
desync-cc: An Automatic
Disassembly-Desynchronization Obfuscator

1st Ulf Kargén
Linköping University
Linköping, Sweden

ulf.kargen@liu.se

2nd Ivar Härnqvist
Linköping University
Linköping, Sweden

ivaha717@student.liu.se

3rd Johannes Wilson
Linköping University
Linköping, Sweden

johwi801@student.liu.se

4th Gustav Eriksson*

Linköping University
Linköping, Sweden

guser908@student.liu.se

5th Evelina Holmgren*

Linköping University
Linköping, Sweden

eveho444@student.liu.se

6th Nahid Shahmehri
Linköping University
Linköping, Sweden

nahid.shahmehri@liu.se

Abstract—Code obfuscation is an important topic, both in
terms of defense, when trying to prevent intellectual property
theft, and from the offensive point of view, when trying to break
obfuscation used by malware authors to hide their malicious in-
tents. Consequently, several works in recent years have discussed
techniques that aim to prevent or delay reverse-engineering
of binaries. While most works focus on methods that obscure
the program logic from potential attackers, the complimentary
approach of disassembly desynchronization has received relatively
little attention. This technique puts another hurdle in the way of
attackers by targeting the most fundamental step of the reverse-
engineering process: recovering assembly code from a program
binary. The technique works by tricking a disassembler into
decoding the instruction stream at an invalid offset. On CPU
architectures with variable-length instructions, this often yields
valid albeit meaningless assembly code, while hiding a part of
the original code.

In the interest of furthering research into disassembly desyn-
chronization, both from a defensive and offensive point of view,
we have created desync-cc, a tool for automatic application of
disassembly-desynchronization obfuscation. The tool is designed
as a drop-in replacement for gcc, and works by intercepting and
modifying intermediate assembly code during compilation. By
applying obfuscation after the code generation phase, our tool
allows a much more granular control over where obfuscation is
applied, compared to a source-code level obfuscator. In this paper,
we describe the design and implementation of desync-cc, and
present a preliminary evaluation of its effectiveness and efficiency
on a number of real-world Linux programs.

Index Terms—Disassembly desynchronization, Code obfusca-
tion, Reverse engineering, x86 architecture

I. INTRODUCTION

Code obfuscation is often used by developers seeking to
prevent intellectual property theft, but is also widely used by
malware authors as a means to hide their malicious intents,
and to delay the development of countermeasures. Studying
obfuscation is therefore important both with respect to its
legitimate uses for protecting intellectual property, and from
the point of view of malware analysts faced with the challenge
of reverse-engineering obfuscated malware. Due to the highly

*The authors contributed equally to the paper.

practical nature of this field of study, the availability of tools
implementing various obfuscation techniques is crucial for
furthering code obfuscation research. While there exist a few
freely available tools that implement common obfuscation
techniques [1]–[3], these, just like most published research
on the topic, focus on obfuscation applied at the source-code
(or intermediate representation) level, aimed at obscuring pro-
gram semantics from reverse-engineers. The complimentary
technique disassembly desynchronization [4], however, has
received relatively little attention in the literature, despite being
frequently used by malware authors [5]. Disassembly desyn-
chronization puts another hurdle in the way of attackers by
targeting the most fundamental step of the reverse-engineering
process: recovering assembly code from a program binary.
The technique is applicable on processor architectures with
variable-length instructions and dense instruction encodings,
such as x86, where attempting to decode a machine-code
sequence at the wrong offset often yields a valid albeit mean-
ingless assembly listing. By using “fake” branches guarded
by opaque predicates (i.e., predicates whose truth value is
invariant, but hard to determine statically), it is possible to
trick a disassembler into decoding the instruction stream at
an invalid offset. This results in hiding a number of original
instructions before the disassembly re-synchronizes with the
original instruction stream.

To the best of our knowledge, no tools for automatically
applying the technique are currently available to the research
community. In the interest of furthering research into disas-
sembly desynchronization, both from a defensive and offensive
point of view, we have created desync-cc, a tool for automatic
application of the obfuscation technique to x86-64 binaries.
desync-cc is designed as an easy-to-use drop-in replacement
for gcc on Linux that applies obfuscation during compila-
tion. Examples of envisioned use cases for the tool include
generation of ground-truth data to aid in the development of
new methods for defeating disassembly desynchronization, or
as a platform for experimenting with new variations of the
obfuscation technique.



In this paper, we discuss important design considerations
for a disassembly desynchronization obfuscator, and outline
the design and implementation of desync-cc. We also perform
a preliminary evaluation on several real-world Linux programs,
where we evaluate our tool’s efficiency as well as its effective-
ness at thwarting code-recovery by a state-of-the-art recursive
disassembler.

In the interest of furthering obfuscation research, we make
desync-cc available as open source at https://github.com/
UlfKargen/desync-cc.

II. BACKGROUND

Disassembly is the process of translating machine-code
instructions into human-readable textual mnemonics. While
conceptually simple, the problem is in fact undecidable in the
general case, due to the possibility of data being interspersed
with the machine code. Such data can exist even in non-
obfuscated binaries due to, for example, jump tables for
switch-case constructs, which are stored inline with the exe-
cutable code. Simple linear sweep disassemblers make a single
linear pass over the machine code, and will therefore generally
produce incorrect disassembly even for benign binaries with
inline data. Recursive disassemblers avoid this problem by
only performing disassembly along valid (statically deducible)
control-flow paths in the binary. Such dissemblers can still,
however, be tricked into producing invalid disassembly by
means of “fake” branches protected by opaque predicates.
This weakness can be exploited to achieve disassembly desyn-
chronization in two ways: the first approach is to insert junk
data protected by a branch that will always jump past the
data during execution, but whose fall-through edge cannot
be statically determined to be unrealizable. An example of
this approach is shown in Figure 1. Since the register eax is
first zeroed using an xor-instruction, the branch at offset 2
(pointing to the call instruction) will always be taken, so
that execution will never reach the junk byte at offset 4. A
disassembler that by default processes the fall-through edge
of branches first, however, will attempt to disassemble code
at offset 4. Since the junk byte (EB hexadecimal, highlighted
in red) and the first byte of the call instruction forms a
valid jmp instruction (EBE8 hexadecimal), the disassembly
desynchronizes, resulting in the rest of the call instruction
being interpreted as two separate instructions (je and xor).
Since the xor instruction ends at the boundary of the original
call instruction, the disassembly would re-synchronize at
that point. This behavior is typical for x86 assembly [4], which
means that at most a few original instructions can be hidden
by any single desynchronizing opaque predicate.

The second way of achieving disassembly desynchroniza-
tion is to use a fake branch into the middle of an existing
instruction, ensuring that the branch is never taken by means
of an opaque predicate. This will cause desynchronization in
disassemblers that by default process the taken branch first,
given that the instruction and offset is chosen correctly.

Fig. 1. Machine code and corresponding assembly for the cases where the
disassembler starts decoding from the taken branch (left) or fall-thorough
branch (right), respectively.

0. 31C0 xor eax,eax
2. 7402 jz 0x3
4. EB db 0xeb
5. E874563412 call <secret>
6.
8.

31C0 xor eax,eax
7402 jz 0x3
EBE8 jmp 0xfffffff0

7456 je 0x60
3412 xor al,0x12

III. DESIGN AND IMPLEMENTATION

Design goals. The overall goal of our work is to automate the
process of applying disassembly desynchronization, while giv-
ing users granular control of where and how desynchronization
points are inserted. In contrast to obfuscation tools that work
on the source-code level, we have designed desync-cc to allow
code-hiding at the granularity of specific instruction types.
This allows, for example, obscuring control-flow instructions
to obstruct recursive disassembly.

Stealth, i.e., making it harder for a reverse-engineer to
identify which parts of the code that are obfuscated, is not
meaningful in the context of disassembly desynchronization.
Since overlapping alternative instruction sequences unavoid-
ably constitute a telltale sign of the technique being used,
our goal has instead been to make it harder to automatically
identify which branch edge is the “fake” one, thus avoiding
that the obfuscation is removed by means of simple heuristics
and scripting.
Design of desync-cc. Necessarily, disassembly desynchroniza-
tion needs to be applied after the code generation phase.
However, applying it directly to binaries would require com-
plex binary-patching, and would not allow accurate liveness
analysis of registers (see below). Therefore, the optimal point
to apply the obfuscation is at the intermediate assembly-code
level, after code generation, but before final assembly into
machine code. The selection of appropriate desynchronization-
inducing junk byte values, however, must be done on the final
binary, since it requires the actual machine code to be known.
(For example, the jump offsets of branches is not known until
after the final binary has been generated.) Therefore, desync-
cc is split up into two stages. The first stage, which is applied
on the intermediate assembly, inserts opaque predicates and
fake branches, and reserves space for junk data by inserting
nop instructions. The second stage, which is applied to the
final binary after linking, selects appropriate values for junk
data, and patches those into the binary file.

It is necessary to avoid that side-effects from opaque predi-
cates affect program semantics. In order to avoid unnecessary
bloating and runtime overhead from excessive register spilling,
we perform liveness analysis to find registers that are safe to
use in opaque predicates. If not enough registers are available,
the tool can be configured to either use register spilling to
free up additional registers (the default), or to simply skip the
obfuscation attempt and move on to the following instruction,.
Similarly, we also perform liveness analysis on processor flags
to avoid unintended side effects. For performance reasons, we

https://github.com/UlfKargen/desync-cc
https://github.com/UlfKargen/desync-cc


do not perform spilling of flags. This means that desynchro-
nization points cannot be inserted directly before conditional
branches or other instructions that read processor flags.

To facilitate liveness analysis, we first construct an inter-
procedural control flow graph (CFG) from each intermediate
assembly file. Since all branch targets are identified with labels
in the intermediate assembly, this can be done safely and ac-
curately (in contrast to attempting to do it on the final binary).
Interprocedural liveness analysis is then applied within each
compilation unit (i.e., each intermediate assembly file). When
encountering function calls with statically unknown targets,
we take Linux x86-64 calling conventions into account, but
otherwise consider all registers as live.

Opaque predicates are supplied as templates with place-
holders for registers. Registers of appropriate size are then
allocated at each desynchronization point, based on liveness
information. The tool ships with a few simple xor-predicates
(similar to Figure 1), as well as a set of stronger opaque
predicates, which makes use of more complex arithmetic
operations. The latter have been borrowed from the LOCO
obfuscation tool [1], which is part of the Diablo [6] link-time
optimization framework.

When using register spilling, desync-cc is capable of insert-
ing desynchronization points at roughly every second instruc-
tion on average. Without spilling, the corresponding figures are
around 40% for simple xor-predicates, but only around 5% for
the Diablo predicates, due to their more complex nature.

In order to prevent reverse-engineers from trivially identi-
fying which branch edge is the fake one, desync-cc can insert
both always-taken and never-taken branches. (For example,
if only always-taken branches were used, it would be trivial
to deobfuscate a binary by replacing every desynchronization-
inducing branch with an unconditional jump.) Symbols storing
the offset of each predicate are inserted into the binary, to
allow the second stage to locate patch-points. In addition to
a unique identifier, the number of inserted junk bytes are
encoded as part of the symbol name. (The number of junk
bytes is a configurable parameter.) The second stage then
processes each symbol. Patch-points are processed in reverse
order based on their offset in the binary. This is necessary
since forward traversal might change the desynchronization
behavior of previous desynchronization points when applying
patches (if, for example, the desynchronized stream overlaps
with the junk bytes of the next patch-point).

In order to find appropriate junk bytes for the always-taken
branches, we read, for each symbol, a chunk of code (50 bytes
by default) starting from the symbol’s offset (i.e., the begin-
ning of the junk data), and disassemble it. We then replace the
initial junk-byte portion of the code chunk (which is initially
filled with nops) with random data and disassemble the result.
If no instruction starts at the offset where the junk-bytes end,
we have successfully achieved desynchronization. Otherwise,
we repeat the above until successful desynchronization or an
iteration limit is reached. To prevent trivial identification of
fake branch edges, we also consider the desynchronization a
failure if it results in invalid instructions.

For never-taken branches, we select a jump-offset in the
same range as the junk-data size (to make never-taken
branches harder to distinguish from always-taken ones). For
each offset in the range that are not on an original instruction
boundary, we attempt disassembly over a fixed window (50
bytes). Similarly to the above, desynchronization is consid-
ered successful if the disassembly does not result in invalid
instructions. Since it is not always possible to find such offsets,
we select a valid instruction boundary as a fallback (or a
random offset as last resort). Finally, the never-taken branch
instruction’s target is patched to the chosen offset.
Implementation. We implement desync-cc using gcc’s
-wrapper command-line option, which invokes each of the
gcc subcommands (for compilation, assembly, linking, etc.)
under a wrapper program. Our wrapper consists of a shell
script that parses the subcommand command-line and invokes
the appropriate desync-cc stage. Stage 1 is implemented in
about 3,000 lines of C++ and stage 2 in about 300 lines of
Python. Stage 1 makes use of the Keystone and Capstone
libraries1 for assembly and disassembly, respectively. During
CFG construction, instructions are first assembled using Key-
stone, and Capstone is then used to extract details on which
registers and flags that are read or written. This information
is then used for liveness analysis. Stage 2 makes use of the
Python bindings for Capstone for disassembly. Since the vast
majority of processing time is spent on repeated disassembly,
the use of Python does not have a big impact on performance,
as the disassembler is implemented in native code.
Usage. To apply obfuscation using desync-cc, the user sim-
ply sets the CC variable to the desync-cc executable when
running configure for an Automake project, or make for
a simple makefile project. desync-cc uses a configuration
directory containing a configuration file and a subdirectory
with one or more predicate template files. It is possible to
override the default configuration by setting the environment
variable DESYNC_CONFIG_BASE_DIR to the path of a
custom configuration directory. The configuration file allows
granular control over the obfuscation process. For example,
it is possible to use a regular expression to control which
instruction types the obfuscator attempts to hide, the frequency
at which predicate-insertion is attempted in the code, the junk
byte length (fixed, range, or Gaussian distribution), the fraction
of branches that should be of the never-taken type, etc.

desync-cc leaves the desynchronization-point symbols in the
executable to serve as ground truth for experimentation, but
these can easily be removed using the strip command from
the GNU development tools.

IV. EVALUATION

In this section we present a preliminary evaluation of
desync-cc. An Intel Xeon E3-1245 (v1) machine with 16GB
RAM was used for the experiments.

In our first experiment, we measured the time overhead
that obfuscation added to the build process when building the

1https://www.keystone-engine.org/, https://www.capstone-engine.org/

https://www.keystone-engine.org/
https://www.capstone-engine.org/


109 programs in the GNU Coreutils suite2. We configured
desync-cc to attempt predicate-insertion every 5 instructions,
using simple xor-predicates, with the default configuration of
an equal split of always-taken and never-taken predicates. We
performed ten runs for each junk-byte size in the range 1–7
bytes. The same random seed was used for all runs, ensuring
that predicates were inserted at the same code locations in
each of the runs.

The mean results for the ten repeated runs are presented
in Table I. The time overhead is shown relative to the non-
obfuscated build time, which was 60.13 seconds (σ = 2.07s).
We see that the slowdown is around 4x for most cases. It
is possible to find desynchronization-inducing junk bytes in
almost all cases when using always-taken branches. The low
average number of trials needed also indicate that such junk
bytes are almost always found quickly, even with our simple
brute-force approach. Using more than one junk byte appears
beneficial, as is evident from the lower average number of
trials, and that the 1-byte runs were the only ones where
some desynchronization attempts failed. With an increasing
number of junk bytes, the mean number of trials increase
slightly. This is likely because it increases the likelihood of
introducing invalid instructions within the junk bytes them-
selves. For the never-taken branches, there is less opportunity
to achieve desynchronization, since we are limited to a jump
a few bytes ahead into adjacent instructions. Nevertheless,
desynchronization is successful in most cases. Since we use
the junk-byte length as the upper limit for the jump offset
of never-taken branches, using more junk bytes increases the
likelihood of success.

We also wanted to evaluate the effectiveness of the ob-
fuscation, as well as the overhead when running obfuscated
programs. Since the programs in GNU Coreutils are quite
simple and generally execute very quickly, they are less well-
suited for evaluating runtime overhead. Instead, we used the
XML parser xmllint from Libxml23, and the compression
tool xz4 for this experiment. For xmllint, we measured the
time required for running its test suite, whereas for xz we
created a simple benchmark consisting of compressing 30MB
or random data.

Since recursive disassemblers discover code in the exe-
cutable by traversing the control-flow and call graphs, an effec-
tive way to hide code from such disassemblers is to obfuscate
branching instructions. Therefore, we configured desync-cc to
attempt desynchronization close to different kinds of control-
transfer instructions. Here, we used the stronger (and more
computationally expensive) predicates from the LOCO/Diablo
obfuscator. Additionally, we configured desync-cc to only use
always-taken branches, since recursive disassemblers typically
follow the fall-through edge first.

We used the freeware version of the state-of-the-art recur-
sive disassembler IDA5, and compared its ability to identify

2https://www.gnu.org/software/coreutils/
3http://xmlsoft.org/
4https://tukaani.org/xz/
5https://hex-rays.com/ida-free/

functions in the binaries, with and without obfuscation. Table
II summarizes the results. Evidently, it is sufficient to just
obfuscate call instructions (the second row in the table) in
order to prevent IDA from discovering the vast majority of
functions. In fact, almost the entire code section of the binary
is detected as “data” by IDA when inserting desynchronization
points before every call instruction. The runtime overhead
(calculated as the mean of 10 runs) is quite modest (10–15%)
for xmllint, whereas the difference for xz is so small that
it falls within the margin of error. Obfuscating both call and
ret instructions does not result in any additional reduction in
function recovery, but slightly increases the overhead.

We also measured the result of obfuscating other branch
instructions, namely unconditional jumps (jmp), in combina-
tion with the comparison instructions typically executed just
prior to a conditional branch (cmp and test). (Note that
we cannot place a desynchronization point directly before
a conditional branch, since the non-liveness constraint on
processor flags would never be satisfied.) This also results in
a marked reduction of identified functions, although less so
than call obfuscation. In this case, IDA was able to correctly
identify a larger portion of the code as instructions, but still
failed to determine function boundaries in most cases. The
overhead in this case was larger (around 100% for xmllint
and 30% for xz.) The last row shows the case where all the
five instruction types are subject to obfuscation. This does not
result in an improvement over the call case in terms of code
hiding, but further increases the overhead a bit.

V. RELATED WORK

Linn and Debray [4] were the first to introduce the concept
of disassembly desynchronization. They proposed a technique
for automatic application of the obfuscation to binaries, but
their approach has several limitations compared to ours. Most
notably, junk bytes can only be inserted at the beginning
of basic blocks preceded by an unconditional branch. They
also select junk bytes as subsequences of a fixed short byte-
sequence, which would make detection of fake branch edges
relatively easy.

LOCO [1] is an open-source obfuscation tool for aiding
in manual obfuscation of binaries. The tool supports a few
common obfuscation techniques like control-flow flattening
and insertion of opaque predicates for obscuring program logic
(but not disassembly desynchronization). While the tool allows
fine-grained control of where obfuscation is applied, it does
not support automatic obfuscation. Instead, it provides a GUI
for aiding in manually inserting, e.g., opaque predicates.

Obfuscator-LLVM [2] is a more recent obfuscator that can
automatically apply transformations like opaque predicates,
bogus control flow, and control-flow flattening during compila-
tion. Since it works on the LLVM intermediate-representation
level, it cannot directly be used to apply disassembly desyn-
chronization. Obfuscator-LLVM is available as open source.

The Tigress obfuscator [3] applies transformations at
the source-code level to C programs, and supports sev-
eral advanced obfuscation techniques, such as virtualization-

https://www.gnu.org/software/coreutils/
http://xmlsoft.org/
https://tukaani.org/xz/
https://hex-rays.com/ida-free/


TABLE I
MEAN OBFUSCATION OVERHEAD AND DESYNCHRONIZATION SUCCESS-RATE WHEN BUILDING GNU COREUTILS

Junk bytes Slowdown Mean junk
byte trials

Successful always-taken
branches (out of 59,150)

Successful never-taken
branches (out of 58,044)

1 4.70 (σ = 0.83) 4.01 (σ = 0.00) 59,113.0 (σ = 0.0) -
2 4.18 (σ = 0.13) 2.04 (σ = 0.01) 59,150.0 (σ = 0.0) 44,921.1 (σ = 1.4)
3 4.12 (σ = 0.12) 1.76 (σ = 0.01) 59,150.0 (σ = 0.0) 48,677.7 (σ = 0.9)
4 4.14 (σ = 0.21) 1.73 (σ = 0.01) 59,150.0 (σ = 0.0) 50,585.1 (σ = 0.9)
5 4.24 (σ = 0.31) 2.14 (σ = 0.01) 59,150.0 (σ = 0.0) 53,751.6 (σ = 1.4)
6 4.25 (σ = 0.31) 2.15 (σ = 0.01) 59,150.0 (σ = 0.0) 54,396.0 (σ = 1.0)
7 4.27 (σ = 0.31) 2.20 (σ = 0.01) 59,150.0 (σ = 0.0) 56,160.9 (σ = 1.1)

TABLE II
EXECUTION TIME AND IDA FUNCTION RECOVERY FOR XMLLINT AND XZ

Configuration xmllint xz
Time (s) Func. Time (s) Func.

No obfuscation 7.89 (σ = 0.07) 1762 10.92 (σ = 0.11) 484
call 8.89 (σ = 0.11) 9 10.80 (σ = 0.34) 9
call,ret 9.98 (σ = 0.08) 9 11.58 (σ = 0.25) 9
cmp,test,jmp 15.84 (σ = 0.22) 287 14.27 (σ = 0.38) 27
All branch 17.60 (σ = 0.19) 9 14.41 (σ = 0.44) 9

obfuscation and self-modifying code. Tigress supports in-
sertion of opaque predicates in combination with junk-byte
blocks. This can be used to achieve disassembly desynchro-
nization [7], but since transformations are applied on the
source-code level, it is not possible to have granular control
over where desynchronizations happen. Tigress is publicly
available, but source code is available only on demand.

Since desync-cc works on the assembly level, its capabilities
are orthogonal to those of tools like Obfuscator-LLVM or
Tigress. Our tool can therefore be used to add another layer of
protection by applying disassembly desynchronization on top
of the protections added by a source-code level obfuscator.

VI. FUTURE WORK

There exist many possibilities for future additions to
desync-cc. For example, the currently used opaque predi-
cates are not very resilient against a skilled human analyst,
or advanced automated analysis methods, such as symbolic
execution [8]. Stronger opaque predicates, which make use
of complex data structures or are constructed across multiple
functions [9], must be applied during compilation, and are
therefore not directly applicable in desync-cc. One possible
solution to this problem could be to store the truth-value
of strong source-code level predicates (such as the ones
provided by Tigress) in global variables, which could then
be accessed by desync-cc when applying obfuscation at the
assembly-level. This approach could also reduce the runtime
overhead of desync-cc, by enabling compile-time optimization
of predicates, in addition to the possibility of “reusing” a
predicate evaluation at multiple desynchronization points.

In our current implementation, we select junk bytes ran-
domly. An interesting topic of future work would be to
explore ways of optimizing the selection of junk bytes. One
option would be to optimize with regards to the quantity
of desynchronization, i.e., to maximize the distance until

resynchronization occurs. Another interesting avenue of future
work would be to optimize with regards to the quality of
desynchronized code, i.e., to make it less easily distinguishable
from “real” code by a human analyst.

Other potential future improvements could include even
more granular control of obfuscation, such as the possibility to
chose different predicates for different instruction types. This
would, for example, allow inserting always-taken branches be-
fore each call instruction to confuse recursive disassemblers,
while also inserting never-taken branches at random places to
make automatic deobfuscation harder.

VII. CONCLUSION

In this paper we have described the design and imple-
mentation of desync-cc, a tool for automatic application of
disassembly desynchronization. Our preliminary evaluation
showed that it incurs a slowdown of around 4x during compi-
lation, and demonstrated its effectiveness at thwarting function
recovery in a state-of-the-art disassembler while introducing a
modest runtime overhead. We make the tool available as open
source in the interest of furthering research into disassembly
desynchronization.

REFERENCES

[1] M. Madou, L. Van Put, and K. De Bosschere, “LOCO: An interactive
code (de)obfuscation tool,” in Proceedings of the 2006 ACM SIGPLAN
Symposium on Partial Evaluation and Semantics-Based Program Manip-
ulation, 2006, p. 140–144.

[2] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-LLVM –
software protection for the masses,” in 2015 IEEE/ACM 1st International
Workshop on Software Protection, 2015, pp. 3–9.

[3] (2021) The Tigress C obfuscator. [Online]. Available: https://tigress.wtf/
[4] C. Linn and S. Debray, “Obfuscation of executable code to improve resis-

tance to static disassembly,” in Proceedings of the 10th ACM Conference
on Computer and Communications Security, 2003, p. 290–299.

[5] M. Sikorski and A. Honig, Practical malware analysis: the hands-on
guide to dissecting malicious software. No starch press, 2012.

[6] L. Van Put, D. Chanet, B. De Bus, B. De Sutter, and K. De Bosschere,
“Diablo: a reliable, retargetable and extensible link-time rewriting frame-
work,” in Proceedings of the Fifth IEEE International Symposium on
Signal Processing and Information Technology, 2005., 2005, pp. 7–12.

[7] Y.-J. Tung and I. G. Harris, “A heuristic approach to detect opaque
predicates that disrupt static disassembly,” in Binary Analysis Research
Workshop (BAR), 2020.

[8] S. Banescu, C. Collberg, and A. Pretschner, “Predicting the resilience of
obfuscated code against symbolic execution attacks via machine learning,”
in 26th USENIX Security Symposium, 2017, pp. 661–678.

[9] C. Collberg, C. Thomborson, and D. Low, “A taxonomy of obfuscating
transformations,” Department of Computer Science, The University of
Auckland, New Zealand, Tech. Rep., 1997.

https://tigress.wtf/

	Introduction
	Background
	Design and Implementation
	Evaluation
	Related Work
	Future Work
	Conclusion
	References

