every x ∈ S. By montonicity of f , f(y) ≤ f(x) ≤ x, for every
x ∈ S. Hence f(y) ≤ x for every x ∈ S, i.e. f(y) is a lower bound of S. But since y
is the greatest lower bound we must have

f(y) ≤ y. (5.1)

5.2. KNASTER-TARSKI’S THEOREM 35

Moreover, f(f(y)) ≤ f(y) (by monotonicity) which means that f(y) ∈ S. Hence

y ≤ f(y). (5.2)

Our two inequalities imply not only that y is a fixed point but also that y is least,
since all fixed points (including y) must be contained in S. ¤

That is, the least pre-fixed point of f is the least fixed point of f . Dually, the
greatest post-fixed point of f is the greatest fixed point of f .

The Knaster-Tarski theorem concerns complete lattices, but the existence of a
least fixed point holds also for monotone maps on cpo’s; however, the proof is more
complicated, and we give the theorem without a proof.

Theorem 5.10. Let (A,≤) be a cpo and f : A → A monotone. Then f has a
least fixed point. 2

The least fixed point of f is denoted lfp(f). Alternatively it is written

µx.f(x)

with reading: the least x such that f(x) = x. The greatest fixed point of f is often
denoted gfp(f), alternatively

νx.f(x).

Example 5.11. In many areas of computer science we model computations by
transition systems, (C,⇒), where C is a set of configurations and where ⇒ ⊆ C×C
is a so-called transition relation. The configurations are snap-shots of the state of
a computation and the transition relation describes the atomic steps of a system.
Hence a computation is a finite, or possibly infinite, sequence of configurations

c0 ⇒ c1 ⇒ c2 ⇒ . . .

Now given a set of configurations X ⊆ C we may define a function step : 2C → 2C

mapping X ⊆ C to the set of all configurations reachable in one step from some
configuration in X. That is

step(X) := {c ∈ C | ∃c′ ∈ X such that c′ ⇒ c}
This function is clearly monotone with respect to ⊆; if X ⊆ Y then step(X) ⊆
step(Y). Hence, step has a least and greatest fixed point. Of course, knowing
that step has a fixed point is of limited value, but we will soon see not only that it
can be computed (or at least approximated) but also that such fixed points often
convey useful information. 2

We conclude this section with a return to inductive definitions of sets. Recall
from Chapter 4 that an inductive definition of a set A schematically states that A
is the least set X such that

B ⊆ X and R(X) ⊆ X,

or put alternatively
B ∪ R(X) ⊆ X.

In other words, A is the least pre-fixed point of the map Φ(X) := B ∪ R(X).
Of course, there is no guarantee that there is a least pre-fixed point, but if Φ is
monotonic on a cpo (or a complete lattice) then the inductive definition must be
sound and

A = µX.B ∪ R(X) = lfp(Φ).

36 5. FIXED POINTS

Hence, if we make sure that inductive definitions are monotonic, then the definition
must be well-defined. (It defines something and that something is unique).

Example 5.12. We continue Example 5.11: Assume that we have a set I ⊆ C
of initial configurations and want to characterize the set R ⊆ C of all configurations
reachable from some c ∈ I. The set R ⊆ C then is the least set such that

(1) I ⊆ R (i.e. all initial configurations are reachable),
(2) if X ⊆ R then step(X) ⊆ R.

Hence, R is the least set X such that

I ∪ step(X) ⊆ X.

Now, the function ΦI(X) := I∪step(X) is clearly monotonic and R therefore must
be the least fixed point of ΦI . That is, the least fixed point of ΦI is the set of all
configurations reachable, in 0 or more steps, from I. 2

In the next section we shall see how to characterize the set R constructively
under the additional assumption that ΦI is continuous.

5.3. Kleene’s fixed point theorem

Knaster-Tarski’s theorem concerns the existence of least and greatest fixed
points. We now turn to the problem of computing, or at least approximating, fixed
points. The following theorem, due to Kleene, provides a hint on how to compute
the least fixed point, in case of a continuous map.

Theorem 5.13. Let (A,≤) be a cpo (or a complete lattice) and assume that
f : A → A is continuous. Then fω(⊥) is the least fixed point of f . 2

Proof. We first recall that fn(⊥) ≤ fn+1(⊥) for all n < ω according to
Theorem 4.5. We next prove that fω(⊥) is a fixed point of f , and finally show that
it must be the least fixed point. By definition

fω(⊥) =
∨

n<ω

fn(⊥). (5.3)

Hence
f(fω(⊥)) = f(

∨
n<ω

fn(⊥)).

Now since f is continuous, and fn(⊥) ≤ fn+1(⊥) for all n ≤ ω

f(
∨

n<ω

fn(⊥)) =
∨

n<ω

f(fn(⊥))

=
∨

1≤n<ω

fn(⊥)

= fω(⊥) (since f0(⊥) = ⊥).

We finally demonstrate that fω(⊥) must be the least fixed point of f . Let x be an
arbitrary fixed point of f . Clearly ⊥ ≤ x. By monotonicity fn(⊥) ≤ fn(x) = x for
all n < ω. That is, x is an upper bound of {fn(⊥) | n < ω}. But by (5.3) fω(⊥) is
the least upper bound of {fn(⊥) | n < ω}; whence fω(⊥) ≤ x, and fω(⊥) therefore
is the least fixed point. ¤

5.3. KLEENE’S FIXED POINT THEOREM 37

From Chapter 3 we know that

fω(⊥) =
∨

n<ω

fn(⊥).

That is, lfp(f) is the least upper bound of the so-called Kleene sequence,

⊥, f(⊥), f2(⊥), . . . , fn(⊥), . . .

In fact, since f is monotonic this is an ascending chain, which means that lfp(f) =
limn→∞ fn(⊥).

Example 5.14. We consider a class of logic formulas which are particularly
suited for computation and which provides the basis of the field of logic program-
ming. (It also is a subclass of the positive Boolean formulas introduced earlier.)
Logic programs typically consist of predicate logic formulas, but for simplicity we
consider only the propositional fragment here. A logic program is a set of definite
clauses (sometimes called Horn clauses) which are logic formula on the form

x1 ∧ . . . ∧ xn → x0 (with n ≥ 0)

where (in our restricted case) x0, . . . , xn are propositional variables. To emphasize
the programming aspect definite clauses are usually written

x ← x1, . . . , xn.

A definite clause with n = 0 is called a fact. A definite program (or simply program)
is a set of definite clauses. For instance, let P be the definite program

a ← b, c
b ←
c ← b, d
d ← e
e ← e
d ← f
f ← .

Restricting attention to definite programs has several important consequences which
are not possessed by propositional formulas in general. First of all, definite pro-
grams cannot be inconsistent; there is always at least one interpretation which is a
model of the program (which one?). Moreover, definite programs always have a least
model called the least Herbrand model (least under set inclusion or the pointwise
ordering depending if we represent interpretations as sets or Boolean maps).

Let Var := {a, b, c, d, e, f} and consider the space of all interpretations 2V ar of
Var . In order for an interpretation I to be a model of a clause x0 ← x1, . . . , xn ∈ P
we require that x0 ∈ I if {x1, . . . , xn} ⊆ I. Hence the least Herbrand model is
the least interpretation satisfying this for all clauses in P . We may formalize this
observation by means of an operator TP : 2Var → 2Var usually called the immediate
consequence operator,

TP (I) := {x0 | x0 ← x1, . . . , xn ∈ P ∧ {x1, . . . , xn} ⊆ I} . (5.4)

In order for I to be a model of P it is required that TP (I) ⊆ I; i.e. I must be a
pre-fixed point of TP , and lfp(TP) then is the least model of P .

38 5. FIXED POINTS

Figure 1. Transition system (C,⇒)

The space of valuations 2Var is a finite complete lattice of sets with bottom
element ∅, and TP clearly is monotonic; hence continuous since 2Var is finite. (Ac-
tually, one can show that it is continuous also when the set of all interpretations is
infinite.) Hence Tω

P (∅) is the least fixed point of TP .
In this particular example we may compute lfp(TP) by a finite prefix of the

ordinal powers of TP .
T 0

P (∅) = ∅
T 1

P (∅) = {b, f}
T 2

P (∅) = {b, d, f}
T 3

P (∅) = {b, c, d, f}
T 4

P (∅) = {a, b, c, d, f}
T 5

P (∅) = T 4
P (∅)

Hence {a, b, c, d, f} is the least model of P . For more information on fixed point
semantics of logic programs see e.g. Lloyd [Llo87]. 2

Example 5.15. Consider the transition system (C,⇒) depicted in Figure 1.
In Example 5.12 we showed that the function

ΦI(X) := I ∪ step(X)

was monotonic. Since, 2C is finite it follows trivially that ΦI is also continuous.
Hence, Φω

I (∅) must be the least fixed point of ΦI . The ascending Kleene sequence
looks as follows, assuming that I = {b, d},

Φ0
I(∅) = ∅

Φ1
I(∅) = {b, d}

Φ2
I(∅) = {b, c, d, e}

Φ3
I(∅) = {b, c, d, e, h}

Φ4
I(∅) = Φ3

I(∅).
Hence, {b, c, d, e, h} are the only configurations reachable from {b, d}. 2

Example 5.16. Consider a transition system (C,⇒), and let good ⊆ C be
a set of configurations that we hope to reach eventually (i.e. they are good con-
figurations). Now consider the problem of computing the set of all configurations

5.3. KLEENE’S FIXED POINT THEOREM 39

where it is possible to eventually reach a good configuration. We first introduce the
operation ex : 2C → 2C , defined as

ex(X) := {c ∈ C | ∃c′ ∈ X such that c ⇒ c′} .

That is, ex(X) is the set of all configurations where it is possible (but not necessary)
to reach X in one step. Hence, ex(good) is the set of all configurations that may
move to a good configuration in one step, and ex(ex((good)) is the set of all
configurations that may reach a good configuration in 2 steps, and so forth.

The set ef(good) of configurations which may eventually reach good is the
least set X ⊆ C such that

• good ⊆ X, and
• ex(X) ⊆ X.

That is, ef(good) is the least set X such that good∪ ex(X) ⊆ X. Now Φ(X) :=
good ∪ ex(X) is monotonic, hence

ef(good) = µX.good ∪ ex(X).

If we consider the transition system depicted in Figure 1 again, and if we assume
e.g. that good = {e, f}, then we get the following ascending Kleene sequence

Φ0(∅) = ∅
Φ1(∅) = {e, f}
Φ2(∅) = {c, d, e, f}
Φ3(∅) = {a, b, c, d, e, f}
Φ4(∅) = Φ3(∅).

So far we focused almost entirely on least fixed points, but a monotonic map also has
a greatest fixed point. For the sake of simplicity we make the common assumption
that our transition system contains no sinks, i.e. configurations without outgoing
transitions.1 Consider the following map,

ax(X) := {c ∈ C | ∀c′ if c ⇒ c′ then c′ ∈ X} .

Hence, ax(X) is the set of all configurations where we, by necessity, reach X in a
single step no matter what transition is taken.

Assume that we have a set bad of illegitimate configurations, and let bad be its
complement; i.e. the ok configurations. We now want to characterize a set ag(bad)
of configurations where it is impossible to reach bad. That is, if we are in ag(bad)
then we remain in ag(bad) no matter what transition we make. Hence, we require
that

(1) ag(bad) must be contained in bad, and
(2) ag(bad) must be contained in ax(bad), and
(3) ag(bad) must be contained in ax(ax(bad)), etc

That is, ag(bad) is the largest set X, such that
(1) X ⊆ bad, and
(2) X ⊆ ax(X).

That is, X should be the largest satisfying

X ⊂ bad ∩ ax(X).

1This is actually no restriction; if there are configurations without outgoing transitions we
can always add a cyclic transition from the configuration to itself.

40 5. FIXED POINTS

Ideally we want to establish an equality, that is

ag(bad) = νX.bad ∩ ax(X).

Now let Φ(X) := bad∩ax(X). The greatest fixed point of Φ can be constructed in
the same fashion as the least fixed point via a descending Kleene sequence starting
from the top element; in our case C. Assume that bad = {c, f}. Then

Φ0(C) = C
Φ1(C) = {a, b, d, e, g, h, i}
Φ2(C) = {d, e, g, h, i}
Φ3(C) = Φ2(C).

Hence, {d, e, g, h, i} is the set of all configurations where it is impossible to reach
an illegitimate configuration.

When reasoning about transition systems least fixed points typically express
that something (may) eventually happen, while greatest fixed points typically ex-
press that something (may) hold forever. The operations ex and ax (as well as
ef and ag) are operators of CTL (Computation Tree Logic); a temporal logic
used to reason about temporal properties of transition systems (see e.g. Clarke et
al. [CGP99] for details). 2

All of the previous examples involved finite lattices in which case it is always
possible to reach the least (and greatest) fixed points after a finite prefix of the
ascending (resp. descending) Kleene sequence. However, this is not always the
case, as illustrated in the following example.

Example 5.17. Consider the following equation over strings of some alphabet
Σ with 1 ∈ Σ

w = 1w. (5.5)

Such equations occur frequently when studying semantics of perpetual processes;
for instance, in reactive, distributed and concurrent systems. The equation may
for example model the behavior of a process w which sends a message 1 and then
behaves like w again, in infinity.

It should be clear that no finite string satisfies (5.5) since the righthand side is
always one character longer than the lefthand side if w is finite. That is, there are
no solutions in Σ∗. Hence, consider instead the set of all possibly infinite strings
Σ∞ = Σ∗ ∪ Σω. We may rewrite (5.5) as a fixed point equation

w = one(w) (5.6)

where
one(x) := {(0 7→ 1)} ∪ {(n + 1 7→ a) | (n 7→ a) ∈ x} .

Then
one0(∅) = ∅
one1(∅) = {0 7→ 1}
one2(∅) = {0 7→ 1, 1 7→ 1}
one3(∅) = {0 7→ 1, 1 7→ 1, 2 7→ 1}...

with the limit

oneω(∅) =
⋃

n<ω

onen(∅) = {0 7→ 1, 1 7→ 1, 2 7→ 1, 3 7→ 1, . . .}.

EXERCISES 41

Now one : Σ∞ → Σ∞ can be shown to be chain-continuous; for every chain w0 <
w1 < w2 < . . . we have that,

one(
⋃

i≥0

wi) =
⋃

i≥0

one(wi) (5.7)

Hence, oneω(∅) is the (unique) least solution to (5.5). 2

Exercises

5.1 Give an example of a function which is monotone but not inflationary and
vice versa.

5.2 Prove that functional composition preserves monotonicity. That is, if
f : A → A and g : A → A are monotone, then so is f◦g. Note: (f◦g)(x) :=
f(g(x)).

5.3 Prove that functional composition preserves continuity.
5.4 Define a map Φ such that Φω(⊥) is the Fibbonacci function,

{0 7→ 1, 1 7→ 1, 2 7→ 2, 3 7→ 3, 4 7→ 5, 5 7→ 8, . . .}.
Show that the map is chain-continuous.

5.5 Give an example of a complete lattice (A,≤) and a monotonic map f : A →
A such that fω(⊥) is not a fixed point of f .

5.6 Prove that a continuous map on a complete lattice (or a cpo) is always
monotone.

5.7 Prove that if f : A → A is monotone and A is finite, then f must be
continuous.

5.8 Show that if there exists an n ∈ N such that x is a unique fixed point of
fn (i.e. for every y such that fn(y) = y it holds that x = y), then x must
be a fixed point of f .

5.9 Let (A,≤) be a complete lattice (or a cpo) and f : A → A monotone.
Show, using transfinite induction, that fα(⊥) ≤ lfp(f) for every ordinal
α.

CHAPTER 6

Finite automata on infinite words

In this chapter we study extensions of classical automata theory; more
precisely automata defining languages of infinite words. Such automata have gained
considerable interest in the study of systems that typically exhibit infinite behaviors,
e.g. reactive systems such as operating systems or telephone switches.

The automata that we consider here have applications in the verification of
properties of reactive systems such as safety, liveness and fairness. A system exhibits
a set of behaviours which can be abstracted into an infinite sequence of observations;
typically an infinite sequence of events or values of (some) state variables. A system
is then identified with the set of all its possible behaviours, i.e. typically an infinite
set of infinite words. Now a property of the system can likewise be represented as
the set of all allowed behaviours; also typically an infinite set of infinite words. To
verify that the system exhibits a property amounts to showing that all behaviors
of the system are contained in the specification. That is, we want to show that the
language L1 representing all possible system behaviors is contained in the language
L2 representing all allowed system behaviors; that is L1 ⊆ L2. The main focus of
the chapter is formalisms for representing infinite words, and effective procedures for
checking language containment. For a more elaborate presentation see e.g. Thomas
[Tho90].

6.1. Basic notation

In what follows A denotes a finite alphabet, and A∗ denotes the set of all finite
words over A; that is, the set of all functions w : {0, . . . , n} → A, including the case
n < 0, which is called the empty word (and usually written simply ε). Finite words
are typically denoted by u, v, w, while sets of finite words are denoted U, V, W . The
standard operations on sets of finite words (concatenation U.V , union U + V and
finite repetition U∗) will be used.

By Aω we denote the set of all countably infinite words over A; that is the
set of functions α : ω → A. In what follows we refer to countably infinite words as
ω-words, and use symbols such as α, β, γ to denote them. If U is a set of finite
words over A then Uω denotes the set of infinite repetitions of finite strings in U ,
that is

Uω = {α ∈ Aω | ∃w1w2 . . . ∈ U,α = w1w2 . . . } .

Sets of ω-words are called ω-languages and we use L to denote such languages.

6.2. Büchi automata

Finite automata for ω-words are almost identical to the finite word counterpart.
The only difference is the notion of final, or accepting, state, which (obviously)

43

44 6. FINITE AUTOMATA ON INFINITE WORDS

Figure 1. Büchi automaton recognizing (b∗a)ω

cannot be the same. There are different types of automata with different acceptance
conditions, the simplest of which is Büchi automata [Büc60].

Definition 6.1. A Büchi automaton B over an alphabet A is a tuple (Q, q0, ∆, F)
where Q is a finite set of states, q0 ∈ Q an initial state, ∆ ⊆ Q×A×Q a transition
relation and F ⊆ Q a set of accepting, or final, states. 2

A Büchi automaton is called deterministic iff for any q ∈ ∆ and a ∈ A there is
a unique q′ such that (q, a, q′) ∈ ∆.

A run of a Büchi automaton B = (Q, q0, ∆, F) on an ω-word α is an infinite
word of states σ ∈ Qω such that σ(0) = q0 and (σ(i), α(i), σ(i + 1)) ∈ ∆ for all
i ≥ 0.

Let inf(σ) be the set of all states that occur infinitely often in the ω-word σ.
Then an ω-word α is accepted by a Büchi automaton B iff there is a run σ on α
such that F ∩ inf(σ) 6= ∅. That is, if there is a run where some accepting state
occurs infinitely often. The language of a Büchi automaton B is defined as the set
of all such words,

L(B) = {α | B accepts α} .

An ω-language definable by some Büchi automaton is said to be Büchi recognizable.

Example 6.2. Figure 1 depicts a (deterministic) Büchi automaton that accepts
ω-words of a:s and b:s in which each occurrence of b is eventually followed by an
a. That is, it accepts words with infinitely many a:s, or using regular expression
syntax, the ω-language (b∗a)ω. 2

Like finite regular languages, Büchi recognizable languages are closed under
union as well as intersection.

Theorem 6.3. If L1, L2 ⊆ Aω are Büchi recognizable languages, then so are
L1 ∪ L2 and L1 ∩ L2. 2

Proof. The proof (or rather construction) is similar to that of finite regular
languages; that is, we construct a product automaton. However, some care has to
be exercised to handle the accepting states in the case of intersection. We show
how to construct an automaton accepting the intersection of Büchi recognizable
languages L1 and L2.

Let B1 = (Q1, q1,∆1, F1) and B2 = (Q2, q2, ∆2, F2) be Büchi automata with
ω-languages L1 and L2. We construct a product automaton

B = (Q1 ×Q2 × {0, 1, 2}, (q1, q2, 0),∆, Q1 × F2 × {2})
where ((x1, y1, n1), a, (x2, y2, n2)) ∈ ∆ iff

• (x1, a, x2) ∈ ∆1 and (y1, a, y2) ∈ ∆2,
• and where in addition

6.2. BÜCHI AUTOMATA 45

– n2 = 1 if n1 = 0 and x2 ∈ F1,
– n2 = 2 if n1 = 1 and y2 ∈ F2,
– n2 = 0 if n1 = 2,
– n2 = n1 otherwise.

The third component of the state ensures that the accepting states of B correspond
to runs where accepting states of both B1 and B2 are visited infinitely often. The
third component is initially 0; then becomes 1 when we reach a state correspond-
ing to an accepting state of B1 and is incremented again when reaching a state
corresponding to an accepting state of B2 after which it is reset to 0. ¤

The following propositions can be verified using techniques similar to those for
finite regular languages, and illustrate two techniques of constructing ω-languages.

Proposition 6.4. If U ⊆ A∗ is regular, then Uω is Büchi recognizable. 2

Proposition 6.5. If U ⊆ A∗ is regular and L ⊆ Aω is Büchi recognizable then
so is U.L. 2

Based on these results we can now state and prove the following theorem which
also provides a characterization of Büchi recognizable languages in terms of finite
regular languages.

Theorem 6.6. An ω-language L is Büchi recognizable iff there is some n ≥ 0
and regular languages of finite words, Ui and Vi where 1 ≤ i ≤ n, such that

L =
n⋃

i=1

Ui.(Vi)ω.

2

Proof. Let W (q, q′) denote the language of finite (non-empty) words accepted
in any run starting in state q and ending in state q′. The language W (q, q′) clearly
is regular for all q, q′ of a Büchi automaton.

(⇒) Assume that α ∈ L. Since L is Büchi recognizable there must be some
Büchi automaton (Q, q0,∆, F) and some run σ where some q ∈ F occurs infinitely
often. That is α ∈ W (q0, q).(W (q, q))ω. Since there are only finitely many (accept-
ing) states, it follows that L can be expressed as a finite union of ω-languages.

(⇐) By Propositions 6.4 and 6.5 and Theorem 6.3 it follows that L must be
Büchi recognizable. ¤

Hence any Büchi recognizable language can be written in the form

U1.(V1)ω + . . . + Un.(Vn)ω

where U1, . . . , Un, V1, . . . , Vn are regular expressions. Such expressions are called
ω-regular expressions.

The so-called non-emptiness problem is decidable for Büchi automata; that
is, the problem of checking whether the language defined by a Büchi automaton
contains some string. It is just a matter of finding a path in the automaton from
the initial state to one of the final states, and then find a non-empty path from the
final state to itself.

Theorem 6.7. The non-emptiness problem for Büchi automata is solvable in
O(m+n) time, where m is the number of states, and n the number of transitions.
2

46 6. FINITE AUTOMATA ON INFINITE WORDS

Figure 2. Büchi automata recognizing (a + b)∗bω

Proof. Proceed as follows: First determine the set of all states Q′ reachable
from the initial state. Then find all strongly connected components (SCCs) in Q′.
Finally check if some component contains an accepting state. All steps can be
solved in time O(m+n). ¤

The non-emptiness-problem may first appear insignificant. However, it is an
important component in checking language containment. Let L1 and L2 be ω-
languages over an alphabet A, and let L2 denote the complement of L2, that is
Aω \ L2. Then

L1 ⊆ L2 iff L1 ∩ L2 = ∅.
Now Büchi-recognizable languages are closed under intersection (see Theorem 6.3)
and we have already shown an effective way of intersecting two Büchi automata.
We have also just shown that the non-emptiness-problem is decidable. Hence,
if Büchi automata are closed under complement, and if we can find some effective
way of computing a Büchi automaton recognizing the complement of another Büchi
automaton, then we we have an effective way of checking language containment.
Now Büchi recognizable languages are in fact closed under complementation, as
shown by Büchi.

Theorem 6.8. If L is Büchi recognizable, then so is Aω \ L. 2

However, complementing a Büchi automaton is a tricky matter in contrast
to computing the complement of automata over finite words. For a determinis-
tic finite automaton accepting a language W of finite words it is straightforward
to compute a new DFA that accepts W ’s complement, A∗ \W ; simply change all
non-accepting states into accepting states and vice versa. Moreover, since nondeter-
ministic automata can be effectively transformed into deterministic finite automata
it is “straightforward” to take the complement also of nondeterministic finite au-
tomata.1 For Büchi automata the situation is more intricate. As will be seen, there
are nondeterministic Büchi automata that have no equivalent deterministic coun-
terpart. Hence, nondeterministic Büchi automata are strictly more expressive than
deterministic Büchi automata. Moreover, it turns out that deterministic Büchi
automata are not closed under complementation, as illustrated by the following
example.

Example 6.9. Figure 2 depicts a nondeterministic Büchi automaton that ac-
cepts the language (a + b)∗bω; i.e. ω-words with only a finite number of a:s; or in
other words, the complement of the automaton in Figure 1. 2

1The translation from a nondeterministic to a deterministic automaton may of course lead
to an exponential blow-up in the size of the automaton.

6.3. MULLER AUTOMATA 47

We prove that there is no deterministic Büchi automaton that accepts the
language (a + b)∗bω from our example. Let W ⊆ A∗ be a regular language and let

limW = {α ∈ Aω | ∀m ≥ 0 ∃n > m such that α(0) . . . α(n) ∈ W}.
That is, lim W is the set of all ω-words that have an infinite number of prefixes in
W . For example

• lim b(ab)+ = b(ab)ω

• lim a∗b = ∅
• lim a(b + c)∗ = a(b + c)ω

We can now prove the following characterization of deterministically Büchi recog-
nizable languages.

Theorem 6.10. An ω-language L is deterministically Büchi recognizable iff
there is some regular language W ⊆ A∗ such that L = lim W . 2

Proof. Let B = (Q, q0, ∆, F) be a deterministic Büchi automaton, and let
W ⊆ A∗ be the language recognized by the DFA A = (Q, q0,∆, F). Then,

B accepts α iff some run of B on α enters F infinitely often
iff ∀m ≥ 0 ∃n > m such that B reaches F on α(0) . . . α(n)
iff ∀m ≥ 0 ∃n > m such that A reaches F on α(0) . . . α(n)
iff ∀m ≥ 0 ∃n > m such that α(0) . . . α(n) ∈ W
iff α ∈ lim W

¤

Theorem 6.11. The language (a + b)∗bω is not deterministically Büchi recog-
nizable. 2

Proof. Assume that there is some deterministic Büchi automaton that rec-
ognizes (a + b)∗bω. If so, there must be some regular language W such that
limW = (a+b)∗bω. Since bω ∈ lim W we know that there must be some n1 ≥ 0 such
that bn1 ∈ W . Now for this n1 there must be some n2 such that bn1abn2 ∈ W , since
bn1abω ∈ lim W . Proceeding in the same way we see that bn1abn2a . . . abni ∈ W
for all i ≥ 1. Hence, by the definition of lim, lim W must contain the infinite word
bn1abn2a . . . which contains infinitely many occurrences of a contradicting the fact
that lim W = (a + b)∗bω. ¤

6.3. Muller automata

In this section we consider an alternative to Büchi automata called Muller
automata [Mul63]. We show that the Büchi recognizable languages are equivalent
to the deterministically Muller recognizable languages, and that there is an effective
procedure for transforming Büchi automata into deterministic Muller automata and
vice versa.2 Moreover, deterministic Muller automata are effectively closed under
complementation (as well as union and intersection), thus providing an indirect way
of complementing Büchi recognizable languages.

Muller automata differ from Büchi automata only in the power of the accep-
tance condition.

2One can also show that Büchi recognizable languages are equivalent to nondeterministically
Muller recognizable languages. (That is, deterministic and nondeterministic Muller automata are
equally expressive.) But this equivalence is of minor importance for our purposes.

48 6. FINITE AUTOMATA ON INFINITE WORDS

Definition 6.12. A Muller automaton B over an alphabet A is a tuple (Q, q0,∆, F)
where Q is a finite set of states, q0 ∈ Q an initial state, ∆ ⊆ Q×A×Q a transition
relation and F ⊆ 2Q a set of sets of accepting states. 2

An ω-word α is accepted by a Muller automaton B iff there exists a run σ on
α such that inf(σ) ∈ F . That is, if the set of all states that occur infinitely often
in σ is contained in F .

A Muller automaton is called deterministic iff for any q ∈ ∆ and a ∈ A there is
a unique q′ such that (q, a, q′) ∈ ∆. To emphasize this we usually write ∆(q, a) = q′

when the automaton is deterministic.

Example 6.13. Consider the following deterministic automaton,

With the acceptance condition {{q1}} the automaton accepts the language (a +
b)∗bω. That is, words with only finitely many occurrences of a (and hence infinitely
many occurrences of b). Choosing instead the acceptance condition {{q0}, {q0, q1}}
we obtain the complement of (a+b)∗bω. That is, all words containing infinitely many
occurrences of a, and hence either finitely many, or infinitely many, occurrences of
b. 2

Every deterministic Muller automaton, has an equivalent (possibly nondeter-
ministic) Büchi automaton, as first shown by McNaughton [McN66].

Theorem 6.14. If L is deterministically Muller recognizable, then L is (possi-
bly non-deterministically) Büchi recognizable. 2

Proof. Let B = (Q, q0, ∆, F) be a deterministic Muller automaton accepting
the ω-language L. We show how to construct an equivalent non-deterministic Büchi
automaton.

First note that every accepting run of B must be of the form

w0w1w2w3 . . . ,

where w0 ∈ Q∗ and where there is some Fj ∈ F such that wk contains exactly the
states in Fj for all k > 0. The basic idea in the construction of the Büchi automaton
accepting L is to ”guess” when we enter w1; that is, when all subsequent states
are from Fj and all states in Fj are visited infinitely often. For this purpose we
introduce a set of additional states of the form (q, P, j) where q ∈ Fj and P ⊆ Fj .
Whenever B contains a transition from p to q where q ∈ Fj ∈ F , we introduce an
additional transition (with the same label) from p to the new state (q, ∅, j). Now
if our guess is correct there has to be a path in B that starts with q and contains
all states in Fj and leads back to q. The second component P of a state (q, P, j) is
used to record the states that we have visited “so far” in such a cycle. If we reach a
state (q′, Fj \ {q}, j) and B contains a transition from q′ to q, we “close the cycle”
by a transition from (q′, Fj \{q}, j) to (q, ∅, j) (with the same label). The accepting
states of this extended (Büchi) automaton are the states of the form (q, ∅, j), for
all j ∈ {1, . . . , |F |}.

6.3. MULLER AUTOMATA 49

Hence let A = (QB , qB
0 , ∆B , FB) be a Büchi automaton with the state set

QB = Q∪(Q×2Q×{1, . . . , |F |}), with initial state qB
0 = q0, where FB = {(q, ∅, j) |

q ∈ Fj ∈ F}, and where ∆B is the least relation such that,

• (p, a, q) ∈ ∆B if ∆(p, a) = q,
• (p, a, (q, ∅, j)) ∈ ∆B if q ∈ Fj and ∆(p, a) = q,
• ((p, P, j), a, (q, P ∪ {q}, j)) ∈ ∆B if ∆(p, a) = q and P ∪ {q} ⊂ Fj , and
• ((p, P, j), a, (q, ∅, j)) ∈ ∆B if ∆(p, a) = q and P ∪ {q} = Fj .

¤

Constructing a (possibly non-deterministic) Muller automaton that accepts the
same language as a Büchi automaton is easy; the automaton will have the same
states (including initial state), and the same transitions. The only difference is the
acceptance condition: if the Büchi automaton contains an accepting state q then
the acceptance condition of the Muller automaton must contain any Fi such that
q ∈ Fi. However, constructing a deterministic Muller automaton is more difficult.
The standard approach (powerset construction) used to transform an NFA (for
finite words) into a DFA does not work, since Muller automata have a much more
involved acceptance condition. The following result is due to McNaughton but the
proof (which builds on a generalized powerset construction) is due to Safra [Saf88].

Theorem 6.15. If L is (nondeterministically) Büchi recognizable, then L is
deterministically Muller recognizable. 2

Rather than actually proving the theorem we give the construction, due to
Safra, that produces an equivalent deterministic Muller automaton. In what follows,
let A = (Q, q0, ∆, F) be a Büchi automaton. By a Safra tree over Q we mean a
finite, ordered tree with nodes from the set {1, . . . , 2 · |Q|}, where each node is
labeled by some R ⊆ Q, and where leaves may be marked as final. Siblings in the
tree are assumed to have disjoint labels and the union of their labels should be a
proper subset of the parent’s label.

Proof of Theorem 6.15. The idea of the Safra construction is to build a
deterministic automaton (QS , qS

0 , ∆S , FS) where QS are Safra trees over Q and
where qS

0 is the singleton tree 1 labeled {q0}. The transitions ∆S of the new
automaton are obtained in four steps. Let s be a Safra tree and a ∈ Σ, then
s′ = ∆S(s, a) is obtained as follows

(1) For each node n (labeled Sn) in s, apply the powerset construction on the
input a, i.e. relabel n by {q′ | ∃q ∈ Sn, (q, a, q′) ∈ ∆}. Unmark n if it was
marked as final.

(2) For each node n in the new tree, add a new child (picking a free node from
{1, . . . , 2|Q|}) labeled by all accepting states in Sn. Mark these nodes as
final,

(3) Remove the state q from a node (and all its descendants) if q appears
in an existing sibling node. Remove the whole node(s) if labeled by the
empty set (unless it is the root node),

(4) For each node n, remove all of its descendants if the union of labels of the
children equals Sn. If so, mark n as final. Let s′ be the resulting tree.

A set F of Safra trees is in FS iff there exists a node name that appears in every
tree of F and at least one such node is marked as final. ¤

50 6. FINITE AUTOMATA ON INFINITE WORDS

Example 6.16. Consider the following nondeterministic automaton.

The Safra construction will contain an initial state labeled {q0}. The resulting
deterministic Muller automaton looks as follows:

The acceptance condition contains two singleton sets, containing the middle and
the rightmost Safra tree.

We inspect in some detail some of the transitions of the resulting Muller au-
tomaton. Consider the initial state (labeled {q0}) on input b. Step (1) of the
construction yields the intermediate tree

Expanding this tree according to step (2) yields

Step (3) and (4) impose no further changes, so we introduce this as a new state
(reachable from the initial state via b). Now consider this new state on input a.
Step (1) yields

Step (2) yields:

EXERCISES 51

In step (3) node 3 is removed since q1 already appears in a sibling node, and in
step (4) node 4 is removed since its labeling equals the labeling of node 2 (which
should be marked as final).

Finally consider the second node on input b instead. Step (1) yields

Step (2) yields

Finally node 2 is removed (since it is labeled by the empty set). The transition back
from the rightmost Safra tree to the middle one is completely analogous except that
nodes 2 and 3 are exchanged. 2

The fact that a nondeterministic Büchi automata can be transformed into an
equivalent deterministic Muller automaton, and back again, facilitates an alter-
native way of constructing the complement of a Büchi automaton. Taking the
complement of a deterministic Muller automaton is namely straightforward (like
complementing a DFA).

Theorem 6.17. If (Q, q0, ∆, F) is a deterministic Muller automaton accepting
L ⊆ Aω, then (Q, q0, ∆, 2Q \ F) accepts Aω \ L, i.e. the complement of L. 2

For instance, the complement of the automaton in Example 6.13 with the accep-
tance condition {{q1}} is the same automaton with the new acceptance condition
{∅, {q0}, {q0, q1}}. Actually, we may always drop ∅ since any infinite run must
involve at least one state.

Exercises

6.1 One important application of ω-regular languages is in the verification of
properties of discrete event systems. Consider a finite alphabet {a, b, c} of
possible observations from a system, i.e. the system behavior is a subset
of {a, b, c}ω. Express the following properties of ω-languages by Büchi
automata (deterministic if possible)
(1) b happens eventually;
(2) a never happens;
(3) b happens infinitely often;
(4) whenever a happens b happens eventually;
(5) b never happens twice in a row;
(6) the subsequence ab happens only finitely many times.

6.2 Give ω-regular expressions for the ω-regular languages in the previous
exercise.

6.3 Consider the following deterministic automaton,

52 6. FINITE AUTOMATA ON INFINITE WORDS

What Muller acceptance condition is required to express the property “if
a occurs infinitely often, then b occurs infinitely often”?

6.4 Muller recognizable ω-languages are closed under intersection. Consider
two deterministic Muller automata A1 and A2 on the finite alphabet A,
and assume that A1 accepts L1 and A2 accepts L2. Describe how to
construct a deterministic Muller automaton that accepts L1 ∩ L2?

6.5 In the same setting as the previous exercise: describe how to construct a
Muller automaton that accepts L1 ∪ L2?

6.6 Consider the following Büchi automaton:

Translate it into a deterministic Muller automaton by the Safra construc-
tion, and finally complement this automaton. What is the resulting lan-
guage?

6.7 Translate the resulting deterministic Muller automaton from the previous
exercise into a Büchi automaton.

6.8 Consider the following Büchi automaton.

Construct, by means of the Safra construction, an equivalent deterministic
Muller automaton.

Bibliography

[Acz77] P. Aczel. An introduction to inductive definitions. In Handbook on Mathematical Logic,
pages 739–782. North-Holland, 1977.

[Büc60] J.R. Büchi. Weak Second-order Arithmetic and Finite Automata. Z. Math. Logik Grund-
lag. Math., 6:66–92, 1960.

[Bir67] G. Birkhoff. Lattice Theory. American Mathematical Society, 3rd edition, 1967.
[CGP99] E. Clarke, O. Gumberg, and D. Peled. Model Checking. MIT Press, 1999.
[Grä78] G. Grätzer. General Lattice Theory. Academic Press, 1978.
[Gri00] R. Grimaldi. Discrete and Combinatorial Mathematics. Addison-Wesley, 4th edition,

2000.
[Hal61] P. Halmos. Naive Set Theory. van Nostrand, 1961.
[Llo87] J. Lloyd. Foundations of Logic Programming. Springer Verlag, 2nd edition, 1987.
[LNS82] J.-L. Lassez, V.L. Nguyen, and E.A. Sonenberg. Fixed point theorems and semantics:

A folk tale. Inform. Process. Lett., 14:112–116, 1982.
[McN66] R. McNaughton. Testing and Generating Infinite Sequences by a Finite Automaton.

Inform. and Control, 9:521–530, 1966.
[Mul63] D.E. Muller. Infinite Sequences and Finite Machines. In Proc. 4th Ann. IEEE Symp. on

Switching Circuit Theory and Logical Design, pages 3–16, 1963.
[Saf88] S. Safra. On the Complexity of ω-automata. In Proc 29th Ann. IEEE Symp. on Foun-

dations of Computer Science, pages 319–327, 1988.
[Tar55] A. Tarski. A lattice-theoretic fixpoint theorem and it´s application. Pacific J. Math.,

5:285–309, 1955.
[Tho90] W. Thomas. Automata on infinite objects. In Handbook on Theoretical Computer Sci-

ence, pages 135–191. Elsevier, 1990.

53

