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Abstract—Decompilers are indispensable tools in Android
malware analysis and app security auditing. Numerous academic
works also employ an Android decompiler as the first step in
a program analysis pipeline. In such settings, decompilation is
frequently regarded as a “solved” problem, in that it is simply
expected that source code can be accurately recovered from
an app. While a large proportion of methods in an app can
typically be decompiled successfully, it is common that at least
some methods fail to decompile. In order to better understand
the practical applicability of techniques in which decompilation
is used as part of an automated analysis, it is important to know
the actual expected failure rate of Android decompilation. To this
end, we have performed what is, to the best of our knowledge,
the first large-scale study of Android decompilation failure rates.
We have used three sets of apps, consisting of, respectively, 3,018
open-source apps, 13,601 apps from a recent crawl of Google Play,
and a collection of 24,553 malware samples. In addition to the
state-of-the-art Dalvik bytecode decompiler jadx, we used three
popular Java decompilers. While jadx achieves an impressively
low failure rate of only 0.02% failed methods per app on average,
we found that it manages to recover source code for all methods
in only 21% of the Google Play apps.

We have also sought to better understand the degree to
which in-the-wild obfuscation techniques can prevent decom-
pilation. Our empirical evaluation, complemented with an in-
depth manual analysis of a number of apps, indicate that code
obfuscation is quite rarely encountered, even in malicious apps.
Moreover, decompilation failures mostly appear to be caused by
technical limitations in decompilers, rather than by deliberate
attempts to thwart source-code recovery by obfuscation. This
is an encouraging finding, as it indicates that near-perfect
Android decompilation is, at least in theory, achievable, with
implementation-level improvements to decompilation tools.

Index Terms—Android, mobile apps, decompilation, obfusca-
tion, reverse engineering, malware

I. INTRODUCTION

Decompilers, i.e., tools that can reconstruct the source code
from a program binary, are ubiquitous aids in malware analysis
and app security auditing for the Android platform. Android
decompilers are also used extensively in academia to lift the
Dalvik bytecode of Android apps into Java source code, prior
to manual or automated inspection [1]–[7]. In the literature,
decompilation of Android apps is frequently considered a
“solved” problem, in that it is simply expected that source
code can be accurately recovered from an app. While Android
decompilers are generally known to perform well, it is also

known that their success rate is often not 100%, especially for
obfuscated or heavily optimized apps.

In many works [2], [8]–[12], decompilation is used as the
first step in an automated analysis pipeline. In order to under-
stand the failure modes of such approaches, and to allow better
estimates of their efficacy in the general case, a fundamental
question is: To what degree can we expect decompilers to
successfully recover source code from Android apps? To the
best of our knowledge, there have been no previous systematic
attempts at answering this question. In this paper, we strive
towards filling this knowledge gap by presenting the first large-
scale study of Android app decompilation success rate, where
the above question serves as our primary research question
(RQ1).

On the PC platform, control-flow obfuscation is frequently
used by both malware authors and legitimate software devel-
opers to prevent decompilation or disassembly of native code
[13], [14]. Similarly, several obfuscation techniques exist for
the Java virtual machine [15], [16], which are able to prevent
decompilation of Java bytecode back into legible source code.
Therefore, obfuscation is a major hurdle when attempting
decompilation (or related techniques, such as control-flow
graph reconstruction), on PC malware or DRM-protected
commercial software.

Control-flow obfuscation is technically more challenging,
albeit not impossible, to implement for Dalvik bytecode due
to the so-called register-type conflict problem [17] (which
we briefly describe in Section II). For this reason, the most
commonly used obfuscation techniques for Android apps, such
as identifier renaming or string encryption, aim primarily to
hide clues about program semantics from human analysts,
rather than preventing decompilation per se. The question
remains, however: to what degree is decompilation-breaking
obfuscation a concern when analyzing malware or commercial
apps for the Android platform? We address this as our second
research question (RQ2).

Our third and final research question concerns the per-
formance of individual decompilers. It has been shown that
various idiosyncrasies of Java decompilers can cause signifi-
cant differences in relative performance between decompilers,
depending on the program being analyzed [18]. Moreover,
Jang et al. [19] showed in a study on 151 open-source apps that
an ensemble of decompilers outperformed each individual de-



compiler. To determine if the results of their small-scale study
can be generalized, we have sought to answer the question:
Do different Android decompilers tend to systematically fail on
the same methods, or do their results complement each other?
(RQ3)

In summary, the main contributions of this paper are as
follows:

• We perform a large-scale study of the decompilation
success rate for Android apps using four different de-
compilers. Our evaluation is performed on three datasets,
consisting of, respectively: 3,018 open-source apps from
the F-Droid repository, 13,601 apps from a recent crawl
of Google Play, and a collection of 24,553 Android
malware samples.

• We characterize the differences in decompilation success
rate between the three datasets, and perform a preliminary
analysis of potential causes of these differences.

• We complement our statistical analysis with a manual
analysis of a number of Android apps.

• Finally, we make our implementation and collected data
available in the interest of open science1.

II. BACKGROUND

In order to make the paper self-contained, we will start
by providing some brief background information on a few
important concepts.

Android app runtime model. Android apps are developed in
the Java or Kotlin languages, and compiled to Dalvik bytecode.
Apps are distributed in the form of Android Application
Packages (APKs), which contain one or more files of the
Dalvik Executable (DEX) format. DEX files in turn contain a
number of classes, including Dalvik bytecode for each method
of a class. On Android versions prior to 5.0, Dalvik bytecode
was interpreted by a virtual machine. Modern versions of
Android instead use the Android Runtime (ART), which
avoids the overhead of interpretation by pre-compiling the
Dalvik bytecode to native code when an app is first installed.

Android decompilation. In addition to native Dalvik decom-
pilers, Java decompilers can often also be used on Android
apps by first converting the Dalvik bytecode into equivalent
bytecode for the Java virtual machine (JVM), using a tool
such as ded [12] or dex2jar [20]. Since the Kotlin language
is designed to be fully interoperable with Java, apps written
in Kotlin can generally also be decompiled into Java source
code.

Android obfuscation. Android apps frequently make use
of obfuscation to prevent intellectual property theft, such as
redistribution of paid apps, or ad-fraud. (The latter implies
repackaging apps with modified identifier tokens for ad ser-
vices, in order to gain ad revenue based on other developers’
work.) One of the most common types of obfuscation is iden-
tifier renaming, wherein human-readable identifiers for, e.g.,
methods or variables, are replaced with meaningless strings.

1https://github.com/NoahMauthe/decompilation analysis

This obfuscation is sometimes also applied to open-source
apps, since it tends to make the final APK smaller. Another
common obfuscation method is string encryption, which works
by removing strings from a DEX file and replacing them with
an encrypted variant. Decryption routines are then injected at
the places where strings are used in the code, so that the strings
can be decrypted on-the-fly during runtime. A more advanced
form of obfuscation is class encryption, whereby an entire
class is stored in encrypted form and reconstructed at runtime
using Java’s reflection API. Packing is a similar approach to
obfuscation, where an entire DEX file is stored in encrypted
form, which is decrypted at runtime using a wrapper program.

A common form of control-flow obfuscation works by
inserting “fake” branches to random or invalid code locations,
where the branches are guarded by so-called opaque predicates
[21]. Such predicates are hard to evaluate statically, but always
give the same outcome at runtime. This kind of obfuscation is
applicable both to native code and to bytecode for the JVM,
and provides a strong defense against decompilation, as it
often cannot be automatically broken without resorting to pro-
hibitively expensive methods, such as symbolic execution [22].
On Android, however, this technique is considerably harder
to implement due to the aforementioned register-type conflict
problem. While the JVM is stack based, the Dalvik virtual
machine is register based. During compilation to native code,
the ART compiler will check that there are no instances where
a register holds data of conflicting types along any control-flow
path in a method. (For example, if an integer is written to a
register at some point, and at a later point that register is read
as a floating point number, a register-type conflict is reported,
and compilation is aborted.) “Fake” branches stemming from
control-flow obfuscation frequently cause this type of conflict.
While methods for partially overcoming this problem exist
[17], it is unclear to what degree, if any, this type of anti-
decompilation technique is used in the wild for Android apps.

III. METHODOLOGY

In this section, we outline the methodology used in our
study. We begin with a detailed description of our approach,
and then we discuss some of its limitations.

A. Approach

As depicted in Figure 1, we begin by gathering APKs
from three different sources, in order to study decompilation
characteristics of different kinds of apps. We collected 3,018
open-source apps from the F-Droid repository [23] and 13,601
apps from the Google Play store. Finally, we used an existing
dataset [24] of Android malware, consisting of 24,553 samples
collected between 2010 and 2016.

Retrieving apps from the F-Droid repository is quite
straightforward, as all apps can simply be enumerated and
downloaded. The Google Play store, however, does not allow
downloading apps in bulk. Therefore, similarly to previous
works, we had to implement a custom crawler by partially
reverse-engineering the internal Google Play API. In order to
get a comprehensive overview of the most popular applications

https://github.com/NoahMauthe/decompilation_analysis
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Fig. 1. An overview of our analysis approach.

in the store, we used an approach similar to, e.g., Backes et
al. [25] and crawled Google Play by category. Our crawler
first retrieves the current set of categories present in Google
Play and then goes on to query each of those for their
respective subcategories. These subcategories are not thematic,
but instead are of a commercial nature, displaying the highest
grossing, highest selling and most popular applications. As we
only want to include free applications in our dataset2, we omit
crawling the highest selling applications and focus on the other
two subcategories. The crawler then queries the store API for
all applications contained in each subcategory, and downloads
all of them.

As the top grossing categories may still contain paid apps
and some applications are present in multiple subcategories,
we needed to do further pruning of duplicates and apps that
failed to download as we did not purchase them. After pruning,
we ended up with the aforementioned number of unique apps
from 34 categories.

In the next step, each app is decompiled with four different
decompilers. In addition to the state-of-the art native Android
decompiler jadx [27], we also used the three popular Java
decompilers CFR [28], Fernflower [29] and Procyon [30].
Before invoking the Java decompilers, we convert each app’s
Dalvik bytecode to JVM bytecode using dex2jar. In case of
failures, the error messages from each decompiler are fed
to a custom parser that records the methods that failed to
decompile. When the analysis of one app is complete, all
output artifacts, such as log files and decompiled source code,
are discarded in order to avoid excessive disk usage. Since
decompilation sometimes takes a very long time for some
apps, it was necessary to implement timeouts. We used a
timeout of 5 minutes for dex2jar, and also set the timeout
for each decompiler to 5 minutes.

Since packing effectively hides an app’s code from static
analysis, decompilation is of little use for packed apps, unless
the app is first unpacked by manual analysis. For this reason,
we also wanted to detect if an app had been obfuscated with

2We deemed this a reasonable restriction, considering that only 3.9% of all
Google Play apps are paid [26].

a packer. To this end, we use the APKiD tool [31], which can
detect signatures of many popular packers.

In order to compare the per-method performance of the de-
compilers, the final step of our approach is to unify decompiler
outputs. We first use apkanalyzer [32] from the Android SDK
to extract signatures for every method in an app. We use this
list of method signatures as a reference point, and match these
signatures with the failed methods of each decompiler. The
total number of methods per app, and the size of each method
(i.e., the size of the method’s bytecode) is also determined
using apkanalyzer. Since all decompilers use slightly different
formats for method signatures in their error reporting, we first
preprocess the failed signatures to have a unified format. We
also had to modify CFR somewhat, so that it outputs sufficient
information about methods that it failed to decompile. Finally,
we perform a simple textual matching of the unified signatures.

Our analysis platform was implemented in around 3,800
lines of Python. Crawling the datasets took about one week,
and performing the analysis of all apps required around 4
weeks when running in parallel on three machines, each fitted
with an 8-core Intel 9700K CPU.

B. Limitations

One general limitation of our approach is that we only match
failed methods between the decompilers. In other words,
we assume that a decompiler will always either successfully
decompile a method, or emit an error message in a predictable
format. If there are corner cases where this assumption does
not hold, i.e., where decompilers silently “ignore” methods, we
would not detect this as a failure, but would simply assume
that the method (as reported by apkanalyzer) was successfully
decompiled. It should be noted that matching the successfully
decompiled methods in addition to the failed ones would be
quite challenging, as this would require parsing the decom-
piled source code. Apart from substantially increasing the
processing time required for each app, accurately recovering
method signatures from the reconstructed source code could
also potentially prove challenging, since the decompilation
output would likely not be fully compliant Java code.



There are also some problems that stem from limitations in
the tools we use. These are summarized below.

Challenging Java language features. The way decompilers
handle some specific features of Java reduces the accuracy
of our signature matching. Inner classes is one such case.
While apkanalyzer reports the fully quantified names of inner
classes, some of the decompilers only report the method name
and containing source code file of a failed method in an
inner class. Therefore, we are forced to over-simplify in these
cases, and consider all methods of inner classes with the
same name in one file as matching, by omitting the inner
class quantifier reported by apkanalyzer. This sometimes leads
to an over-approximation of failures, namely when there are
methods in multiple inner classes whose signatures match a
decompilation failure. For example, consider a class A with
two inner classes 1 and 2 where all three classes define
a method void m(boolean). This might seem like an
artificial case, but it often happens if classes 1 and 2 extend
class A. In this case, apkanalyzer would output three
different quantified method signatures:

A void m(boolean)
A$1 void m(boolean)
A$2 void m(boolean)

However, two of the decompilers in our study, namely
Fernflower and Procyon, would report the same signature
A void m(boolean) for a failure in any of the three
classes. When matching the failures using our simplification,
this leads to three recorded failures instead of one. While this
is not a problem when computing the overall failure rate of an
app (since we know the total number of methods and failures),
a method-by-method comparison of decompiler performance
will inevitably suffer from some imprecision.

Generics also pose a problem for our signature matching.
Some of the decompilers replace any generic they identify
with java.lang.Object, whereas others leave the generic
identifier unchanged, (e.g., E, T, R or V). This leads to
mismatches between decompilers. An additional issue that
further exacerbates the problem is that apkanalyzer sometimes
manages to infer the type of a generic statically, while none of
our decompilers have that ability. In contrast to the problem
with inner classes, we cannot deal with this problem by
over-approximation, since our text matching approach simply
cannot determine whether an identifier is a generic’s denom-
ination or a class name. For this reason, if a method using
generics fails to decompile, the failure will not be recorded,
and the method will be incorrectly reported as successfully
decompiled. Similarly to the problem with inner classes,
only method-by-method comparisons will be affected by this
problem.

Other tool limitations. During our experiments, we en-
countered several cases where dex2jar or apkanalyzer failed
with an error message. (Presumably, this happens mostly for
obfuscated apps). Since we use the method listing produced
by apkanalyzer as a reference for unifying results, we simply
excluded apps where apkanalyzer failed from the study. For

apps where dex2jar failed, we could only record results for
jadx.

A more severe problem, which we discovered during our
manual analysis of apps, is that these tools sometimes seem-
ingly process an app successfully, while in fact producing
an incorrect or incomplete result. apkanalyzer occasionally
fails to include methods, or sometimes entire classes, in its
output. Since we base our matching and unification approach
on the output from apkanalyzer, this inevitably leads to a few
methods being missed. We also discovered an undocumented
failure mode of dex2jar. Apparently, in some cases when the
tool cannot convert a method from Dalvik to JVM bytecode,
it simply emits a “stub” method with the same signature as
the original method, but where the body is replaced with a
single throw-statement, throwing a custom exception. We
discovered that dex2jar sometimes, but not consistently, emits
a warning in its log file when this happens. Since the stub
methods are likely much easier to decompile than the original
method, this error presumably leads to false negatives in
the reporting of decompilation failures for our three Java
decompilers. Moreover, since both the exception type and the
accompanying error message string differ from case to case, it
is not possible to reliably detect the error in an automatic way.
We only spotted this problem for one of the manually analyzed
malware apps, which appeared to be heavily obfuscated. We
describe this case in more detail in Section V.

To estimate how much the above limitations influence the
efficacy of our matching algorithm, we investigated the num-
ber of cases in which we either failed to match any method
(due to the problem with generics), or where we had several
matches (due to the problem with inner classes). In all of
the 14,256,783 decompilation failures we encountered, there
were 670,035 (5%) failures with no match, 349,585 (2%)
methods with more than one match (3.83 matches per method
on average), and 13,237,163 (93%) methods with exactly
one match. Unfortunately, the number of cases in which
apkanalyzer fails to report methods cannot be quantified with
our currently implemented approach.

IV. RESULTS

In this section, we present the results of our empirical study.

A. Basic Dataset Statistics

Table I shows some basic properties of our three app
datasets. We see that quite a large number of malware apps
could not be analyzed with apkanalyzer, while dex2jar instead
fails on almost 400 apps from Google Play. As previously
mentioned, the apps where apkanalyzer failed were excluded
from the study.

As can be seen from the table, only about 100 apps were
recognized by APKiD as having been packed in each of the
Google Play and malware datasets. None of the open-source
apps were reported as packed. This is unsurprising, as open-
source developers would have little incentive to obfuscate their
code.



TABLE I
DATASET CHARACTERISTICS

Dataset Total Failed
apkanalyzer

Failed
dex2jar Processed Packed

(APKiD)

f-droid 3,018 0 0 3,018 0
google 13,601 7 394 13,594 127
malware 24,553 1,220 33 23,333 131

TABLE II
TIMEOUT STATISTICS FOR THE 4 DECOMPILERS

Dataset CFR Fernflower Jadx Procyon
f-droid 1 164 0 37
google 21 7652 4 1419
malware 8 1955 1 130

The number of timeouts for each dataset and decompiler are
shown in Table II. The native Dalvik decompiler jadx performs
the best with only 5 timeouts. CFR also performs well with
only a few timed-out apps. Fernflower, on the other hand,
experiences a very large number of timeouts. On the Google
Play dataset in particular, Fernflower stands out by timing out
for more than half of the apps.

The inaccuracies introduced by the limitations described in
Section III-B are broken down in Tables III and IV. While
Fernflower and Procyon had many superfluous matches, jadx
and CFR were not affected by this problem. This is because
jadx and CFR (after our modifications) provide information
about inner classes in their error messages.

On the other hand, a large number of the methods jadx
reported as failed were unmatchable due to the problem with
handling Java generics. For example, more than one third of
the failures on Google Play apps could not be matched to a
corresponding method reported by apkanalyzer. As previously
mentioned, however, these problems only affect the accuracy
of method-wise comparisons.

TABLE III
PERCENTAGE OF REPORTED FAILED METHODS THAT WERE SUPERFLUOUS

MATCHES (DUE TO INNER CLASSES).

Dataset CFR Fernflower Jadx Procyon
f-droid 0.0 29.255 0.0 24.874
google 0.0 13.650 0.0 15.746
malware 0.0 16.905 0.0 22.154

TABLE IV
PERCENTAGE OF FAILED METHODS THAT WERE UNMATCHABLE (DUE TO

JAVA GENERICS).

Dataset CFR Fernflower Jadx Procyon
f-droid 4.378 0.140 13.551 8.685
google 6.609 0.331 34.030 9.060
malware 1.586 0.036 2.649 1.670
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Fig. 2. Failure rate distributions for the 4 decompilers, excluding timeouts
and dex2jar failures. Whiskers show the upper and lower 5th percentiles.

TABLE V
MEAN FAILURE RATES IN PERCENT FOR THE 4 DECOMPILERS,

EXCLUDING TIMEOUTS AND DEX2JAR FAILURES.

Dataset CFR Fernflower Jadx Procyon
f-droid 0.686 0.562 0.005 0.293
google 0.844 1.051 0.011 0.321
malware 1.751 1.459 0.047 1.078
weighted avg. 1.094 1.024 0.021 0.564

B. Decompiler Performance

Here, we report on the performance of individual decom-
pilers.

Figure 2 shows the failure rate distributions of the three
decompilers. In order to make a fair comparison, here we have
only included cases where all decompilers actually produced
any output. That is, we have excluded all apps where at least
one decompiler timed out, as well as the apps where dex2jar
failed. Table V shows the corresponding mean failure rate
percentages. The last row shows the weighted average of all
datasets (i.e., the mean of the dataset means). It is evident
that jadx outperforms the other (non-native) decompilers by
a broad margin. The weighted average method failure rate is
only around 0.02% for jadx, which is almost two orders of
magnitude lower than that of CFR and Fernflower. We can
also see that all decompilers performed differently on different
datasets, with most decompilers having a significantly higher
mean failure rate on the malware dataset. We elaborate on this
further in Section IV-D.

For completeness, Table VI shows the failure rates when
timed-out apps are included. These apps are considered as
having a failure rate of 100%.

C. Failure Rate Diversity

In this section we explore the failure rate diversity of the 4
decompilers, i.e., the degree to which they complement each
other in terms of successfully decompiling methods.

Table VII shows the percentage of apps that could be fully
decompiled, i.e., where the decompiler did not time out or
experience other errors, and where no method decompilation
failures were reported. Using jadx alone (column 2), it was



TABLE VI
MEAN FAILURE RATES IN PERCENT FOR THE 4 DECOMPILERS, INCLUDING

TIMEOUTS, BUT EXCLUDING DEX2JAR FAILURES.

Dataset CFR Fernflower Jadx Procyon
f-droid 0.741 5.966 0.005 1.522
google 1.032 58.418 0.019 11.006
malware 1.838 9.726 0.044 1.672
weighted avg. 1.204 24.703 0.023 4.733

TABLE VII
PERCENT OF ALL APPS WHERE ALL METHODS WERE SUCCESSFULLY

DECOMPILED BY, RESPECTIVELY, JADX, AN ENSEMBLE OF ALL
DECOMPILERS, AND INDIVIDUALLY BY ALL DECOMPILERS.

Dataset Jadx Ensemble All decompilers
f-droid 74.52 74.69 8.65
google 21.02 21.03 0.15
malware 78.81 79.68 0.60

possible to fully decompile about 75% of the open-source
apps, while only 21% of Google Play apps could be fully
decompiled. This is probably due in part to Google Play
apps having a much larger mean number of methods (63,748
methods on average for Google Play apps, versus 13,532 for
F-Droid apps). Interestingly, almost 80% of malware apps
could also be fully decompiled by jadx. The fact that the
malware apps had significantly fewer methods on average
(5,142), compared to the other datasets, could partially explain
this. (It should be noted, however, that many of the excluded
apps for which apkanalyzer failed would probably also fail to
decompile completely. These apps comprised about 5% of the
entire malware dataset.)

The next column in Table VII shows the number of apps
that could be fully decompiled by combining the results
from all decompilers. As is evident from the table, this only
negligibly improves the success rate. The last column shows
the percentage of apps that could be fully decompiled by all
decompilers. These figures are negligible, except for the F-
Droid dataset.

Another way to characterize the diversity of decompilers is
to measure their co-failure rate. Here, we have only considered
the F-Droid dataset, since we expect the (presumably non-
obfuscated) open-source apps to be less likely to trigger the
undocumented failure mode of dex2jar that we describe in
Section III-B. Also, it should be noted that, since here we have
to make comparisons between decompilers on a method-by-
method basis, the aforementioned method matching limitations
will influence the results. For this reason, the figures presented
here must be taken as indicative, rather than exact.

Table VIII shows, for each decompiler, the percentage of
cases where, respectively, at least 1, 2 or 3 (i.e., all) other
decompilers also failed on a method that the decompiler in
question failed to decompile. (Here we also consider timeouts
as failures.) For example, in 72% of cases where jadx fails to
decompile a method, at least one other decompiler also fails

TABLE VIII
DECOMPILER CO-FAILURE PERCENTAGE ON THE F-DROID DATASET.

Decompiler >0 other failed >1 other failed All other failed
CFR 40.9549 11.6763 0.0378
Fernflower 8.8871 0.4419 0.0014
Jadx 71.9225 21.9917 4.3338
Procyon 41.5437 2.2230 0.0073

f-droid

google

malware

mlwr. fam. means

10−4 10−3
Failure rate (log10)

Fig. 3. 95% confidence intervals for jadx mean failure rates.

on that method. This figure is lower for all other decompilers,
which can be explained by their overall higher failure rates
(c.f. Table VI).

An interesting finding is that, despite jadx drastically outper-
forming the other decompilers, in about 96% of cases where
jadx fails to decompile a method, at least one other decompiler
succeeds.

D. Differences Between Datasets

When investigating differences between the datasets in more
detail, we choose to use only results from the native jadx
decompiler, as it provides the most comprehensive coverage of
apps and generally outperforms the other decompilers. Figure
3 shows the mean jadx failure rates for the datasets. Here, we
have included those cases where dex2jar failed. However, this
only marginally changes the results compared to those shown
in Table V. We note that the mean failure rate of Google Play
apps is roughly twice that of the open-source apps, while for
the malware apps, the mean failure rate is roughly one order
of magnitude higher.

As seen above in Figure 2, the failure rates vary significantly
between different apps. Therefore, sampling error might be a
concern when characterizing differences between the datasets.
In order to quantify the effect of sampling error, we have
computed 95% confidence intervals (shown as error bars in
Figure 3), using bootstrap sampling over all three datasets. We
used 1,000 resamplings for our computations. As can be seen
from the figure, there is a statistically significant difference
between all three datasets.

Another potential concern is that the distribution of samples
over different malware families is highly skewed in our set of
malicious apps. For example, around one third of the malware
apps belong to the same family. Therefore, we have also
included a weighted mean, which is computed by taking the
mean of the family-wise mean failure rate. The result is shown
in the lowermost bar of Figure 3. Bootstrapping over the
family means revealed a very large variation in decompilation
failure rate between different malware families.



We also investigated the differences between Google Play
apps with and without ads (according to the Play Store
metadata), and found that apps with ads had roughly 50% more
decompilation failures on average. Specifically, apps with ads
had a mean failure rate of 0.0135%, while the same figure
for non-ad-supported apps was 0.00861%. Bootstrap sampling
revealed that the difference was statistically significant.

We similarly compared mean failure rates for apps that were
recognized as packed by APKiD, compared to the other apps.
For Google Play, there was a statistically significant differ-
ence, with packed apps having 0.126% failures on average,
compared to 0.0104% (a factor of 12) for non-packed apps.
For malware apps, the corresponding figures were 0.154%
and 0.0436%, respectively. This difference was not statistically
significant, however. Since the wrapper code of many packers
is often heavily obfuscated to frustrate manual unpacking, we
expected the figures to be higher for packed apps, compared
to other apps. However, we were surprised to find that almost
all methods in packed apps could often be decompiled.

E. Exploring Reasons for Differences
Here, we attempt to shed some light on the underlying rea-

sons for the observed differences between the three datasets.
As the results in this section required analysis at the granularity
of individual methods, the aforementioned method-matching
limitations also apply here.

Our primary hypothesis to explain the differences between
datasets was that they exhibited differing prevalence of ob-
fuscation. However, as preliminary analyses indicated that the
likelihood of decompilation success depended on the size of
a method’s byte code, we wanted to rule out the alternative
hypothesis that the differences were simply due to different
method-size distributions. To this end, we divided all methods
based on their size into logarithmically-spaced bins, and
investigated the per-bin failure rates. The upper part of Figure
4 shows the results. A strong, roughly linear dependence
between method size and failure rate is evident in the log-log
scale bar chart. The failure rate of methods in the 8–16 kB bin
is, for example, more than three orders of magnitude higher
than for small methods in the 32–64 B bin. The error bars are
again computed by 1,000-fold bootstrap sampling, and show
the 95% confidence intervals. Since methods of several kB or
more are very rare, the confidence intervals are generally very
wide for the corresponding bins.

The method size distributions for the datasets are shown in
the lower part of Figure 4. Here, we see that the distributions
are quite similar for all three datasets. In particular, we see
that for the two most common method size intervals (32–64
B and 64–128 B), comprising around 70% of all methods,
the failure rates of the malware dataset are about one order
of magnitude higher compared to the other datasets, which
corresponds well with the results shown in Figure 3. This
suggests that the differences cannot be explained by different
method size distributions.

For our last analysis, we wanted to make an exploratory
study of the class names associated with frequent decom-
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Fig. 4. jadx failure rate as a function of binned method sizes (top), and the
distribution of method sizes, using the same bins (bottom).

pilation failures. For each method reported by apkanalyzer,
we extracted the fully qualified name of the containing class,
i.e., the package and class names. We then divided the string
into tokens by splitting on the “.” (dot) symbol. For each
token, the number of method signatures in which the token
appeared was recorded separately for each dataset, along with
the percentage of those method occurrences that jadx failed
to decompile. Since we were interested in tokens associated
with many failures, we filtered out tokens with less than 1%
associated failure rates. Finally, we sorted the tokens on the
total number of (method) occurrences. The top 20 tokens for
each dataset are shown in Table IX.

Several interesting patterns can be identified. We see that the
tokens SlidingWindowKt and windowedIterator,
which are both class names from the Kotlin standard library,
are associated with a large number of failures in both the F-
Droid and Google Play datasets. Since the Kotlin standard
library is open source, it is unlikely to be obfuscated. Instead,
this finding might suggest that jadx is less effective at decom-
piling some bytecode compiled from Kotlin source code.
ReaderBasedJsonParser and

NonBlockingJsonParser, which are names from
the open-source Jackson parsing library, are also among
the top 5 most failure-prone tokens in both F-Droid and
Google Play apps. Similarly, the tokens JSONLexerBase
and JSONLexer from another JSON parsing library are
among the top 20 for Google Play. We also see several
names associated with parsing of various data formats
in the top 20 for the malware dataset (ZLDTDParser,
ReaderBasedParser, Utf8StreamParser,
WbxmlParser). Similarly, several tokens associated



with cryptography or encoding, or with known crypto
libraries, are present in the top 20 for all datasets
(ASN1Set, ASN1Object, ConstructedOctetStream,
DSAParametersGenerator, Encoder, base64). This
suggests that the decompiler has difficulties handling methods
containing large chunks of code with complex computations
and/or control flow, which are common in both parsing and
cryptographic code, and that this type of code is a major
contributor to decompilation failures.

The above findings suggest that a major part of the de-
compilation failures observed in our study are not due to
deliberate attempts at preventing static analysis, but simply due
to limitations of the decompilers. However, we also observed
several tokens that appear to be associated with obfuscation.
The Apptimize library, which is at the top of the list for Google
Play, was found to be heavily obfuscated during our manual
analysis (see Section V). The 2,595 failed methods attributed
to the library constitute around 3% of all observed Google
Play failures. We also noted a number of tokens that seemed
to be the result of identifier renaming (“zzdfh”, etc.) in the
Google Play dataset. Since several of these tokens have a
high associated failure rate, we speculate that they stem from
code that has been subjected to some form of control-flow
obfuscation, in addition to the identifier renaming.

Another third-party library, which appears to be a large sole
contributor to decompilation failures in the malware dataset,
is BugSense. The BugSenseHandler token is associated
with 2,034 failures, or about 21% of all failed methods in the
dataset. Since this library is open-source, it is unlikely that it
is distributed in obfuscated form. Instead, it seems that some
of the code in this library is simply difficult to decompile.

V. MANUAL ANALYSIS

In this section we describe our complementary manual
analysis.

For the analysis, we selected the 5 apps with the highest jadx
failure rate from each of the F-Droid and Google Play datasets.
For the malware dataset, we instead picked the sample with
the highest failure rates from each family, and then selected
the top 5 within this list. We used this approach in order to
avoid potentially getting 5 very similar samples from the same
family. Also, as decompilation is of little use for packed apps
(since only the wrapper code can be decompiled), we omitted
apps that were flagged as packed by APKiD.

We performed a detailed analysis of 10–20 methods in
each app by comparing the output from decompilation (in
cases where at least one decompiler succeeded) with the
corresponding Dalvik bytecode, which was disassembled using
baksmali [33]. In cases where all decompilers failed, we
attempted to manually reverse-engineer the method from the
bytecode. When necessary, we also made a more cursory
investigation of other methods and classes. Methods were
prioritized based on the number of failing decompilers. For
apps with many failed methods, we took a random subset of
methods where more than two decompilers failed. If an app
had only a small number of failed methods (this was the case

for the F-Droid apps), we picked the methods that had the
largest number of failing decompilers. During the analysis, we
attempted to investigate causes of decompilation failures, and
also specifically looked for signs of obfuscation. The results
for each dataset are summarized below.

F-Droid. We found no evidence of obfuscation in any of the
open-source apps. The failures we investigated appeared to be
caused by very deep levels of nesting, and by complex control
flow. In two apps, failures appeared to be caused by methods
declared in anonymous inner classes, nested within several
levels of other anonymous inner classes. In the three other
apps, failures were caused by complex control flow inside
switch-case constructs.

Google Play. In four of the Google Play apps, we discovered
that the decompilation failures were due to the third-party
library Apptimize, which we mentioned above. The library
is obfuscated by moving most of the logic of each class into
a large static block. The control flow of the static blocks is
highly complex, with many nested loops containing break
statements that appear to be protected by opaque predicates.
We also found at least one case of dead code insertion. jadx
reports the same error for all of these static blocks: “JADX
OVERFLOW ERROR: regions count limit reached”.

The fifth app was also obfuscated, using a weak form of
opaque predicates and excessive variable reassignments. In
contrast to the Apptimize library, however, only a subset of
the methods appeared to be obfuscated.

Malware. All five malware apps were obfuscated with iden-
tifier renaming. However, obfuscation appeared to be the
cause of decompilation failures for only one of the apps.
This app had a jadx failure rate of 63%, the highest among
all apps across the three datasets. The other decompilers,
however, reported much lower failure rates. This led us to
discover the undocumented failure mode of dex2jar that we
describe in Section III-B. The failures appeared to be caused
by a particularly intrusive form of obfuscation, which caused
baksmali to crash due to unrecognized opcodes. We believe
that the application may use an internal translation layer and
altered bytecode that is only translated at runtime3.

One of the most prominent causes of decompilation failures
among the other four samples was excessive use of try-catch
blocks for I/O or network error handling. We also found
that decompilers often failed on conditionals that could be
represented as ternary if-statements (i.e., conditionals that
were translated to ternary if-statements by the non-failing
decompilers).

VI. SUMMARY AND DISCUSSION

In this section, we first summarize our findings. We then
discuss some threats to validity, and finally outline some
directions for future work.

3Since some of the samples in the malware dataset predate the introduction
of the ART system, it is possible that this app uses an obfuscation method
that is only compatible with older versions of Android, and that it would fail
the more strict verification performed by the ART compiler.



TABLE IX
TOP 20 CLASS/PACKAGE IDENTIFIER TOKENS ASSOCIATED WITH JADX DECOMPILATION FAILURES.

f-droid google malware

Token Failures Frequency Token Failures Frequency Token Failures Frequency
SlidingWindowKt 183 9.30% apptimize 2,595 1.72% BugSenseHandler 2,034 1.50%
windowedIterator 183 20.29% SlidingWindowKt 1,901 9.14% Encoder 544 2.33%
ReaderBasedJsonParser 83 1.56% windowedIterator 1,863 19.49% ZLDTDParser 438 50.00%
NonBlockingJsonParser 48 3.52% ReaderBasedJsonParser 1,390 1.60% ReaderBasedParser 426 3.30%
MergerBiFunction 37 27.41% NonBlockingJsonParser 1,112 3.48% jianmo 283 1.07%
ASN1Set 28 1.48% BaseListBitmapDataSubscriber 849 30.53% igexin 251 1.24%
ConstructedOctetStream 28 12.17% zzdfh 772 5.54% Utf8StreamParser 216 1.02%
ConverterSet 28 6.22% MergerBiFunction 664 22.13% imobile 142 1.75%
fixedPeriodTicker 25 7.91% ConverterSet 553 8.42% base64 107 1.63%
FlowKt DelayKt 25 1.24% zzdph 485 2.24% Provider 98 2.38%
Fx 23 3.01% zzdbm 446 2.69% WbxmlParser 60 1.15%
InterruptibleTask 22 4.12% zzdme 422 3.67% SDK 52 2.10%
LDAPStoreHelper 19 1.44% zzdha 332 1.05% products 52 10.18%
X509LDAPCertStoreSpi 19 3.63% JSONLexerBase 290 3.37% threegvision 52 10.18%
BaseListBitmapDataSubscriber 18 31.58% InterruptibleTask 283 3.09% inigma sdk 52 10.18%
AbstractListeningExecutorService 14 1.88% ASN1Set 241 2.31% rc 49 3.38%
DSAParametersGenerator 12 1.46% MethodWriter 236 1.31% QueueDetails 49 7.40%
TokenStream 11 1.14% JSONLexer 205 2.52% QueueOverview 49 5.94%
ASN1Object 10 1.69% fixedPeriodTicker 198 6.32% FaultTolerantNegotiator 48 7.10%
NioClientManager 10 7.69% zzflf 160 38.37% qqmagic 42 3.20%

A. Summary of Results

Here, we summarize the main findings of our work, in the
context of our research questions.

RQ1: To what degree can we expect decompilers to success-
fully recover source code from Android apps?
The native Android decompiler jadx performed very well in
our study with a (weighted) average of 0.02% failed methods
per app, while the Java decompilers had mean failure rates
of around 1%. The failure rates varied substantially between
our three datasets, however, with jadx having mean failure
rates that, compared to the open source apps, were around
2x and 10x, for Google Play and malware apps, respectively.
Moreover, jadx could successfully decompile every method (as
reported by apkanalyzer) in around 75% of the open-source
apps. Interestingly, almost 80% of the malware apps could
also be fully decompiled. However, for the Google Play apps,
which tended to be larger and have more methods, only about
one app in five could be fully decompiled.

RQ2: To what degree is decompilation-breaking obfuscation
a concern when analyzing malware or commercial apps for
the Android platform?
Our manual analysis revealed several cases of code that could
not be decompiled because it was obfuscated. Moreover, the
increased failure rates of commercial apps, and even higher
failure rates of malware, which could not be explained by other
factors, would indicate that obfuscation is a factor. Likewise,
the higher failure rates of ad-supported apps, whose developers
would have a stronger incentive to protect their code from, e.g.,
ad-fraud, also points towards obfuscation being a factor.

However, both our statistical and manual analyses indicate
that most decompilation failures are caused by imperfections
in the decompiler tools, rather than by obfuscation. In most
cases where we observed failures, the decompiler would emit
error messages suggesting that the cause was some kind of in-
ternal resource-exhaustion (e.g., hitting some internal “limit”).

This was often caused by very complex control flow, or very
deep nesting levels of various kinds (e.g., inheritance, inner
classes, conditional statements, etc.). The strong relationship
between decompilation failure rate and method size, shown in
Figure 4, further suggests that resource exhaustion is a major
cause of decompilation failures.

Moreover, in all cases, except for the one heavily obfuscated
malware sample that we encountered, the above also appears
to be true for failures caused by obfuscation. That is, most
failures due to obfuscation appear to be caused by the same
decompiler limitations that cause failures on unmodified code,
rather than by a deliberate attempt to prevent decompilation.
This is corroborated by the fact that, in several cases where
a decompiler fails due to obfuscation, at least one other
decompiler succeeds on the same code. In particular, we
discovered no cases of advanced control-flow obfuscation
using “fake” branches to invalid code locations, which are
commonly encountered in obfuscated native or JVM code. The
absence of this kind of “unbreakable” control-flow obfuscation
suggests that, at least in theory, near-perfect decompilation
is attainable for Android apps, with improvements to current
decompiler implementations.

It should be noted, however, that successful decompilation
of a method does not necessarily imply that the result is
useful for subsequent manual or automated analyses. Ad-
vanced obfuscation techniques, such as the one suggested by
Balachandran et al. [17], which route control flow through a
large number of try-catch blocks, can effectively hide a
method’s static control flow, even if the source code can be
completely recovered by decompilation.

RQ3: Do different Android decompilers tend to system-
atically fail on the same methods, or do their results
complement each other?
In our experiments, we observed that there were negligible
benefits from using other decompilers in addition to the best-



performing one (jadx), if one’s intent was to decompile every
method of an app. This is because the much higher failure
rates of the non-native decompilers made it very likely that
they would have at least a few failures on the apps for
which jadx was unable to decompile all methods. However,
if several independently developed decompilers with similar
mean failure rates were used, the results might look different.

Despite the above findings, our results also showed that in
96% of cases where jadx failed to decompile a method, at least
one of the other decompilers succeeded. This means that the
overall success rate could be improved by employing several
decompilers, despite one decompiler performing much better
than the others.

B. Threats to Validity

The limitations of our methodology, which we have already
discussed in Section III-B, pose a threat to the internal validity
of our results. However, we believe that the imprecision
introduced by these shortcomings does not invalidate the main
conclusions of our work.

A potential threat to the external validity of our study is
the representativeness of datasets, where our main concern is
with the malware dataset. Firstly, the dataset is a few years
old, meaning that it may no longer fully reflect, for example,
obfuscation techniques used in present-day malware. Secondly,
even with a recent collection of malicious apps, it is difficult
to know the degree to which the dataset is a representative
subset of current in-the-wild malware.

C. Future Work

The above threats to validity could both be partially ad-
dressed in future work. The matching accuracy of our approach
could be improved by not relying on textual matching of
method signatures. Since DEX files contain unique identifiers
for each method, which a decompiler must access at some
point, we could use this to achieve better unification of results.
As this would require an in-depth understanding of the code
base for all studied decompilers, and likely also non-trivial
modifications to their source code, we left it for future work
in this study. Another improvement to address in future work
is to use a more recent malware dataset.

In this work, we only considered whether or not a de-
compiler reported a method as unsuccessfully decompiled.
Another topic of interest for future work is to assess the quality
of recovered source code, as has already been done by others
[18], [34], [35] for JVM bytecode decompilation.

Finally, we observed in our study that code in third-party
libraries was a major contributor to decompilation failures. As
libraries are often of less interest when using a decompiler to
analyze an app, including them in the analysis might make
the results less representative of decompiler performance in
practice. Therefore, one direction for future work could be to
integrate existing techniques [8], [25] for detecting third-party
libraries into our analysis platform.

VII. RELATED WORK

An early study of Java decompilation correctness was
performed by Hamilton and Danicic [34] in 2009. Kostelanský
and Dedera [35] performed a similar study in 2017, and
concluded that the correctness of state-of-the-art decompilers
had improved significantly since 2009. Harrand et al. [18]
performed a large-scale study of 8 Java decompilers, in which
they assessed both the syntactic and semantic correctness of
recovered source code. Naeem et al. [36] proposed several
metrics for measuring decompiler performance.

Jang et al. [19] proposed the Kerberoid system, which
uses an ensemble of three Android decompilers to improve
decompilation success rate. While their method was only
evaluated on 151 open-source apps, our large-scale study on a
wider range of apps confirmed their finding that an ensemble
of decompilers can often improve the success rate significantly.
A more advanced version of this concept was proposed by
Harrand et al. [37], who use meta-decompilation to merge
the results from several Java decompilers to improve overall
decompiler effectiveness.

Dong et al. [38] performed a large scale study of the
prevalence of Android obfuscation. While we were mainly
concerned with anti-decompilation obfuscation in this work,
they instead focused on identifier renaming, string encryption,
Java reflection, and packing.

Finally, a recent study by Hammad et al. [39] showed that
applying advanced obfuscation techniques, such as control-
flow obfuscation, frequently tended to break apps, so that they
would fail to install or run. This is in line with our findings,
which indicate that such techniques are rarely used in the wild.

VIII. CONCLUSION

In this work we have presented the results of a large-
scale study of the decompilation success rate of 4 different
compilers on three large sets of Android apps. While the state-
of-the-art Android decompiler jadx achieved a very low failure
rate of only 0.02% failed methods on average, it still failed
to fully decompile many apps. We also corroborated earlier
results, which indicated that decompilers exhibit a great deal
of diversity in the apps and methods that they fail on. Finally,
our empirical results and complementary manual investigation
indicate that deliberate anti-decompilation obfuscation is not
a major cause of decompilation failures in commercial or
malicious apps. Instead, it appears that most failures happen
because current decompilers have technical limitations that
sometimes prevent them from successfully processing methods
that are large, have complex control flow, or exhibit deep levels
of various kinds of nesting.
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