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Abstract—Program trace alignment is the process of establish-
ing a correspondence between dynamic instruction instances in
executions of two semantically similar but syntactically different
programs. In this paper we present what is, to the best of
our knowledge, the first method capable of aligning realistically
long execution traces of real programs. To maximize generality,
our method works entirely on the machine code level, i.e. it
does not require access to source code. Moreover, the method
is based entirely on dynamic analysis, which avoids the many
challenges associated with static analysis of binary code, and
which additionally makes our approach inherently resilient to
e.g. static code obfuscation. Therefore, we believe that our trace
alignment method could prove to be a useful aid in many
program analysis tasks, such as debugging, reverse-engineering,
investigating plagiarism, and malware analysis.

We empirically evaluate our method on 11 popular Linux
programs, and show that it is capable of producing meaningful
alignments in the presence of various code transformations such
as optimization or obfuscation, and that it easily scales to traces
with tens of millions of instructions.

I. INTRODUCTION

Recently, matching binary code has received significant
attention in the literature. Several works focus on the problem
of searching a large corpus of binaries for known security bugs
[1], [2], [3], [4]. Applications outside security include detection
of plagiarism [5], [6], [7] or code cloning [8].

Several existing methods [9], [10], [11] match binary code
by means of approximate control-flow graph isomorphism,
and can achieve good results in cases where small semantic
changes have been applied to otherwise syntactically identical
binaries. However, in cases where binaries exhibit significant
syntactic differences, e.g. due to the use of different compilers
or optimization settings, such methods typically fail. Therefore,
semantic matching, based on symbolic execution [12], [13], [7],
has been suggested as an alternative. While such methods can
handle syntactic differences better, they are often prohibitively
expensive for real-life programs. Recently, several works
have tried to overcome these shortcoming by using various
approximate code-similarity measures [1], [2], [4], [14], [3].
However, to provide sufficient semantic context for matching,
these methods often match code at a very course granularity,
typically on the level of entire functions.

Moreover, to the best of our knowledge, all existing
methods can only compute static code mappings, i.e. they
create mappings between static code segments in two binary
executables. In this work, we tackle the related problem of

aligning dynamic instruction traces. That is, we focus on
creating fine-grained mappings between dynamic instruction
instances of two program executions, a problem that, to the
best of our knowledge, has not previously been treated in
the literature. Being able to determine corresponding points of
execution in two semantically similar but syntactically different
programs can provide important information in many program-
comprehension scenarios. For example, an analyst may be
faced with the task of debugging or binary-patching a legacy
binary (possibly compiled for another architecture or with a
different compiler), and for which the source code might have
been lost. In this case, she can use a more recent version of
the binary and align execution traces of the two binaries. If
source code and debug symbols are available for the modern
version of the binary, this information can be leveraged to
understand the workings of the legacy binary. We give a more
detailed example of such a scenario in Section V of this paper.
Another potential application area is aiding in malware analysis.
Criminals commonly distribute multiple binary versions of the
same malicious software, using different obfuscation methods
to transform each sample, in order to thwart signature-based
anti-virus software. A malware analyst can use trace alignment
to identify that two malware samples behave the same, and to
better understand new obfuscation schemes used by malware
authors. Moreover, when analyzing two slightly semantically
different executables, e.g. for studying the effects of security
patches [15], dynamic trace alignment can aid in the analysis
by showing how concrete computations differ between the two
executions, not just which static instructions that are different.

In this paper we present a general approach to fine-grained
binary trace alignment. Given two semantically similar (but
not necessarily identical) binaries, we run both binaries with
the same input, and record runtime traces of their executions.
In particular, we record all concrete input and output values of
instructions, which we use as our principal matching feature.
Since concrete values capture information about a program’s
semantics rather than its syntax, our method is highly resilient
to syntactic differences stemming from e.g. optimization.

We hope that this work will serve as a foundation for further
research into trace alignment as an aid in various program-
analysis tasks. In summary, the main contributions of this work
are as follows:

• We present a method for aligning binary-code traces that
are semantically similar, but may exhibit significant syntac-
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mov -0xc(%rbp),%eax
mov -0x10(%rbp),%edx
add  %edx,%eax
mov %eax,-0x8(%rbp)
mov -0x10(%rbp),%eax
mov %eax,-0xc(%rbp)
mov -0x8(%rbp),%eax
mov %eax,-0x10(%rbp)
addl $0x1,-0x14(%rbp)
mov -0x4(%rbp),%eax
sub  $0x2,%eax
cmp -0x14(%rbp),%eax
jg 0x4005de

mov %esi,%edi
mov %edx,%esi
add  $0x1,%ecx
lea  (%rsi,%rdi,1),%edx
cmp %eax,%ecx
jl 0x4004e8

Fig. 1. Unoptimized and optimized versions of x86-64 code for computing
Fibonacci numbers.

tic differences. Since our method is agnostic to the nature
and origin of syntactic differences, it is able to handle
trace alignment across, for example, different optimization
levels, compilers, or architectures. Furthermore, since our
approach is purely dynamic, it is inherently resilient to
static code-obfuscation techniques.

• We describe a novel approach to achieving scalable trace
alignment, and show that our method easily scales to
traces with tens of millions of instructions.

• We empirically evaluate our method on 11 different Linux
programs, and show that it can produce meaningful trace
alignments for binaries compiled with different compilers,
optimization levels, or target architectures, as well as
binaries subjected to obfuscation.

• Finally, we demonstrate the utility of our method in a
practical use case: Reverse-engineering of legacy code for
binary patching.

II. OVERVIEW

Aligning code traces compiled with e.g. different optimiza-
tion settings is a challenging problem, since a perfect mapping
between instructions is often not possible. Moreover, complete
sequential consistency between traces typically cannot be
assumed. Consider the two code snippets in Figure 1. Both
blocks of code represent the main computation loop in a simple
program for calculating Fibonacci numbers. Both versions have
been compiled with gcc for the x86-64 architecture, but the
code to the left has been compiled without optimization, and
the code to the right has been compiled with optimization
level O3. The arrows between the code blocks represent
an approximate manual mapping between instructions. Due
to arithmetic simplifications performed by the compiler, the
ordering of some of the (roughly) equivalent instructions is not
preserved across the two versions. Also, some instructions in
the unoptimized code have no clear counterpart in the optimized
version.

A. Dynamic Time Warping

While semantics-preserving code transformations, such as
optimization, will introduce small local discrepancies between
traces, semantic differences when aligning across different
revisions of a program may introduce significant large-scale
discrepancies. A generic trace alignment method must therefore

adopt a pragmatic approach, performing a best-effort global
alignment, while tolerating local unalignable sections of traces.
Dynamic time warping (DTW) is a well-known method for
aligning time series of analogue signals, used extensively in
e.g. speech recognition [16]. Given two time series x, y of
respective lengths n and m, and a distance measure dist(xi, yj)
of individual elements in the time series, a cost matrix C is
constructed. Each cell ci,j represents the dissimilarity (or cost)
dist(xi, yj) between the corresponding elements in the two
time series. DTW constructs a warping matrix W , where each
element wi,j contains the accumulated cost of the optimal (cost
minimizing) path in C from c0,0 to ci,j . The final minimum
accumulated cost can be retrieved from element wn,m in the
warping matrix, and is called the warping distance. When W
has been constructed, finding the optimal alignment between x
and y simply entails a greedy search through W from wn,m

to w0,0, to find the global minimum-cost path, or warp path.
The row and column of each point on the warp path give the
actual element alignments. For example, if the warp path passes
through cell wi,j , then elements xi and yj align with each
other. A vertical or horizontal section of the warp path means
that one element in one of the time series aligns with several
elements in the other series. Figure 2 shows a 3x5 matrix
with a possible warp path (thick dark line). In this example,
elements 1, 2, and 3 of the vertical series align respectively
with elements (1,2), (3,4), and 5 of the horizontal series.

The classical dynamic programming DTW algorithm has
time complexity O(nm), which unfortunately limits its use
to fairly short sequences. The FastDTW algorithm [17] is
a popular approximate version of DTW with linear time
complexity. It works by aggregating adjacent elements in each
time series to create a low-resolution version of the cost matrix,
and then running standard DTW on the low-resolution matrix.
The final warp path is created by iteratively repeating this
process at higher and higher resolutions, but restricting the
construction of the warping matrix to a narrow band around
the warp path from the previous iteration. The width of the
band is controlled by a radius parameter, which determines
how many additional elements on each side of the previous
warp path to include.

B. Aligning Instruction Traces

The application of DTW for real-valued signals is straight-
forward. The euclidean distances between elements can be used
to construct the cost matrix, and averages over several adjacent
elements in a time series can be used to construct lower-
resolution versions of the problem for FastDTW. However, in
our setting the elements of the time series are machine code
instructions. One option would be to treat individual opcodes
as symbols in an alphabet, and then compute the string edit
distance (essentially a variant of DTW for strings). However,
such an approach would restrict us to align code generated
by the same compiler using the exact same compilation
settings, since, for example, optimized binaries often use more
efficient instructions to perform the same computations as their
unoptimized counterparts. Instead, we record the concrete input

343



5
3
1
5
1

2 5 7 1 5

1:2,

3:1,

5:2

1:1, 2:1, 5:2, 7:1

2⋅1+2⋅2
3⋅2.64
≈ 0.24

1-

Fig. 2. Constructing a cost matrix using a vector space model of instruction
segments.

and output values of computations, and use these to match
instructions. This approach also facilitates a natural way to
aggregate several elements of a trace. A simple approach is to
represent a sequence of several instructions, henceforth called
a segment, as the set of all unique values observed in that
segment, and use the Jaccard similarity to compute distances
between segments.

A limitation of the Jaccard similarity, however, is that it
does not account for the frequency distributions of values.
Some values, such as the value ’0’, or small powers of two, are
extremely common in most program traces, and may incorrectly
inflate matching scores. Also, since several segments may
contain similar sets of values, it is also beneficial to consider
the number of times a certain value is observed within a segment.
To this end, we adopt the approach proposed by Kargén et al.
[18], utilizing the vector space model with tf-idf weighting from
the field of information retrieval. When the vector space model
is used for information retrieval, each document in a collection
is represented by a point in a multidimensional space, with one
dimension per unique term in the vocabulary of the document
collection. The “coordinates” of a document are determined
by the number of times each term occurs in that document,
denoted as the term frequency (tf). The tf components are
also weighted by the inverse document frequency (idf) of the
corresponding term, to create the final tf-idf vector components.
The idf of term t is calculated as log(N/nt), where N denotes
the total number of documents, and nt denotes the number of
documents in which term t occurs at least once. The rationale
for the idf factor is that common terms with low discriminative
value receive lower weight in the document vectors. Finally, the
similarity of documents can be computed as a value between
0 and 1 by calculating the cosine similarity between document
vectors, defined simply as the cosine of the vectors, i.e.

similarity(a,b) =
a · b
|a||b|

The cost (or distance) is then given by 1− similarity(a,b)
In our setting, documents correspond to trace segments,

and terms correspond to values. We apply the tf-idf technique
to construct vector-space representations of trace segments,

henceforth referred to as value vectors. Figure 2 shows a toy
example of this approach, where the aligned traces are 15
and 25 elements long, respectively. For simplicity, we assume
that each element has a single value, and that idf-weighting
is not used. A segment size of 5 is used, resulting in a 3x5
cost matrix. The highlighted segments show how value vectors
are constructed. For example, the vertical segment has two
occurrences of the value ’1’, one occurrence of ’3’, and two
occurrences of ’5’. When computing the cosine of the two
value vectors, only the shared components, corresponding to
values ’1’ and ’5’, contribute to the dot product. After dividing
by the vector lengths and subtracting from 1 to get a distance
metric, we arrive at a cosine distance of about 0.24.

In the following section, we describe in more detail how
values are recorded into traces, and our adaption of the
FastDTW algorithm for trace alignment.

III. DESIGN AND IMPLEMENTATION

Our system consists of four modular components that are
executed in a pipeline. The architecture-specific trace recorder
component collects detailed syntactic instruction traces of
executions. The trace distiller takes an instruction trace from
the trace recorder and produces an architecture-agnostic value
trace consisting only of concrete values observed for each
instruction. A trace filterer component can optionally be applied
to the value trace to remove irrelevant parts of the execution,
such as instructions in external libraries. Finally, the trace
aligner component takes two value traces, produced by the
preceding steps of the pipeline, and performs trace alignment
according to the procedure in Section II.

We implemented our method using about 4,200 SLOC
C++, and a few hundred lines of Python for parsing results,
calculating statistics, etc. Below, we describe each component
of our system in more detail.

A. Trace Construction

Trace recording. Our trace recording is implemented using
the Pin dynamic binary instrumentation (DBI) framework [19].
All read and written register and memory locations, including
concrete addresses, are recorded, along with the values of all
input and output operands.

Trace distilling. The trace distiller strips a trace from the trace
recorder of all syntactic information, and creates an architecture-
independent value trace. Entries in the value trace consist only
of a unique instruction ID, and a set of input and output values.
The trace distiller also outputs a mapping between instruction
IDs and actual instruction offsets in executables.

Inputs and outputs are xor-ed with their own respective
magic constant, so that e.g. the value ’3’ as an input is distinct
from the value ’3’ as an output. This way, we capture more
information about the input/output semantics of instructions.
To allow alignment across e.g. 32/64-bit architectures, and to
handle optimized code that performs calculations in parallel on
several values using SIMD-instructions, we tokenize all values
to a common bit-width. Values greater than the token-width
are split into several values, while values smaller than the
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token-width are zero-padded. We currently use a token width
of 32 bits, which appears to work well in practice, and allows
alignment of 64 and 32-bit traces.

We also attempt to filter out addresses from the value
traces. Addresses are often used as data in binaries, e.g.
when passing around pointers in the code. Since addresses
are typically not comparable across different versions of a
binary, these unnecessarily inflate the size of traces, and
add noise to the segment matching. Since a handful of false
positives or negatives during address filtering will not have a
detrimental effect on segment matching, we adopt a simple
yet effective filtering approach: For all addresses reported by
the trace recorder, we mask off the least significant 12 bits
(corresponding to one 4kB page), and store it in a set of address
masks. Every recorded value is checked against these address
masks before being stored in the value trace. We found that
address filtering reduced the number of stored values in traces
by roughly 25%.

Trace filtering. It is often desirable to be able to filter out
irrelevant parts of an execution trace, such as library code
that is not interesting to the analysis. Such filtering will both
reduce the time for trace alignment, and can improve precision
by e.g. removing non-deterministic parts of an execution,
which cannot be matched using value-comparisons. Our system
allows filtering based on individual instruction addresses, ranges
of addresses, and names of entire executables (e.g. shared
libraries).

B. Trace Alignment

Warping matrix construction. The trace alignment compo-
nent takes two value traces, splits them into equally-sized
segments, and constructs value vectors out of these segments.
The resulting arrays of value vectors are used to compute the
cosine distances between segments, and construct the warping
matrix. Since some instructions, such as branches or address-
manipulation instructions, will not have any recorded values,
a value vector is allowed to be empty. We treat empty vectors
specially: If two empty vectors are compared to each other, they
are considered equal, and are assigned distance 0. If one of the
vectors is instead non-empty, they are considered maximally
distant, i.e. with distance 1.

FastDTW implementation. The initial segment size is chosen
so that the smaller dimension of the warping matrix is always
50 elements. For each iteration of FastDTW we decrease the
segment size with a factor two, doubling the row and column
count of the warping matrix. FastDTW terminates when we
have reached a segment size of 1 for any of the traces. We use
a FastDTW radius parameter of 20 elements. This means that
the maximum space required for the final warping matrix is
always bounded to 2 · 20 · n, where n is the size of the longer
of the two traces.

We have implemented a simple multithreaded variant of
FastDTW, where matrix rows are processed (partially) in
parallel in a pipelined fashion. When using 4 cores, we observe
roughly a 3x speedup with our parallel implementation.

(a) (b)

(c)

Fig. 3. First-iteration cost (a) and warp (b) matrices, and third-iteration cost
matrix (c) of aligning optimized and unoptimized gzip traces.

Value-vector construction. We use a simple sparse array
implementation based on the C++ STL map to store value
vectors, so that values with a zero tf-idf component need not
be physically stored. Also, only values that are present at least
once in both traces get physical entries in the sparse arrays.
Since values unique to one trace can never contribute to the
dot product in the cosine-distance computation, they can be
safely omitted. They still, however, contribute to the length of
the vector in the denominator of the cosine. We observed that
this simple optimization often massively reduced the size of
value vectors.

While sparse arrays are necessary to reduce memory use, they
unfortunately result in an O(n log n) time complexity in the size
of value vectors when computing cosine distance. This brings
the overall time complexity of our FastDTW implementation
up to O(n log n) instead of O(n). To avoid this, we set an
upper bound on the size of value vectors, by only keeping
the 300 largest components. We found that this significantly
reduces the time needed for the first coarse-grained alignment
iterations of FastDTW, while not impacting the accuracy of
the final fine-grained alignments (see Section IV-C).

Subsequence alignment. We have also implemented subse-
quence alignment [16]. In this variant of DTW, the warp path
is not constrained to start and end at opposite diagonal ends of
the warping matrix, but can run from any column of the top
row to any column of the bottom row. Subsequence alignment
is useful when a trace can only be aligned with a subsequence
of the other trace. For example, given two versions A and B
of a program, an analyst might be interested in aligning only
code within a certain function of A with a full trace of B, in
order to locate the corresponding function’s instructions in B.
Subsequence alignment may be necessary if only parts of one
trace are comparable to another trace.

Visualization. We have implemented a tool for rendering the
cost and warp matrix at each FastDTW iteration to an image
file. Figure 3a shows the cost matrix of aligning traces of
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an optimized (O3) and unoptimized (O0) version of gzip.
Each pixel of the 50x98 matrix represents 7738 instructions.
The aspect ratio of about 2:1 is due to the optimized code
using roughly half as many instructions to perform the same
computations as the unoptimized code. Darker shades in
the matrix indicate lower cost (i.e. lower dissimilarity). We
can see a clear diagonal line of dark pixels, representing
corresponding segments of instructions in both traces. We
can also discern several symmetrical square regions along
the diagonal, indicating different distinct stages of processing.
Figure 3b shows the corresponding warping matrix, with the
optimal warp path highlighted in red. We see that the warp
path closely follows the dark diagonal line in the cost matrix.
Figure 3c shows the third-iteration cost matrix of FastDTW for
the same alignment problem. With 4 times higher resolution,
finer details of the trace similarities are now visible. Since we
use a radius parameter of 20, most of the cost matrix is never
constructed. Ignored regions are shown as black pixels here.

IV. EMPIRICAL EVALUATION

In this section we empirically evaluate the effectiveness of
our trace alignment method. There are several challenges with
such an evaluation. First, since we are, as far as we know, the
first ones to consider the problem of dynamic trace alignment,
direct comparisons against other work is not possible. A second
problem is that ground truth is difficult to obtain for evaluating
our method’s effectiveness when aligning programs that are
not semantically identical. As a first step towards evaluating
the feasibility of our approach, we focus on measuring the
robustness of our method against various semantics-preserving
code transformations. In section V we then present a practical
use-case, showing the utility of our method when comparing
two revisions of the same program.

The programs used in our experiments, and a brief de-
scription of the respective inputs used, are shown in Table I.
Except when explicitly stated otherwise, the compiler used to
generate all binaries was gcc 4.8.5. All binaries were compiled
with embedded debug info as ground truth. Experiments
were performed on a Linux Mint 17.2 workstation equipped
with a quad-core 3.3 GHz Intel Xeon E3-1245 CPU with
hyperthreading, and 16 GB RAM.

External dependencies, such as the C library, constitute
an error source in our experiments. Within an instruction
trace, code from external shared libraries will be identical
for all versions of the same program, and would therefore
be trivial to align. This may “aid” the DTW algorithm in
finding an accurate global alignment for the entire trace. To
accurately characterize our method’s accuracy under maximally
adversarial conditions, we used the trace filterer (Section
III-A) to remove instructions from external libraries, but kept
instructions from libraries that programs ship with. For example,
for the xmllint program, we removed instructions in libc,
but kept instructions in libxml. The last three columns of
Table I show some execution details of the unoptimized (gcc
O0) versions of binaries. The columns show, respectively,
the number of dynamic instructions, the number of dynamic

instructions after trace filtering, and the number of unique
instructions in the filtered trace.

A. Metrics Used

In a typical usage scenario, an analyst may be interested in
aligning a reference binary, for example with embedded debug
info, against a target binary, which may e.g. be stripped, to
gain insights about the target binary. In our experiments, we
used reference binaries compiled with gcc using optimization
level O0, and aligned against traces from binaries subjected to
various code transformations.

To evaluate the accuracy of our alignment method, we
compute the alignment delta ∆a of trace alignments using
embedded debug info. Consider two program versions X and
Y . Given an alignment between traces from the two versions,
let element xi denote the i:th element of X’s trace, and yj the
j:th element of Y ’s trace. If xi align with yj , then the ∆a of
that particular instruction alignment is |j − k|, where k is the
index closest to j such that xi maps to the same source code
line as yk. If xi aligns with several instructions [yj , ..., yj+l]
in the other trace, then ∆a is 0 if any of those instructions
map to the same source code line. Otherwise, ∆a is calculated
as min(|j − k|, |(j + l)− k|), where k is the matching index
closest to either of yj or yj+l. Thus, ∆a measures how close
an individual instruction alignment is to the closest “equivalent”
instruction in the target trace.

The main contribution of our method is the ability to produce
dynamic instruction alignments. However, in order to allow
an, at least partial, comparison with future and present code-
matching methods, we also studied our method’s ability to
produce static instruction mappings. For each static instruction
in the reference binary, we iterate over all its dynamic instances
in the reference trace, and record the instructions with which
it aligns in the target trace. From this, we collect statistics
on how many times each instruction in the reference binary
aligns with each instruction in the target binary. For a given
instruction in the reference binary, we can then create a list
of most likely corresponding instructions in the target binary,
ranked by the number of alignments. The accuracy of static
mappings are evaluated using embedded debug info, where
instructions in the respective binaries that map to the same
source code line are considered to match.

In the following experiments (Section IV-B), we report
the fraction of static instruction mappings where the topmost
candidate is the correct match. However, while our method
finds exact matches for many instructions, a perfect static
instruction mapping between binaries is difficult to achieve
due to e.g. code layout differences, as discussed in Section
II. Therefore, it is also interesting to investigate our method’s
ability to pinpoint regions of binaries where the same high-
level functionality is implemented, or to identify corresponding
execution points where the same high-level operations are
performed. We therefore propose an additional metric that
better capture our method’s ability to perform fine-grained, but
not necessarily exact, trace alignment. Specifically, we evaluate
how well trace alignment performs in finding instruction that
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TABLE I
PROGRAMS USED IN THE EXPERIMENTS.

Program Version Input/execution details Dyn. instr. (O0) Filtered instr. Static instr.
bzip2 1.0.6 Compress 3.8 kB text file file to standard output 7,227,631 7,048,780 5,971
date 8.26 Invoked without additional command-line options 242,535 2,725 950
df 8.26 Invoked without additional command-line options 794,276 97,127 3,335
djpeg 9b Decode 4.1 kB JPEG file to standard output 2,097,285 1,446,552 9,891
gzip 1.8 Same as bzip2 873,672 753,949 3,740
lighttpd 1.4.45 Server startup + HTTP GET request for 84 B HTML file 2,314,350 573,108 17,898
ls 8.26 Invoked with ’ls -l /’ 1,063,013 151,724 5,275
mpg123 1.23.8 Decode 8.0 kB MP3 file to standard output 10,274,764 6,020,323 15,976
sha256sum 8.26 Checksum text file (same as bzip2) to standard output 539,236 289,073 5,397
sqlite 201701170010 Dump 9.2 kB database to standard output as SQL 3,376,993 2,255,913 42,378
xmllint 2.9.4 Run on 17.7 kB XML file with the --noout option 1,746,810 1,061,571 12,927

TABLE II
INSTRUCTION MATCHING ACCURACY,

GCC O0 VERSUS GCC O3

Program ∆a = 0 ∆a < 10 Top Close
bzip2 73.00% 98.81% 47.98% 79.70%
date 61.69% 95.38% 50.00% 72.95%
df 44.33% 84.79% 40.72% 63.87%
djpeg 64.20% 96.54% 47.30% 77.56%
gzip 68.25% 97.69% 54.30% 82.11%
lighttpd 50.59% 94.59% 39.61% 63.74%
ls 56.88% 91.28% 41.63% 67.68%
mpg123 60.77% 95.17% 44.20% 69.25%
sha256sum 77.89% 93.46% 69.59% 94.89%
sqlite 51.25% 94.55% 36.29% 61.83%
xmllint 56.29% 92.13% 41.46% 71.93%

are physically close, but not necessarily identical, to the exact
match. To this end, we measure the number of cases where
the source-code line of the topmost mapping is less than 10
lines away from the correct match.

B. Alignment Accuracy

Here, we evaluate how the alignment accuracy of our method
is affected by a number of code transformations.

Aligning optimized code. In our first experiment, we aligned
optimized and unoptimized x86-64 binaries compiled with gcc.
In this experiment, we used reference binaries compiled with
optimization level O0, and O3-optimized target binaries.

Table II shows accuracy metrics for the programs in the
experiment. The first two columns show, respectively, the
percentages of dynamic instruction alignments with ∆a = 0, i.e.
“exact” matches, and ∆a < 10, i.e. temporally close alignments.
With the exception of df, more than 50% of alignments are
exact for all programs, according to debug info, and more than
90% of alignments are close to an exact match.

The two rightmost columns show results for static instruction
mappings. The column Top shows the fraction of instructions
in the reference (O0) binary where the topmost entry in the
ranked list of static mappings is the correct match. We see that,
for most programs, the top ranking match is correct in about
50% of cases. The percentage of cases where the topmost
mapping is close to the true match in the source code is shown
in the column Close. These figures vary between 62% and 95%,

TABLE III
INSTRUCTION MATCHING ACCURACY,

GCC O2 VERSUS GCC O3

Program ∆a = 0 ∆a < 10 Top Close
bzip2 93.89% 99.56% 86.89% 91.98%
date 96.40% 98.52% 94.12% 95.45%
df 89.47% 98.20% 88.86% 94.09%
djpeg 98.48% 99.03% 95.74% 98.45%
gzip 95.09% 99.35% 87.02% 95.33%
lighttpd 93.31% 97.67% 86.09% 89.70%
ls 90.78% 98.14% 87.72% 92.33%
mpg123 94.60% 99.53% 89.88% 95.60%
sha256sum 97.43% 99.02% 97.01% 99.31%
sqlite 89.78% 97.93% 80.51% 87.54%
xmllint 96.27% 99.49% 89.59% 94.26%

showing that our method can be used to create approximate
static mappings for large portions of executed instructions.

For reference, we also performed the same experiment
using O2-compiled binaries to generate reference traces. The
results are shown in Table III. With the highly similar O2 and
O3 optimization levels, percentages are very high across all
accuracy statistics.

Aligning x86 and x86-64 code. To study the performance of
our method when aligning across 32 and 64-bit architectures,
we repeated the above experiment, aligning O0 and O3 gcc
traces, but this time compiling the target binaries for the 32-bit
x86 architecture. Results are shown in Table IV. Precision
figures are similar to the same-architecture case, but generally
a few percentage points lower, showing that our method can
tolerate syntactic differences between x86 and x86-64 code.

Aligning across different compilers. In the next experiment,
we compiled the target binaries with clang 3.5 and optimiza-
tion level O3. Both sets of binaries were compiled for x86-64.
As can be seen from Table V, results are generally comparable
to those of the same-compiler experiment, with some programs
even getting higher accuracy scores. The exception is the
date program, where results are significantly lower for static
mappings. This is likely due to its very short trace length. Since
most of the work in date is carried out in external libraries,
the filtered trace is only a few thousand instructions long.
Moreover, most instructions in the trace execute only once,
making static mappings very sensitive to small misalignments.
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TABLE IV
INSTRUCTION MATCHING ACCURACY,
X86-64 GCC O0 VERSUS X86 GCC O3

Program ∆a = 0 ∆a < 10 Top Close
bzip2 69.69% 99.03% 48.17% 77.42%
date 52.26% 82.90% 42.32% 56.84%
df 41.23% 78.01% 35.68% 56.40%
djpeg 68.99% 98.42% 49.90% 78.73%
gzip 66.44% 99.39% 56.10% 82.11%
lighttpd 54.02% 94.64% 40.73% 64.91%
ls 51.44% 85.40% 36.25% 57.38%
mpg123 28.05% 48.37% 38.44% 60.43%
sha256sum 70.46% 89.30% 62.96% 93.14%
sqlite 50.83% 91.78% 36.33% 59.51%
xmllint 57.20% 90.44% 39.28% 66.27%

TABLE V
INSTRUCTION MATCHING ACCURACY,

GCC O0 VERSUS CLANG O3

Program ∆a = 0 ∆a < 10 Top Close
bzip2 65.50% 97.95% 47.66% 76.97%
date 45.72% 99.16% 23.26% 34.53%
df 50.20% 93.60% 43.54% 70.82%
djpeg 70.85% 94.40% 46.91% 77.12%
gzip 76.39% 98.14% 59.63% 85.56%
lighttpd 61.38% 96.40% 40.70% 65.66%
ls 54.11% 92.38% 40.63% 67.07%
mpg123 61.06% 96.15% 48.93% 75.35%
sha256sum 97.61% 99.99% 87.75% 94.77%
sqlite 50.63% 91.88% 36.88% 62.16%
xmllint 61.58% 94.15% 42.28% 74.56%

Aligning obfuscated code To evaluate the accuracy of our
method under adversarial conditions, we also performed trace
alignment of obfuscated binaries. We used the open-source
Obfuscator-LLVM (ollvm) [20], which is implemented on
top of the LLVM framework, and which applies obfuscation
during compilation. ollvm was chosen in part because its
design allows embedding debug info as ground truth also
in obfuscated binaries. It should be noted, however, that the
accuracy of debug info in obfuscated code is far from perfect,
due to the heavy code transformations. As such, the results in
this section should be seen as indicative, rather than providing
exact figures of our method’s performance on obfuscated code.

Three types of obfuscations are supported by ollvm: bogus
control flow, instruction substitution, and control flow flattening.
Bogus control flow inserts fake basic blocks guarded by
opaque predicates, to complicate static analysis of control-flow.
Instruction substitution transforms computations by replacing
arithmetic operations with more convoluted, but semantically
equivalent, sequences of computations. The latter is a more
significant challenge for trace alignment, since traces of
obfuscated code will be “polluted” with intermediate values
not present in the non-obfuscated traces.

Control flow flattening hinders static control-flow recovery
by replacing all direct branches with indirect jumps, routing
all control flow through a dispatch loop. The open-source
variant of ollvm applies this obfuscation very aggressively,
flattening control flow between every basic block in the

TABLE VI
INSTRUCTION MATCHING ACCURACY,

GCC O0 VERSUS OLLVM

Program ∆a = 0 ∆a < 10 Top Close
bzip2 74.27% 81.24% 44.85% 63.31%
date 6.97% 22.13% 6.00% 11.37%
df 29.71% 43.15% 34.57% 50.70%
djpeg 64.06% 72.22% 37.94% 56.41%
gzip 65.38% 72.99% 47.03% 68.13%
lighttpd 14.75% 24.97% 12.93% 23.83%
ls 16.04% 21.18% 18.12% 29.48%
mpg123 58.06% 71.68% 28.36% 48.24%
sha256sum 97.58% 98.43% 88.03% 91.59%
sqlite 32.59% 40.79% 25.53% 37.45%
xmllint 27.95% 34.98% 16.96% 31.85%

program. This results in both significant slowdowns and code-
blowup. Unfortunately, debug info for the inserted flattening-
code also appears to map instructions to source-code lines in
a somewhat arbitrary way, leading to difficulties in evaluating
the accuracy of trace alignment when this obfuscation is used.
We therefore only used bogus control flow and instruction
substitution in our experiments. All ollvm-obfuscated binaries
were built for the x86-64 architecture.

Results for the different programs are shown in Table VI.
While the accuracy is still reasonable for several programs, it
suffers considerably for others. As in the previous experiment,
the short trace length of date becomes problematic. The
very low percentages for ∆a indicate that DTW has found
a degenerate alignment for date. Similarly, other programs
with relatively short trace lengths compared to the number
of executed static instructions (lighttpd, ls, sqlite,
xmllint) suffer reduced static mapping accuracy. Again, it
should be noted that the reduced quality of debug information in
obfuscated binaries may also contribute to the drop in accuracy.

Sources of imprecision. Even under heavy syntactic trans-
formations, our method is generally able to produce global
alignments where individual instruction instances in the ref-
erence trace are aligned with instructions that are close to
their true counterpart in the target trace, as indicated by the
high ∆a < 10 figures. However, in many cases instructions
are not precisely aligned, as indicated by the markedly lower
∆a = 0 figures. One reason for this is that many instructions
do not perform computations useful for value-comparisons. For
example, on average 37% of instructions in the O0 traces had
empty value-sets. Also, the frequency distribution of values in
program traces is highly skewed, as discussed in section II-B.
During the first FastDTW iterations (with large instruction
segments), tf-idf weighting efficiently compensates for this
skew, but individual instruction alignments during the last
FastDTW iteration still suffers from reduced accuracy. Finally,
we again note that precise instruction alignments are not always
possible, as shown in the example in Figure 1.

C. Scalability

Scalability is an important factor when applying trace
alignment to real-life problems. In this section, we have

348



TABLE VII
ALIGNMENT TIMES IN SECONDS, WITH VALUE VECTOR BOUNDING ENABLED (LEFT COLUMNS) AND DISABLED (RIGHT COLUMNS)

Program O0/O3 O0/clang O0/x86 O0/ollvm
bzip2 168.37 651.76 154.63 520.32 154.50 522.60 394.41 869.48
date 0.13 0.12 0.10 0.19 0.06 0.07 0.16 0.21
df 1.25 1.14 1.17 1.11 1.27 1.14 3.80 3.68
djpeg 57.37 287.46 55.75 263.45 55.51 255.40 133.89 405.29
gzip 17.72 29.60 17.57 29.44 17.49 29.67 52.73 68.45
lighttpd 5.65 5.49 5.68 5.50 5.60 5.57 28.99 27.00
ls 2.03 1.79 1.96 1.75 2.35 2.10 7.75 7.13
mpg123 503.05 4816.31 501.67 4660.36 361.40 1370.62 548.52 4875.72
sha256sum 22.61 91.89 23.45 89.54 23.25 92.72 86.32 189.72
sqlite 29.27 29.88 29.50 29.28 28.50 29.05 124.50 120.51
xmllint 13.08 12.98 12.85 12.67 13.07 12.94 60.24 56.84

evaluated the efficiency of our method for different programs
and trace sizes. In the below experiments, alignments were
performed using 8 parallel threads (i.e. one thread per virtual
CPU core).

We first study the impact of our value vector bounding
approximation (Section III-B). Table VII shows alignment times
for the experiments in Section IV-B (the O2 versus O3 case
has been omitted to save space). The left and right columns for
each experiment show alignment times with and without value
vector bounding, respectively. With the optimization active,
all alignments finish within 10 minutes, with the majority
taking less than a minute. While the value vector bounding has
little impact for programs with short trace lengths, it improves
alignment times with a factor 10 or more for the mpg123
program. Interestingly, mpg123 also has significantly longer
alignment times than bzip2, despite the two having traces of
comparable size. The difference is likely due to mpg123 doing
more heavy numerical computations, with more runtime-values
per instruction on average than bzip2.

To ascertain that value vector bounding does not negatively
affect alignment accuracy, we also compared the final warp
paths from both sets of experiments, and found that they were
identical for all programs. Thus, value vector bounding does
not appear to negatively effect the accuracy of final alignments.

To evaluate the scalability when using longer traces with
tens of millions of instructions, we selected four of the more
computationally heavy programs used earlier, and repeated the
gcc O0 versus gcc O3 alignment, using similar but larger
inputs. The size of inputs and resulting filtered trace sizes
(in millions of instructions) are shown in the first columns
of Table VIII. The two rightmost columns show respectively
the time to prepare (i.e. record, process, and filter) traces,
and the time to compute alignments. The alignment times are
roughly consistent with the theoretical linear time complexity
of FastDTW.

V. CASE STUDY

In this section we demonstrate the utility of our method in
a practical use case. In our scenario, we have a legacy binary,
for which it is unfeasible to recompile from source code, e.g.
because the source code has been lost. We also have a more
modern version of the binary, where source code is available.

TABLE VIII
ALIGNMENT TIMES FOR LONG TRACES.

Program Input (kB) Trace sizes
(millions) Prep. (s) Align (s)

bzip2 93.8 49.1 x 19.1 14.8 1512.0
djpeg 61.1 72.1 x 35.9 35.6 2080.9
mpg123 63.7 32.1 x 18.3 19.4 3310.9
sqlite 884.7 126.7 x 62.4 70.9 3427.9

If a bug is discovered and patched in the modern version, we
may need to binary-patch the legacy version if it is still in use
in some production environment, and cannot be upgraded due
to e.g. backwards compatibility issues. As an example of how
trace alignment can be used in such a scenario, we use two
versions of the libtiff library, and the bundled tiff2pdf
tool. libtiff version 4.0.3 has a memory corruption bug
(CVE-2014-8129), which could potentially be exploited by
an attacker by using a specially crafted TIFF-file as input to
tiff2pdf. The bug is patched in subsequent versions of
libtiff. Figure 4 shows how the bug was patched. After
the patch, the function TIFFInitNeXT in tif_next.c
sets a function pointer to an added input-validation routine,
so that this routine is executed before further parsing of the
TIFF image. In a binary-patching scenario, a straightforward
approach to fix the vulnerable code would be to patch in an
equivalent validation routine somewhere in the binary, and also
patch TIFFInitNeXT to insert a pointer to this routine in
the TIFF struct.

We now show how trace alignment can be used to aid in
locating the function TIFFInitNeXT in the legacy binary,
using the (at the time of writing) most recent 4.0.7 version of
libtiff as reference. To make the use-case more realistic,
we compiled the modern version with gcc for x86-64, using
optimization level O0, and the vulnerable version with clang
for x86, using optimization level O3. We filtered out external
library code, as in previous experiments, and aligned executions
of the respective binaries with an input that exercised the code
in TIFFInitNeXT.

Note that this is a challenging use-case for our method, since
no actual computations are made in the code of interest, and
thus no runtime-values are available for matching instructions.
Our method therefore needs to rely on accurately aligning
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142. int
143. TIFFInitNeXT(TIFF* tif, int scheme)
144. {
145. (void) scheme;
146. tif->tif_decoderow = NeXTDecode;
147. tif->tif_decodestrip = NeXTDecode;
148. tif->tif_decodetile = NeXTDecode;
149. return (1);
150. }

170. int
171. TIFFInitNeXT(TIFF* tif, int scheme)
172. {
173. (void) scheme;
174. tif->tif_predecode = NeXTPreDecode;
175. tif->tif_decoderow = NeXTDecode;
176. tif->tif_decodestrip = NeXTDecode;
177. tif->tif_decodetile = NeXTDecode;
178. return (1);
179. }

Fig. 4. Version 4.0.3 (top) and 4.0.7 (bottom) of TIFFInitNeXT in
libtiff.

the surrounding context. The code in question would also be
difficult to locate for existing static code matching approaches,
since they typically require larger sections of code for accurate
matching. For example, state-of-the-art tools like Genius [4]
or DiscovRE [2] require functions to have at least five basic
blocks to be searchable.

We used embedded debug info to study how well our method
would perform in this scenario. The identified instruction
mappings, translated to source-code lines, are shown below:

tif_next.c:174 → tif_next.c:147
tif_next.c:175 → tif_next.c:148
tif_next.c:179 → tif_next.c:148
tif_next.c:176 → tif_next.c:149
tif_next.c:177 → tif_dir.c:227
tif_next.c:179 → tif_dir.c:227

Despite about four years worth of code revisions between
the versions, and despite the significant syntactic differences,
our method manages to pinpoint the location where the patch
should be applied within a few instructions.

VI. RELATED WORK

In this section we briefly survey related work. Due to the
large corpus of work on binary analysis, we limit our discussion
to the works that are most similar to ours. Specifically, we focus
on methods capable of comparing binary code without the aid
of source code, and in the presence of syntactic differences
between binaries.

Dynamic methods. The work most closely related to ours
is the method by Zhang and Gupta [21], which were later
extended by Nagarajan et al. [22]. The purpose of these
works are to compute static mappings between instructions in
two syntactically different but semantically identical binaries.
Like our method, they also rely on dynamic analysis. Due to
the similarities to our work, we will discuss their respective
approaches in more detail.

Zhang and Gupta compare sets of runtime values to match
instructions. If one instruction’s value-set is a subset of the

other’s, the instructions are considered to match. Matches
are further pruned by considering data-flow relations, using
heuristic matching of the dynamic data dependence graphs
of the binaries. The method is very effective at finding true
matches (95% accuracy on average), but also produces many
false matches (5–40% according to an experiment in the paper).

The primary purpose of Zhang and Gupta’s work was to
create mappings between optimized and unoptimized code.
Nagarajan et al. extended their method to cases where the
mapping between functions in the two binaries is not known
a priori. First, the dynamic call graphs of the respective
executions were aligned using a heuristic method. Zhang and
Gupta’s original instruction-matching method was then applied
to pairs of matched functions between the binaries. Finally,
the instruction mappings were used to match paths in the
dynamic control-flow graphs of the two binaries. To deal with
false matches, matched paths were further prioritized using the
structure of the dynamic CFGs.

While both works share similarities with our work, they are
also different in several important ways. First, even though they
use dynamic analysis, they both compute static code mappings,
while we focus on the alignment of dynamic instruction
instances. Second, both methods are explicitly targeted towards
matching semantically identical binaries. Indeed, Zhang and
Gupta pointed out that a single differing data-flow edge in one
of the two compared binaries resulted in a sharp increase
in the number of unmatchable instructions, and proposed
that this property could be used to detect compiler bugs.
Lastly, while both works use runtime values for matching,
just like our work, we use the (approximate) temporal ordering
as our second principal matching feature, while they use
approximate matching of the data-flow and/or control-flow
graphs. Furthermore, since both their respective works rely
on several “stacked” heuristics, the risk of various unknown
failure modes is intuitively higher. We instead take a more
fundamental approach, using only the temporal ordering and
concrete computations of instructions for our matching. Similar
to the bias-variance tradeoff in statistics, the price for this
generality is a somewhat lower accuracy. Since the purpose
of this work was to investigate the accuracy of value-based
trace alignment in its own right, we refrained from integrating
any ad hoc heuristics into our method. However, combining
our approach with methods based on data and control flow
information could be an interesting direction for future work.
For example, one alternative could be to combine our method’s
ability to find meaningful global alignments with a local data-
flow matching approach similar to Zhang and Gupta’s work.

Other approaches to dynamic code matching include Egele
et al. [23], who proposed blanket execution for binary function
matching. Like our method, they also use dynamic analysis
and collect runtime values for code matching. However, since
their goal is to statically match queries against all functions in
a binary, they execute all functions of a given executable in a
randomized memory environment, and coerce some code paths
to reach 100% code coverage. Jhi et al. [5] also proposed using
runtime-observed values for plagiarism detection on binaries.
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Their method, however, only performs matching on the level of
entire binaries. Zhang et al. [6] later extended their approach
for detection of algorithm plagiarism. Kirat et al. [24] proposed
a method for finding the evasion point of evasive malware.
Similar to our work, they also use sequence alignment, but
only perform a coarse-grained alignment of system calls.

Static methods. Flake [9] proposed comparing the control
flow graph of functions in two binaries for identifying similar
code. This approach has been implemented in the industry-
standard binary diffing tool BinDiff [10], which uses a heuristic
graph-isomorphism algorithm for comparing CFGs of functions.
Bourquin et al. [11] proposed an improved graph-isomorphism
method for this problem. Since the structure of CFGs in a
binary is often changed when using different compilers or
optimization levels, the accuracy of CFG matching typically
drops dramatically in such cases [23].

BinHunt [12] and iBinHunt [13] use symbolic execution to
find semantically identical basic blocks in two binaries. Luo
et al. [7] proposed using a theorem prover to find longest-
common subsequences of semantically equivalent basic blocks
for matching obfuscated code. Scalability is unfortunately a
significant problem for approaches based on symbolic execution.
Chandramohan et al. [14] proposed to ameliorate this problem
by pre-filtering potential function matches before semantic
comparison, and suggested selective inlining to cope with
inlined library code. Pewny et al. [1] proposed semantic hashes
using randomly sampled input/output pairs of basic blocks for
finding known-vulnerable code across different architectures.
David et al. [3] proposed a statistical framework for matching
functions by aggregating semantic similarity scores of function
code fragments. Eschweiler et al. [2] match functions using
structural features of the CFG, and improve scalability by
using pre-filtering based on simple numeric features. Feng et
al. [4] pointed out that pre-filtering can lead to many false
negatives, and instead proposed translating CFGs to numeric
feature vectors to address scalability.

VII. DISCUSSION AND FUTURE WORK

Semantic differences. We showed in Section IV-B that our
method is resilient to various semantics-preserving code
transformations. While our case study indicated that the method
can also cope with semantic changes, we intend to study this
more rigorously in future work.

Evaluation on other architectures. Since our prototype
implementation is based on Pin, it is currently limited to
the x86 and x86-64 architectures. In future work, we intend
to also evaluate our method’s performance on other popular
architectures, such as ARM or MIPS. Since the method is
entirely architecture-agnostic, and due to its resilience to other
code transformations (Section IV-B), we are hopeful that it will
also allow cross-architecture alignments for other architectures.
Due to our modular design, supporting other architectures only
requires implementing a new trace recorder component.

Limitations of value-based analysis. We use runtime-
observed results of computations as a proxy for the actual

semantics of computations, and use DTW to align value traces.
While this facilitates a scalable way to match long instruction
traces, it has three major limitations. First, it requires both
traces to be produced using the exact same program input and
runtime environment. Second, it requires that all computations
throughout both traces are carried out on the same concrete
values. Finally, while our method can tolerate small local
discrepancies in sequential consistency, global-scale reordering
of computations cannot be handled by DTW.

The first and second limitations can be problematic if parts
of a program’s computations are nondeterministic. For example,
many cryptographic protocols use random nonces, which makes
recording two executions with identical inputs infeasible. One
potential way to address this challenge is to directly compute
the semantic similarity of code sections, rather than using
observed runtime values. While scalability still remains an issue
with current approaches, several recent works have proposed
methods for semantic similarity comparisons of basic blocks
[3], [14], [1], [7], [12], [13].

If only parts of a trace can be aligned in a meaningful way,
e.g. due to the second or third limitation above, subsequence
alignment can be used. This, however, requires the analyst to
identify alignable parts of traces a priori. While visualization of
the cost matrix can sometimes be used to identify such sections,
exploring more rigorous approaches to solving this problem
would be an important topic of future work. Local sequence
alignment using the Smith-Waterman algorithm [25] can be
used to find locally optimal subsequence alignments between
two sequences, in cases where the full sequences cannot be
globally aligned. Local sequence alignment is used extensively
in bioinformatics for e.g. aligning DNA sequences. Since
the Smith-Waterman algorithm is designed to align strings,
its cost function is defined in terms of match or mismatch
between letters. Adapting it to the problem of trace alignment
would therefore require defining a similarity threshold for when
two trace segments “match”. Determining such a threshold is
unfortunately difficult in the general case, but adapting local
sequence alignment to our problem setting nonetheless remains
an interesting direction for future work.

Concurrency may also pose a problem for trace alignment.
Assuming that the computations in each thread are deterministic,
our system can align traces of individual threads separately.
However, in some cases, e.g. when using thread pools, the
set of computations performed in each thread may vary. Our
method can currently not handle such programs.

VIII. CONCLUSION

In this paper, we proposed a novel approach for aligning
binary code traces, using dynamic time warping and techniques
from information retrieval. We showed that our method is
resilient to a number of code transformations, and can align
code across 32 and 64-bit architectures. We also demonstrated
that the method scales to traces with tens of millions of
instructions or more. Finally, we also presented a practical use-
case, showing how our method can aid in reverse engineering
legacy binaries.
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