

IEEE Standard for
 Local and metropolitan area networks—

Frame Replication and Elimination for Reliability

Sponsored by the
LAN/MAN Standards Committee

IEEE
3 Park Avenue
New York, NY 10016-5997
USA

IEEE Computer Society

IEEE Std 802.1CB™-2017

IEEE Std 802.1CB™-2017

IEEE Standard for
Local and metropolitan area networks—

Frame Replication and Elimination for Reliability

Sponsor

LAN/MAN Standards Committee
of the
IEEE Computer Society

Approved 28 September 2017

IEEE-SA Standards Board

The Institute of Electrical and Electronics Engineers, Inc.
3 Park Avenue, New York, NY 10016-5997, USA

Copyright © 2017 by The Institute of Electrical and Electronics Engineers, Inc.
All rights reserved. Published 27 October 2017. Printed in the United States of America.

IEEE and 802 are registered trademarks in the U.S. Patent & Trademark Office, owned by The Institute of
Electrical and Electronics Engineers, Incorporated.

Print: ISBN 978-1-5044-4297-8 STD22761
PDF: ISBN 978-1-5044-4298-5 STDPD22761

IEEE prohibits discrimination, harassment, and bullying.
For more information, visit http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html.
No part of this publication may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission
of the publisher.

2
Copyright © 2017 IEEE. All rights reserved.

Abstract: This standard specifies procedures, managed objects, and protocols for bridges and end
systems that provide identification and replication of packets for redundant transmission,
identification of duplicate packets, and elimination of duplicate packets. It is not concerned with the
creation of the multiple paths over which the duplicates are transmitted.

Keywords: Bridged Local Area Networks, Bridges, Bridging, Frame Elimination, Frame
Replication, IEEE 802®, IEEE 802.1CB™, IEEE 802.1Q™, local area networks (LANs), MAC
Bridges, Redundancy, Time-Sensitive Networking, TSN, Virtual Bridged Local Area Networks
(virtual LANs)

http://www.ieee.org/web/aboutus/whatis/policies/p9-26.html

Important Notices and Disclaimers Concerning IEEE Standards Documents

IEEE documents are made available for use subject to important notices and legal disclaimers. These notices
and disclaimers, or a reference to this page, appear in all standards and may be found under the heading
“Important Notices and Disclaimers Concerning IEEE Standards Documents.” They can also be obtained on
request from IEEE or viewed at http://standards.ieee.org/IPR/disclaimers.html.

Notice and Disclaimer of Liability Concerning the Use of IEEE Standards
Documents

IEEE Standards documents (standards, recommended practices, and guides), both full-use and trial-use, are
developed within IEEE Societies and the Standards Coordinating Committees of the IEEE Standards
Association (“IEEE-SA”) Standards Board. IEEE (“the Institute”) develops its standards through a
consensus development process, approved by the American National Standards Institute (“ANSI”), which
brings together volunteers representing varied viewpoints and interests to achieve the final product. IEEE
Standards are documents developed through scientific, academic, and industry-based technical working
groups. Volunteers in IEEE working groups are not necessarily members of the Institute and participate
without compensation from IEEE. While IEEE administers the process and establishes rules to promote
fairness in the consensus development process, IEEE does not independently evaluate, test, or verify the
accuracy of any of the information or the soundness of any judgments contained in its standards.

IEEE Standards do not guarantee or ensure safety, security, health, or environmental protection, or ensure
against interference with or from other devices or networks. Implementers and users of IEEE Standards
documents are responsible for determining and complying with all appropriate safety, security,
environmental, health, and interference protection practices and all applicable laws and regulations.

IEEE does not warrant or represent the accuracy or content of the material contained in its standards, and
expressly disclaims all warranties (express, implied and statutory) not included in this or any other
document relating to the standard, including, but not limited to, the warranties of: merchantability; fitness
for a particular purpose; non-infringement; and quality, accuracy, effectiveness, currency, or completeness of
material. In addition, IEEE disclaims any and all conditions relating to: results; and workmanlike effort.
IEEE standards documents are supplied “AS IS” and “WITH ALL FAULTS.”

Use of an IEEE standard is wholly voluntary. The existence of an IEEE standard does not imply that there
are no other ways to produce, test, measure, purchase, market, or provide other goods and services related to
the scope of the IEEE standard. Furthermore, the viewpoint expressed at the time a standard is approved and
issued is subject to change brought about through developments in the state of the art and comments
received from users of the standard.

In publishing and making its standards available, IEEE is not suggesting or rendering professional or other
services for, or on behalf of, any person or entity nor is IEEE undertaking to perform any duty owed by any
other person or entity to another. Any person utilizing any IEEE Standards document, should rely upon his
or her own independent judgment in the exercise of reasonable care in any given circumstances or, as
appropriate, seek the advice of a competent professional in determining the appropriateness of a given IEEE
standard.

IN NO EVENT SHALL IEEE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO:
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
OTHERWISE) ARISING IN ANY WAY OUT OF THE PUBLICATION, USE OF, OR RELIANCE UPON
ANY STANDARD, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE AND
REGARDLESS OF WHETHER SUCH DAMAGE WAS FORESEEABLE.
3
Copyright © 2017 IEEE. All rights reserved.

http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/IPR/disclaimers.html

Translations

The IEEE consensus development process involves the review of documents in English only. In the event
that an IEEE standard is translated, only the English version published by IEEE should be considered the
approved IEEE standard.

Official statements

A statement, written or oral, that is not processed in accordance with the IEEE-SA Standards Board
Operations Manual shall not be considered or inferred to be the official position of IEEE or any of its
committees and shall not be considered to be, or be relied upon as, a formal position of IEEE. At lectures,
symposia, seminars, or educational courses, an individual presenting information on IEEE standards shall
make it clear that his or her views should be considered the personal views of that individual rather than the
formal position of IEEE.

Comments on standards

Comments for revision of IEEE Standards documents are welcome from any interested party, regardless of
membership affiliation with IEEE. However, IEEE does not provide consulting information or advice
pertaining to IEEE Standards documents. Suggestions for changes in documents should be in the form of a
proposed change of text, together with appropriate supporting comments. Since IEEE standards represent a
consensus of concerned interests, it is important that any responses to comments and questions also receive
the concurrence of a balance of interests. For this reason, IEEE and the members of its societies and
Standards Coordinating Committees are not able to provide an instant response to comments or questions
except in those cases where the matter has previously been addressed. For the same reason, IEEE does not
respond to interpretation requests. Any person who would like to participate in revisions to an IEEE
standard is welcome to join the relevant IEEE working group.

Comments on standards should be submitted to the following address:

Secretary, IEEE-SA Standards Board
445 Hoes Lane
Piscataway, NJ 08854 USA

Laws and regulations

Users of IEEE Standards documents should consult all applicable laws and regulations. Compliance with the
provisions of any IEEE Standards document does not imply compliance to any applicable regulatory
requirements. Implementers of the standard are responsible for observing or referring to the applicable
regulatory requirements. IEEE does not, by the publication of its standards, intend to urge action that is not
in compliance with applicable laws, and these documents may not be construed as doing so.

Copyrights

IEEE draft and approved standards are copyrighted by IEEE under U.S. and international copyright laws.
They are made available by IEEE and are adopted for a wide variety of both public and private uses. These
include both use, by reference, in laws and regulations, and use in private self-regulation, standardization,
and the promotion of engineering practices and methods. By making these documents available for use and
adoption by public authorities and private users, IEEE does not waive any rights in copyright to the
documents.
4
Copyright © 2017 IEEE. All rights reserved.

Photocopies

Subject to payment of the appropriate fee, IEEE will grant users a limited, non-exclusive license to
photocopy portions of any individual standard for company or organizational internal use or individual, non-
commercial use only. To arrange for payment of licensing fees, please contact Copyright Clearance Center,
Customer Service, 222 Rosewood Drive, Danvers, MA 01923 USA; +1 978 750 8400. Permission to
photocopy portions of any individual standard for educational classroom use can also be obtained through
the Copyright Clearance Center.

Updating of IEEE Standards documents

Users of IEEE Standards documents should be aware that these documents may be superseded at any time
by the issuance of new editions or may be amended from time to time through the issuance of amendments,
corrigenda, or errata. An official IEEE document at any point in time consists of the current edition of the
document together with any amendments, corrigenda, or errata then in effect.

Every IEEE standard is subjected to review at least every ten years. When a document is more than ten years
old and has not undergone a revision process, it is reasonable to conclude that its contents, although still of
some value, do not wholly reflect the present state of the art. Users are cautioned to check to determine that
they have the latest edition of any IEEE standard.

In order to determine whether a given document is the current edition and whether it has been amended
through the issuance of amendments, corrigenda, or errata, visit the IEEE-SA Website at http://
ieeexplore.ieee.org or contact IEEE at the address listed previously. For more information about the IEEE
SA or IEEE’s standards development process, visit the IEEE-SA Website at http://standards.ieee.org.

Errata

Errata, if any, for all IEEE standards can be accessed on the IEEE-SA Website at the following URL: http://
standards.ieee.org/findstds/errata/index.html. Users are encouraged to check this URL for errata
periodically.

Patents

Attention is called to the possibility that implementation of this standard may require use of subject matter
covered by patent rights. By publication of this standard, no position is taken by the IEEE with respect to the
existence or validity of any patent rights in connection therewith. If a patent holder or patent applicant has
filed a statement of assurance via an Accepted Letter of Assurance, then the statement is listed on the IEEE-
SA Website at http://standards.ieee.org/about/sasb/patcom/patents.html. Letters of Assurance may indicate
whether the Submitter is willing or unwilling to grant licenses under patent rights without compensation or
under reasonable rates, with reasonable terms and conditions that are demonstrably free of any unfair
discrimination to applicants desiring to obtain such licenses.

Essential Patent Claims may exist for which a Letter of Assurance has not been received. The IEEE is not
responsible for identifying Essential Patent Claims for which a license may be required, for conducting
inquiries into the legal validity or scope of Patents Claims, or determining whether any licensing terms or
conditions provided in connection with submission of a Letter of Assurance, if any, or in any licensing
agreements are reasonable or non-discriminatory. Users of this standard are expressly advised that
determination of the validity of any patent rights, and the risk of infringement of such rights, is entirely their
own responsibility. Further information may be obtained from the IEEE Standards Association.
5
Copyright © 2017 IEEE. All rights reserved.

http://ieeexplore.ieee.org/
http://ieeexplore.ieee.org/
http://standards.ieee.org
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/findstds/errata/index.html
http://standards.ieee.org/about/sasb/patcom/patents.html

Participants

At the time of approval of this standard, the IEEE 802.1 Working Group had the following membership:

Glenn Parsons, Chair
John Messenger, Vice Chair

János Farkas, Chair, Time-Sensitive Networking Task Group
Norman Finn, Editor

The following members of the individual balloting committee voted on this standard. Balloters may have
voted for approval, disapproval, or abstention.

Ralf Assmann
Shenghua Bao
Jens Bierschenk
Steinar Bjornstad
Christian Boiger
Paul Bottorff
David Chen
Feng Chen
Weiying Cheng
Rodney Cummings
Mickael Fontaine
Geoffrey Garner
Eric W. Gray
Craig Gunther
Marina Gutierrez
Stephen Haddock

Mark Hantel
Patrick Heffernan
Marc Holness
Hal Keen
Stephan Kehrer
Jouni Korhonen
Hajime Koto
Yizhou Li
Christophe Mangin
James McIntosh
Robert Moskowitz
Tero Mustala
Donald R. Pannell
Walter Pienciak
Michael Potts
Karen Randall

Maximilian Riegel
Jessy Rouyer
Eero Ryytty
Soheil Samii
Frank Schewe
Michael Seaman
Johannes Specht
Patricia Thaler
Paul Unbehagen
Hao Wang
Tongtong Wang
Xinyuan Wang
Karl Weber
Brian Weis
Jordon Woods
Nader Zein

Thomas Alexander
Richard Alfvin
Butch Anton
Stefan Aust
Steinar Bjornstad
Christian Boiger
David Brandt
Nancy Bravin
Ashley Butterworth
William Byrd
Yesenia Cevallos
Keith Chow
Charles Cook
Rodney Cummings
Patrick Diamond
Richard Doyle
Sourav Dutta
Richard Edgar
Marc Emmelmann
János Farkas
Norman Finn
Michael Fischer
Yukihiro Fujimoto
Devon Gayle
Joel Goergen
Eric W. Gray
Randall Groves
Craig Gunther
Stephen Haddock
Mark Hantel

Marco Hernandez
Guido Hiertz
Werner Hoelzl
Noriyuki Ikeuchi
Osamu Ishida
Atsushi Ito
Raj Jain
Anthony Jeffree
SangKwon Jeong
Michael Johas Teener
Peter Jones
Piotr Karocki
Stuart Kerry
Yongbum Kim
Jeff Koftinoff
Jouni Korhonen
Hyeong Ho Lee
John Lemon
Joseph Levy
Arthur H. Light
Elvis Maculuba
Roger Marks
Arthur Marris
Richard Mellitz
Charles Moorwood
Henry Muyshondt
Charles Ngethe
Nick S. A. Nikjoo
Paul Nikolich
Saad Nsaif

Satoshi Obara
David Olsen
Glenn Parsons
Bansi Patel
Arumugam Paventhan
Adee Ran
Alon Regev
Maximilian Riegel
Robert Robinson
Benjamin Rolfe
Dan Romascanu
Jessy Rouyer
Osman Sakr
Bartien Sayogo
Frank Schewe
Michael Seaman
Veselin Skendzic
Ju-Hyung Son
Kevin Stanton
Thomas Starai
Eugene Stoudenmire
Walter Struppler
Patricia Thaler
Dmitri Varsanofiev
Prabodh Varshney
George Vlantis
Khurram Waheed
Karl Weber
Oren Yuen
Zhen Zhou
Cop

6

yright © 2017 IEEE. All rights reserved.

When the IEEE-SA Standards Board approved this standard on 28 September 2017, it had the following
membership:

Jean-Philippe Faure, Chair
Gary Hoffman, Vice Chair
John D. Kulick, Past Chair

Konstantinos Karachalios, Secretary

*Member Emeritus

Chuck Adams
Masayuki Ariyoshi
Ted Burse
Stephen Dukes
Doug Edwards
J. Travis Griffith
Michael Janezic

Thomas Koshy
Joseph L. Koepfinger*
Kevin Lu
Daleep Mohla
Damir Novosel
Ronald C. Petersen
Annette D. Reilly

Robby Robson
Dorothy Stanley
Adrian Stephens
Mehmet Ulema
Phil Wennblom
Howard Wolfman
Yu Yuan
Co

7

pyright © 2017 IEEE. All rights reserved.

Introduction

This standard defines Frame Replication and Elimination for Reliability.

This standard contains state-of-the-art material. The area covered by this standard is undergoing evolution.
Revisions are anticipated within the next few years to clarify existing material, to correct possible errors, and
to incorporate new related material. Information on the current revision state of this and other IEEE 802®

standards can be obtained from

Secretary, IEEE-SA Standards Board
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331
USA

This introduction is not part of IEEE Std 802.1CB-2017, IEEE Standard for Local and metropolitan area networks—
Frame Replication and Elimination for Reliability.
8
Copyright © 2017 IEEE. All rights reserved.

Contents

1. Overview ... 16

1.1 Scope ... 16
1.2 Rationale ... 16
1.3 State diagram conventions .. 16
1.4 Specification model .. 16
1.5 Specification precedence .. 17
1.6 Introduction ... 17

2. Normative references .. 18

3. Definitions .. 19

4. Acronyms and abbreviations .. 21

5. Conformance ... 22

5.1 Requirements terminology .. 22
5.2 Conformant components and equipment .. 22
5.3 Stream identification component required behaviors ... 22
5.4 Stream identification component recommended behavior ... 23
5.5 Stream identification component optional behaviors ... 23
5.6 Talker end system required behaviors .. 23
5.7 Talker end system recommended behaviors ... 23
5.8 Talker end system optional behaviors .. 23
5.9 Listener end system required behaviors .. 24
5.10 Listener end system recommended behavior .. 24
5.11 Listener end system optional behaviors .. 24
5.12 Relay system required behaviors .. 24
5.13 Relay system recommended behaviors ... 25
5.14 Relay system optional behaviors .. 25
5.15 FRER C-component required and optional behaviors .. 25

6. Stream identification ... 26

6.1 Stream service subparameters ... 27
6.2 Stream identification function .. 28
6.3 Stream identification in systems ... 29
6.4 Null Stream identification ... 30
6.5 Source MAC and VLAN Stream identification .. 31
6.6 Active Destination MAC and VLAN Stream identification ... 31
6.7 IP Stream identification .. 32

7. Frame Replication and Elimination for Reliability ... 33

7.1 Overview of Frame Replication and Elimination for Reliability ... 33
7.1.1 Goals and objectives ... 33

7.2 Use of the term Stream ... 35
7.3 Frame Replication and Elimination for Reliability functions ... 35
7.4 Sequencing function ... 36

7.4.1 Sequence generation function ... 36
7.4.1.1 Events for sequence generation ... 37
7.4.1.2 Variables for sequence generation ... 37
9
Copyright © 2017 IEEE. All rights reserved.

7.4.1.2.1 GenSeqSpace .. 37
7.4.1.2.2 GenSeqNum .. 37

7.4.1.3 SequenceGenerationReset ... 37
7.4.1.4 SequenceGenerationAlgorithm ... 37

7.4.2 Sequence recovery function .. 38
7.4.3 Base recovery function ... 38

7.4.3.1 Events for sequence recovery .. 39
7.4.3.2 Variables for sequence recovery .. 39

7.4.3.2.1 RecovSeqSpace ... 39
7.4.3.2.2 SequenceHistory ... 40
7.4.3.2.3 RecovSeqNum .. 40
7.4.3.2.4 RemainingTicks .. 40
7.4.3.2.5 TicksPerSecond .. 40
7.4.3.2.6 TakeAny .. 40

7.4.3.3 SequenceRecoveryReset .. 40
7.4.3.4 VectorRecoveryAlgorithm .. 41
7.4.3.5 MatchRecoveryAlgorithm ... 43
7.4.3.6 ShiftSequenceHistory .. 44

7.4.4 Latent error detection function ... 45
7.4.4.1 Events for latent error detection .. 45
7.4.4.2 Variables for latent error detection .. 46

7.4.4.2.1 CurBaseDifference .. 46
7.4.4.3 LatentErrorReset .. 46
7.4.4.4 LatentErrorTest .. 46

7.5 Individual recovery function ... 47
7.6 Sequence encode/decode function .. 47
7.7 Stream splitting function ... 47
7.8 Redundancy tag ... 48

7.8.1 Redundancy tag EtherType ... 49
7.8.2 Redundancy tag information ... 49

7.9 HSR sequence tag ... 49
7.10 PRP sequence trailer ... 50
7.11 Autoconfiguration ... 51

7.11.1 Introduction to autoconfiguration ... 51
7.11.2 Creating autoconfigured Stream identity table entries ... 52

8. Frame Replication and Elimination for Reliability in Bridges ... 56

8.1 Limiting options .. 56
8.2 FRER C-component input transformations .. 58
8.3 Frame Replication and Elimination for Reliability and VLAN tags 58
8.4 Configuring Frame Replication and Elimination for Reliability in Bridges 59

9. Stream Identification Management ... 61

9.1 Stream identity table ... 61
9.1.1 tsnStreamIdEntry .. 61

9.1.1.1 tsnStreamIdHandle .. 61
9.1.1.2 tsnStreamIdInFacOutputPortList ... 61
9.1.1.3 tsnStreamIdOutFacOutputPortList .. 61
9.1.1.4 tsnStreamIdInFacInputPortList ... 62
9.1.1.5 tsnStreamIdOutFacInputPortList ... 62
9.1.1.6 tsnStreamIdIdentificationType .. 62
9.1.1.7 tsnStreamIdParameters .. 62

9.1.2 Managed objects for Null Stream identification ... 62
10
Copyright © 2017 IEEE. All rights reserved.

9.1.2.1 tsnCpeNullDownDestMac ... 62
9.1.2.2 tsnCpeNullDownTagged ... 63
9.1.2.3 tsnCpeNullDownVlan ... 63

9.1.3 Managed objects for Source MAC and VLAN Stream identification 63
9.1.3.1 tsnCpeSmacVlanDownSrcMac ... 63
9.1.3.2 tsnCpeSmacVlanDownTagged .. 63
9.1.3.3 tsnCpeSmacVlanDownVlan .. 63

9.1.4 Managed objects for Active Destination MAC and VLAN Stream identifications . 63
9.1.4.1 tsnCpeDmacVlanDownDestMac ... 63
9.1.4.2 tsnCpeDmacVlanDownTagged ... 64
9.1.4.3 tsnCpeDmacVlanDownVlan ... 64
9.1.4.4 tsnCpeDmacVlanDownPriority ... 64
9.1.4.5 tsnCpeDmacVlanUpDestMac ... 64
9.1.4.6 tsnCpeDmacVlanUpTagged .. 64
9.1.4.7 tsnCpeDmacVlanUpVlan .. 65
9.1.4.8 tsnCpeDmacVlanUpPriority .. 65

9.1.5 Managed objects for IP Stream identification .. 65
9.1.5.1 tsnCpeIpIdDestMac ... 65
9.1.5.2 tsnCpeIpIdTagged ... 65
9.1.5.3 tsnCpeIpIdVlan .. 65
9.1.5.4 tsnCpeIpIdIpSource ... 65
9.1.5.5 tsnCpeIpIdIpDestination .. 65
9.1.5.6 tsnCpeIpIdDscp ... 65
9.1.5.7 tsnCpeIpIdNextProtocol .. 66
9.1.5.8 tsnCpeIpIdSourcePort .. 66
9.1.5.9 tsnCpeIpIdDestinationPort .. 66

9.2 Operational per-port per-Stream Stream identification counters .. 66
9.2.1 tsnCpsSidInputPackets .. 66
9.2.2 tsnCpsSidOutputPackets ... 66

9.3 Operational per-port Stream identification counters .. 66
9.3.1 tsnCpSidInputPackets ... 66
9.3.2 tsnCpSidOutputPackets .. 66

10. Frame Replication and Elimination for Reliability management ... 67

10.1 Counter behavior ... 67
10.2 Additional tsnStreamIdEntry manged objects .. 67

10.2.1 tsnStreamIdAutoconfigured .. 68
10.2.2 tsnStreamIdLanPathId .. 68

10.3 Sequence generation table .. 68
10.3.1 frerSeqGenEntry ... 68

10.3.1.1 frerSeqGenStreamList ... 68
10.3.1.2 frerSeqGenDirection .. 68

10.4 Sequence recovery table ... 68
10.4.1 frerSeqRcvyEntry ... 68

10.4.1.1 frerSeqRcvyStreamList ... 68
10.4.1.2 frerSeqRcvyPortList .. 69
10.4.1.3 frerSeqRcvyDirection .. 69
10.4.1.4 frerSeqRcvyReset .. 69
10.4.1.5 frerSeqRcvyAlgorithm .. 69
10.4.1.6 frerSeqRcvyHistoryLength .. 69
10.4.1.7 frerSeqRcvyResetMSec ... 69
10.4.1.8 frerSeqRcvyInvalidSequenceValue ... 69
10.4.1.9 frerSeqRcvyTakeNoSequence ... 70
11
Copyright © 2017 IEEE. All rights reserved.

10.4.1.10 frerSeqRcvyIndividualRecovery ... 70
10.4.1.11 frerSeqRcvyLatentErrorDetection ... 70
10.4.1.12 Latent error detection managed objects ... 70

10.4.1.12.1 frerSeqRcvyLatentErrorDifference .. 70
10.4.1.12.2 frerSeqRcvyLatentErrorPeriod ... 70
10.4.1.12.3 frerSeqRcvyLatentErrorPaths ... 70
10.4.1.12.4 frerSeqRcvyLatentResetPeriod ... 71

10.5 Sequence identification table .. 71
10.5.1 frerSeqEncEntry .. 71

10.5.1.1 frerSeqEncStreamList .. 71
10.5.1.2 frerSeqEncPort ... 71
10.5.1.3 frerSeqEncDirection .. 71
10.5.1.4 frerSeqEncActive ... 71
10.5.1.5 frerSeqEncEncapsType ... 71
10.5.1.6 frerSeqEncPathIdLanId ... 71

10.6 Stream split table .. 72
10.6.1 frerSplitEntry .. 72

10.6.1.1 frerSplitPort ... 72
10.6.1.2 frerSplitDirection ... 72
10.6.1.3 frerSplitInputIdList .. 72
10.6.1.4 frerSplitOutputIdList ... 72

10.7 Managed objects for autoconfiguration .. 72
10.7.1 Sequence autoconfiguration table ... 72

10.7.1.1 frerAutSeqEntry ... 73
10.7.1.1.1 frerAutSeqSeqEncaps ... 73
10.7.1.1.2 frerAutSeqReceivePortList ... 73
10.7.1.1.3 frerAutSeqTagged ... 73
10.7.1.1.4 frerAutSeqVlan ... 73
10.7.1.1.5 frerAutSeqRecoveryPortList .. 73
10.7.1.1.6 frerAutSeqDestructMSec .. 73
10.7.1.1.7 frerAutSeqResetMSec .. 73
10.7.1.1.8 frerAutSeqAlgorithm .. 73
10.7.1.1.9 frerAutSeqHistoryLength ... 74
10.7.1.1.10 frerAutSeqCreateIndividual .. 74
10.7.1.1.11 frerAutSeqCreateRecovery ... 74
10.7.1.1.12 frerAutSeqLatErrDetection ... 74
10.7.1.1.13 frerAutSeqLatErrDifference ... 74
10.7.1.1.14 frerAutSeqLatErrPeriod .. 74
10.7.1.1.15 frerAutSeqLatErrResetPeriod ... 74

10.7.2 Output autoconfiguration table ... 74
10.7.2.1 frerAutOutEntry ... 74

10.7.2.1.1 frerAutOutPortList .. 74
10.7.2.1.2 frerAutOutEncaps ... 75
10.7.2.1.3 frerAutOutLanPathId .. 75

10.8 Operational per-port and per-Stream FRER counters ... 75
10.8.1 Per-Stream vs. per-Stream-per-port counters ... 75
10.8.2 frerCpsSeqGenResets ... 75
10.8.3 frerCpsSeqRcvyOutOfOrderPackets .. 75
10.8.4 frerCpsSeqRcvyRoguePackets ... 76
10.8.5 frerCpsSeqRcvyPassedPackets ... 76
10.8.6 frerCpsSeqRcvyDiscardedPackets .. 76
10.8.7 frerCpsSeqRcvyLostPackets ... 76
10.8.8 frerCpsSeqRcvyTaglessPackets .. 76
10.8.9 frerCpsSeqRcvyResets .. 76
12
Copyright © 2017 IEEE. All rights reserved.

10.8.10frerCpsSeqRcvyLatentErrorResets ... 76
10.8.11frerCpsSeqEncErroredPackets .. 76

10.9 Operational per-port FRER counters .. 76
10.9.1 frerCpSeqRcvyPassedPackets .. 77
10.9.2 frerCpSeqRcvyDiscardPackets ... 77
10.9.3 frerCpSeqEncErroredPackets ... 77

Annex A (normative) Protocol Implementation Conformance Statement (PICS) proforma 78

A.1 Introduction ... 78
A.1.1 Abbreviations and special symbols ... 78
A.1.2 Instructions for completing the PICS proforma .. 79
A.1.3 Additional information ... 79
A.1.4 Exceptional information ... 79
A.1.5 Conditional items .. 80
A.1.6 Identification ... 80

A.2 PICS proforma for Frame Replication and Elimination for Reliability 81
A.2.1 Major capabilities/options ... 81
A.2.2 Stream identification component .. 81
A.2.3 Talker end system ... 82
A.2.4 Listener end system .. 83
A.2.5 Relay system ... 84
A.2.6 FRER 802.1Q C-component ... 86
A.2.7 Common requirements .. 86

Annex B (informative) Interoperability with other standards .. 87

B.1 Sequence number size ... 87
B.2 Per-Stream versus per-source sequencing .. 87

Annex C (informative) Frame Replication and Elimination for Reliability in systems 88

C.1 Example 1: End-to-end FRER .. 88
C.2 Example 2: Various stack positions .. 89
C.3 Example 3: Ladder redundancy .. 92
C.4 Example 4: Multicast trees ... 93
C.5 Example 5: Protocol interworking .. 93
C.6 Example 6: Chained two-port end systems ... 94
C.7 Cautions .. 95
C.8 Balancing tag insertion and removal .. 95
C.9 FRER and reserved bandwidth ... 95
C.10 Use of the Individual recovery function ... 97
C.11 Use of autoconfiguration .. 97

C.11.1 Routing and labeling Member Streams .. 97
C.11.2 Recognizing packets that trigger autoconfiguration ... 98
C.11.3 Per-port packet decoding and encoding .. 99
C.11.4 Individual and Sequence recovery functions .. 99

Annex D (informative) Bibliography ... 100
13
Copyright © 2017 IEEE. All rights reserved.

List of figures

Figure 6-1—Stream identification service... 26

Figure 6-2—A Stream with three Listeners... 26

Figure 6-3—Stream identification function: single upper SAP... 28

Figure 6-4—Stream identification function: array of upper SAPs .. 28

Figure 6-5—Stream functions in a relay system (three views of same system).. 29

Figure 6-6—In- and out-facing functions .. 30

Figure 7-1—Compound Stream built from four Member Streams ... 33

Figure 7-2—Frame Replication and Elimination for Reliability functions ... 35

Figure 7-3—Sequence recovery functions and Individual recovery functions ... 47

Figure 7-4—R-TAG format... 48

Figure 8-1—FRER functions in an FRER C-component .. 56

Figure 8-2—Augmented Forwarding Process does sequence recovery .. 57

Figure 8-3—Example Ethernet frame format .. 59

Figure C-1—Dual-homed end systems using Link Aggregation .. 88

Figure C-2—Protocol stack for End System B in Figure C-1 ... 89

Figure C-3—Protocol stack for End System G in Figure C-1 and Figure C-4.. 89

Figure C-4—Frame Replication and Elimination for Reliability flexible positioning 90

Figure C-5—Protocol stack for relay system B, proxying for End System A, in Figure C-4 91

Figure C-6—Protocol stack for relay system C in Figure C-4 .. 91

Figure C-7—Protocol stack for relay system F in Figure C-4... 92

Figure C-8—Ladder redundancy ... 92

Figure C-9—Multicast trees .. 93

Figure C-10—Protocol interworking... 93

Figure C-11—Dual-homed end systems using 3-port bridge .. 94

Figure C-12—Protocol stacks for Systems B and G in Figure C-11... 94

Figure C-13—Explicit path causing a loop ... 95

Figure C-14—Example of Long and short paths... 96

Figure C-15—Autoconfiguration example .. 98
14
Copyright © 2017 IEEE. All rights reserved.

15
Copyright © 2017 IEEE. All rights reserved.

List of tables

Table 6-1—Stream identification functions .. 27

Table 7-1—R-TAG EtherType .. 49

Table 8-1—Managed objects for FRER in an FRER C-component ... 59

Table 9-1—Stream identification types ... 62

Table 10-1—Enumerated values for frerSeqRcvyAlgorithm.. 69

Table 10-2—Sequence Encode/Decode types ... 72

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
IEEE Standard for
Local and metropolitan area networks—

Frame Replication and Elimination for Reliability

1. Overview

1.1 Scope

This standard specifies procedures, managed objects, and protocols for bridges and end systems that provide
identification and replication of packets for redundant transmission, identification of duplicate packets, and
elimination of duplicate packets. It is not concerned with the creation of the multiple paths over which the
duplicates are transmitted.

1.2 Rationale

The reason for Frame Replication and Elimination for Reliability (FRER) is to increase the probability that a
given packet will be delivered. It is expected that, in many applications, other means to increase the
probability of delivery are likely to be used as well. When FRER is used over paths that are fixed to a
specific topology, and that are protected against congestion loss (e.g., by using techniques described by
IEEE Std 802.1BA™ [B1]), FRER can substantially reduce the probability of packet loss due to equipment
failures.1

1.3 State diagram conventions

This document uses the programming language C (ISO/IEC 9899:2011) to document the operation of
conformant systems.2 C functions are distinguished with this special fixed-width font (e.g.,
7.4.3.3). Each C function is executed when a given event occurs, as described for that code segment or in the
accompanying text. Events are assumed to take place sequentially, not simultaneously, and code routines
execute instantaneously.

1.4 Specification model

The model of operation documented by this standard is simply a basis for describing the functionality of
compliant equipment. Implementations can adopt any internal model of operation compatible with the
externally visible behavior that this standard specifies. Conformance of equipment to this standard is purely
in respect of observable protocol.

1The numbers in brackets correspond to those of the bibliography in Annex D.
2Information on references can be found in Clause 2.
16
Copyright © 2017 IEEE. All rights reserved.

http://www.open-std.org/jtc1/sc22/wg14/www/standards

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
1.5 Specification precedence

If any conflict among parts of this standard become apparent, C functions (see 1.3) take precedence over
other parts of the standard, followed by information in normative tables, followed by that in normative text,
followed by that in normative figures. Non-normative tables, figures, and text are in annexes and are clearly
marked as such.

1.6 Introduction

This standard is one of a number of IEEE 802.1™ and other standards suitable for Time-Sensitive
Networking (TSN) that together have the overall goal of providing extremely low packet loss rates and
finite, low, and stable end-to-end latencies. TSN supports unicast and multicast Streams of packets that
implement a wide range of demanding real-time applications including audio/video studios, industrial
processes, and the control of machines and vehicles. The TSN goals are not achieved at the expense of
hampering the ability of the network to carry traffic for non-time-critical applications.

At the highest level, this standard posits the existence of one Talker end system and one or more Listener
end systems per Stream. A Stream is characterized by a maximum packet size and number of packets
transmitted per time interval. Because the Stream’s maximum throughput is known, the resources, including
link bandwidth, buffer space, and control parameters, required at every hop along the Stream’s path to
guarantee that Stream zero congestion loss and finite latency, can be provided (by other standards, e.g.,
Clause 35 of IEEE Std 802.1Q™-2014). This provisioned path carrying the Stream is called a Reservation.

On the assumption that the time required for a dynamic network control protocol to recover from an
equipment failure is unacceptable in certain applications, this standard defines Frame Replication and
Elimination for Reliability (FRER), which divides a Stream into one or more linked Member Streams, thus
making the original Stream a Compound Stream. It replicates the packets of the Stream, splitting the copies
into the multiple Member Streams, and then rejoins those Member Streams at one or more other points,
eliminates the replicates, and delivers the reconstituted Stream from those points.

In order to accommodate existing applications and to promote interoperability with similar standards, this
standard defines a number of schemes for identifying packets belonging to Streams and distinguishing them
from other packets.
17
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
2. Normative references

The following referenced documents are indispensable for the application of this document (i.e., they must
be understood and used, so each referenced document is cited in text and its relationship to this document is
explained). For dated references, only the edition cited applies. For undated references, the latest edition of
the referenced document (including any amendments or corrigenda) applies. Non-normative references (i.e.,
that provide additional information not required for the application of this document) are given in Annex D.

IEC 62439-3:2016, Industrial communication networks—High availability automation networks—Part 3:
Parallel Redundancy Protocol (PRP) and High-availability Seamless Redundancy (HSR).3

IEEE Std 802®, IEEE Standard for Local and metropolitan area networks: Overview and Architecture.4, 5

IEEE Std 802.1AC™, IEEE Standard for Local and metropolitan area networks—Media Access Control
(MAC) Service Definition.

IEEE Std 802.1Q™, IEEE Standard for Local and metropolitan area networks—Bridges and Bridged
Networks.

IETF RFC 768, User Datagram Protocol, Postel, J., August 1980.6

IETF RFC 791, Internet Protocol, Postel, J., Ed., September 1981.

IETF RFC 793, Transmission Control Protocol, Postel, J., Ed., September 1981.

IETF RFC 2460, Internet Protocol, Version 6 (IPv6) Specification, Deering, S. and R. Hinden, December
1998.

IETF RFC 2474, Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers,
Nichols, K., et al., December 1998.

IETF RFC 4960, Stream Control Transmission Protocol, Stewart, R., Ed., September 2007.

ISO/IEC 9899:2011, Information technology—Programming languages—C.7

3IEC publications are available from the International Electrotechnical Commission (http://www.iec.ch) and the American National
Standards Institute (http://www.ansi.org/).
4The IEEE standards or products referred to in Clause 2 are trademarks owned by The Institute of Electrical and Electronics Engineers,
Incorporated.
5IEEE publications are available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org).
6IETF documents (i.e., RFCs) are available for download at http://www.rfc-archive.org/.
7ISO/IEC publications are available from the International Organization for Standardization (http://www.iso.org/) and the American
National Standards Institute (http://www.ansi.org/).
18
Copyright © 2017 IEEE. All rights reserved.

http://standards.ieee.org

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
3. Definitions

For the purposes of this document, the following terms and definitions apply. The IEEE Standards
Dictionary Online should be consulted for terms not defined in this clause. 8

This standard makes use of the following terms defined in IEEE Std 802®:

— End station
— Organizationally Unique Identifier (OUI)
— Company ID (CID)

bridge: A layer 2 interconnection device that conforms to IEEE Std 802.1Q.

Company ID (CID): CIDs allow a general means of assuring unique identifiers for a number of purposes.
See Clause 8 of IEEE Std 802-2014.

Compound Stream: A Compound Stream is a Stream composed of one or more Member Streams linked
together via Frame Replication and Elimination for Reliability (FRER).

down: The direction through the protocol stack from a sublayer using a service provided by another
sublayer to the sublayer whose services it uses; the direction of output packets.

end station: A device attached to a local area network (LAN) or metropolitan area network (MAN), which
acts as a source of and/or destination for data traffic carried on the LAN or MAN. (From IEEE Std 802)

end system: A system attached to a network that is an initial source or a final destination of packets
transmitted across that network.

NOTE—The term end system is often used in this document in places where the reader of IEEE 802 standards would
expect the term end station in order to avoid confusion caused by standards relating to routers. For example, a router, as
defined by IETF, is an IEEE 802 end station, but not an end system. Where this standard specifically refers to the use of
IEEE 802 services, the term end station is used. Where it refers to more generalized instances of connectionless services,
the term end system is used.9

in-facing: In a system that includes a Stream Transfer Function, the “in-facing” protocol functions are those
functions that are below the Stream Transfer Function on the port that is not above the physical layer. On a
system that does not include a Stream Transfer Function, there are no in-facing protocol functions.

NOTE—See Figure 6-6.

input: Input packets are those moving up the protocol stack, regardless of the position of receiving function
relative to the physical media, for example, by the M_UNITDATA.indication primitive of the Internal
Sublayer Service (ISS).

Internal local area network (LAN): An instance of a connectionless packet service with two Service
Access Points (SAPs), both internal to a single system, that relays packets from one SAP to the other. It is
not observable externally to that system.

Internal Sublayer Service (ISS): An augmented version of the MAC Service, defined in 6.6 of
IEEE Std 802.1Q-2014.

8IEEE Standards Dictionary Online is available at: http://dictionary.ieee.org.
9Notes in text, tables, and figures of a standard are given for information only and do not contain requirements needed to implement this
standard.
19
Copyright © 2017 IEEE. All rights reserved.

http://dictionary.ieee.org

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
Media Access Control (MAC): The data link sublayer that is responsible for transferring data to and from
the Physical Layer.

Member Stream: A Stream that is linked with other Member Streams via Frame Replication and
Elimination for Reliability (FRER) to form a Compound Stream.

Non-Stream Transfer Function (NSTF): A two-port function that relays service indications on one port to
service requests on the other port.

Organizationally Unique Identifier (OUI): OUIs allow a general means of assuring unique identifiers for
a number of purposes. See Clause 9 and Clause 10 of IEEE Std 802-2014.

out-facing: In a system that includes a Stream Transfer Function, the “out-facing” protocol functions are
those functions that are below the Stream Transfer Function on the port that is above the physical layer. On a
system that does not include a Stream Transfer Function, all TSN functions are out-facing.

NOTE—See Figure 6-6.

output: Output packets are those moving down the protocol stack, regardless of the position of receiving
function relative to the physical media, for example, by the M_UNITDATA.request primitive of the Internal
Sublayer Service (ISS).

packet: A unit of data carried over a network, comprising, at least, one or more pairs of destination and
source addresses and a payload. A packet carried on an Ethernet local area network (LAN) is a frame.

NOTE—The term packet is often used in this document in places where the reader of IEEE 802 standards would expect
the term frame. Where the standard specifically refers to the use of IEEE 802 services, the term frame is used. Where the
standard refers to more generalized instances of connectionless services, the term packet is used.

Quality of Service (QoS): Overall performance of a packet Stream as it relates to packet loss probability,
latency, and latency variation.

relay system: A router or a bridge.

NOTE—The term relay system is often used in this document in places where the reader of IEEE 802 standards would
expect the term bridge. A relay system can, in theory, be a router, a bridge, or some other kind of forwarding device.
Where this standard specifically refers to one or the other, the terms router or bridge are used. Where it refers to more
generalized instances of connectionless services, the term relay system is used.

Reservation: The collection of state information and resources allocated, in a chain of end systems and
relay systems, for one or more Streams.

router: A packet forwarding device operating on Internet Protocol (IP) packets.

Stream: A unidirectional flow of time-sensitive data from one source to one or more destinations, and at the
highest level, one Talker end system to one or more Listener end systems.

Stream Transfer Function: A two-port function that relays service indications on one port to service
requests on the other port, where the service includes all TSN service subparameters.

subparameter: A service parameter encoded into the value of the connection_identifier parameter of the
Internal Sublayer Service (ISS).

system: An end system or a relay system.

up: The direction through the protocol stack from a sublayer offering a service to the sublayer making use of
that service; the direction of input packets.
20
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
4. Acronyms and abbreviations

This standard contains the following abbreviations:

CID Company ID

DRNI Distributed Resilient Network Interconnect

EISS Enhanced Internal Sublayer Service

FRER Frame Replication and Elimination for Reliability

IEC International Electrotechnical Commission

IP Internet Protocol

ISO International Organization for Standardization

ISS Internal Sublayer Service

LAN Local Area Network

MAC Medium Access Control

NSTF Non-Stream Transfer Function

OUI Organizationally Unique Identifier

PDU Protocol Data Unit

PICS Protocol Implementation Conformance Statement

QoS Quality of Service

R-TAG Redundancy tag

SAP Service Access Point

TSN Time-Sensitive Networking

VLAN Virtual Local Area Network
21
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
5. Conformance

This clause specifies the mandatory and optional capabilities provided by conformant implementations of
this standard.

5.1 Requirements terminology

For consistency with existing IEEE and IEEE 802.1 standards, requirements placed upon conformant
implementations of this standard are expressed using the following terminology:

a) Shall is used for mandatory requirements;
b) May is used to describe implementation or administrative choices (“may” means “is permitted to,”

and hence, “may” and “may not” mean precisely the same thing);
c) Should is used for recommended choices (the behaviors described by “should” and “should not” are

both permissible but not equally desirable choices).

The Protocol Implementation Conformance Statement (PICS) proformas (see Annex A) reflect the
occurrences of the words “shall,” “may,” and “should” within the standard.

The standard avoids needless repetition and apparent duplication of its formal requirements by using is, is
not, are, and are not for definitions and the logical consequences of conformant behavior. Behavior that is
permitted but is neither always required nor directly controlled by an implementor or administrator, or
whose conformance requirement is detailed elsewhere, is described by can. Behavior that never occurs in a
conformant implementation or system of conformant implementations is described by cannot. The word
allow is used as a replacement for the phrase “support the ability for,” and the word capability means “can
be configured to.”

5.2 Conformant components and equipment

Conformance for Frame Replication and Elimination for Reliability (FRER) is defined for five types of
components and equipment:

a) Stream identification components (5.3, 5.4, 5.5), which provide a useful subset of the FRER
capabilities for systems that are not talker end systems, listener end systems, or relay systems.

b) Talker end systems (5.6, 5.7, 5.8), which originate Compound Streams.
c) Listener end systems (5.9, 5.10, 5.11), which consume Compound Streams.
d) Relay systems (5.12, 5.13, 5.14), which transfer or discard packets belonging to Compound Streams.
e) One particular type of Relay system, an FRER C-component (5.15).

The Stream identification component can be useful in components or equipment that are not talker end
systems, listener end systems, or relay systems as defined in this standard, e.g., bridges or routers that carry
packets belonging to Compound Streams, and must identify them, but do not process FRER sequence
numbers. Other useful systems can be created using the preceding components listed. For example, a two-
port Talker could be modeled and implemented as two Talker end systems in a single chassis, as a single
one-port Talker end system that uses IEEE 802.1AX Link Aggregation to combine two physical ports into a
single logical port (C.1), or as a single-port Talker end system connected to a three-port Bridge (C.6).

5.3 Stream identification component required behaviors

A Stream identification component shall be able to instantiate the following out-facing functions on at least
one port, for at least one Compound Stream:
22
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
a) Stream identification (Clause 6);
b) A Null Stream identification function (6.4); and
c) The managed objects in Clause 9.

5.4 Stream identification component recommended behavior

A Stream identification component should be able to instantiate the following out-facing functions on at
least one port, for at least one Compound Stream:

a) An Active Destination MAC and VLAN Stream identification function (6.6).

5.5 Stream identification component optional behaviors

In addition to the requirements of 5.3 and 5.4, a Stream identification component may perform the following
functions:

a) The items in 5.3 and 5.4 on more than one port;
b) The items in 5.3 and 5.4 for some number of Compound Streams greater than 1;
c) An IP Stream identification function (6.7); and/or
d) Additional types of Stream identification functions.

5.6 Talker end system required behaviors

A Talker end system shall be able to instantiate the following out-facing functions on at least one port, for at
least one Compound Stream:

a) Stream identification (Clause 6);
b) A Null Stream identification function (6.4);
c) A Sequence generation function (7.4.1); and
d) The Redundancy tag Sequence encode/decode function specified in 7.6 and 7.8.
e) The managed objects in Clause 9 and Clause 10, excepting 10.7.

5.7 Talker end system recommended behaviors

A Talker end system should be able to instantiate the following out-facing functions on at least one port, for
at least one Compound Stream:

a) An Active Destination MAC and VLAN Stream identification function (6.6); and
b) A Stream splitting function (7.7).

5.8 Talker end system optional behaviors

In addition to the requirements of 5.6, a Talker end system may perform the following functions:

a) The items in 5.6 and 5.7 on more than one port;
b) The items in 5.6 and 5.7 for some number of Compound Streams greater than 1;
c) An IP Stream identification function (6.7);
d) Additional types of Stream identification functions;
e) The HSR sequence tag (7.9);
23
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
f) The PRP sequence trailer (7.10); and/or
g) Additional types of Sequence encode/decode functions.

5.9 Listener end system required behaviors

A Listener end system shall be able to instantiate the following out-facing functions on at least one port, for
at least one Compound Stream:

a) Stream identification (Clause 6);

b) A Null Stream identification function (6.4);

c) A Sequence recovery function (7.4.2) that supports the MatchRecoveryAlgorithm (7.4.3.5) and
supports the VectorRecoveryAlgorithm (7.4.3.4) with a value of at least 2 for the managed object
frerSeqRcvyHistoryLength (10.4.1.6);

d) At least two instances of Individual recovery functions (7.5), each using the
MatchRecoveryAlgorithm (7.4.3.5); and

e) The Redundancy tag Sequence encode/decode function specified in 7.6 and 7.8.

f) The managed objects in Clause 9 and Clause 10, excepting 10.7.

5.10 Listener end system recommended behavior

A Listener end system should be able to instantiate the following out-facing function on at least one port, for
at least one Compound Stream:

a) An Active Destination MAC and VLAN Stream identification function (6.6).

5.11 Listener end system optional behaviors

In addition to the requirements of 5.9 and 5.10, a Listener end system may perform the following functions:

a) The items in 5.9 and 5.10 on more than one port;
b) The items in 5.9 and 5.10 for some number of Compound Streams greater than 1;
c) An IP Stream identification function (6.7);
d) Additional types of Stream identification functions;
e) The HSR sequence tag (7.9);
f) The PRP sequence trailer (7.10);
g) Additional types of Sequence encode/decode functions; and/or
h) At least two instances of Individual recovery functions (7.5), each using the

VectorRecoveryAlgorithm (7.4.3.4).

5.12 Relay system required behaviors

A relay system shall be able to instantiate the following in-facing functions on at least two ports, for both
transmit and receive, for at least one Stream:

a) Stream identification (Clause 6).

b) A Null Stream identification function (6.4);

c) A Sequence generation function (7.4.1);

d) The Redundancy tag Sequence encode/decode function specified in 7.6 and 7.8;
24
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
e) A Sequence recovery function (7.4.2) that supports the MatchRecoveryAlgorithm (7.4.3.5) and
supports the VectorRecoveryAlgorithm (7.4.3.4) with a value of at least 2 for the managed object
frerSeqRcvyHistoryLength (10.4.1.6);

f) At least two instances of Individual recovery functions (7.5), each using the
MatchRecoveryAlgorithm (7.4.3.5); and

g) The managed objects in Clause 9 and Clause 10, excepting 10.7.

5.13 Relay system recommended behaviors

A relay system should be able to instantiate the following in-facing functions on at least two ports, for both
transmit and receive, for at least one Stream:

a) Active Destination MAC and VLAN Stream identification functions (6.6) for encoding and decod-
ing packets; and

b) IP Stream identification functions (6.7) for identifying packets.

NOTE—IP Stream identification enables a relay system to proxy for a FRER-unaware end system.

5.14 Relay system optional behaviors

In addition to the requirements of 5.12 and 5.13, a relay system may perform the following functions:

a) The items in 5.12 or 5.13 on more than two ports;
b) The items in 5.12 or 5.13 for some number of Streams greater than 1;
c) Additional types of Stream identification functions;
d) The Stream splitting function (7.7);
e) The HSR sequence tag (7.9);
f) The PRP sequence trailer (7.10);
g) Additional types of Sequence encode/decode functions; and/or
h) Some or all of the functions in 5.12 or 5.13 as both in- and out-facing functions.
i) At least two instances of Individual recovery functions (7.5), each using the

VectorRecoveryAlgorithm (7.4.3.4).
j) Autoconfiguration (7.11) and the associated managed objects (10.7).

5.15 FRER C-component required and optional behaviors

An FRER C-component is an IEEE 802.1Q C-VLAN component that is FRER-capable. An FRER
C-component:

a) Shall meet all of the required and any or none of the optional behaviors for an IEEE 802.1Q
C-VLAN component (5.5 of IEEE Std 802.1Q-2014).

b) Shall meet all of the required behaviors for a relay system (5.12);
c) May meet any or none of the optional behaviors for a relay system (5.14); and
d) Shall conform to the requirements for configuring FRER C-components (8.4).
25
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
6. Stream identification

Clause 7 of IEEE Std 802.1AC describes the IEEE 802.1 layering model, that Frame Replication and
Elimination for Reliability (FRER) follows. Stream identification utilizes a single Service Access Point
(SAP) to a connectionless packet service offered by the layer below it [e.g., the Intermediate Sublayer
Service (ISS) of Clause 11 of IEEE Std 802.1AC], and offers an array of SAPs to the layers above it,
corresponding to different Streams. The Stream identification model is illustrated in Figure 6-1.

Stream identification can be active (e.g., 6.6) or passive (e.g., 6.4). When accepting packets for transmission
from the upper layers, an active Stream identification function (6.2) modifies the data parameters to encode
the choice of SAPs, and offer the encapsulated packets to the lower layers. In the receive direction, the
active Stream identification function accepts packets from the lower layers, decapsulates them, and passes
them to the upper layers through the appropriate SAPs according to the Stream identification derived from
the packet. A passive Stream identification function does nothing to packets passed down from the upper
layers, but examines packets received from lower layers to identify the packet’s Stream and determine to
which SAP to pass it.

NOTE—In principle, any number of different methods for identifying and encoding Streams can be defined. Several
required methods are specified in the following subclauses (6.4, 6.5, 6.6, 6.7).

A Stream is the entity to which the Qualities of Service (QoSs) are offered. It is a sequence of packets, either
unicast or multicast, from a Talker to one or more Listeners. Figure 6-2 illustrates a network carrying a
single Stream.

Figure 6-1—Stream identification service

Lower layers (e.g., MAC + Physical)

(SAP)(SAP)(SAP)(SAP)(SAP)

Stream identification func-
tion

Stream identification
function

(SAP)(SAP)

Stream identification
function

(SAP)(SAP)(SAP)

Figure 6-2—A Stream with three Listeners

Listener 1

Listener 3

Talker

Listener 2
26
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
Stream identification is described in the following subclauses as follows:

a) Additional service subparameters required by Stream identification are in 6.1.

b) The Stream identification function is described in 6.2, and its placement in the protocol stack of a
system in 6.3.

c) Four specific Stream identification functions are described: Null Stream identification (6.4), Source
MAC and VLAN Stream identification (6.5), Active Destination MAC and VLAN Stream
identification (6.6), and IP Stream identification (6.7).

These Stream identification functions are summarized in Table 6-1.

6.1 Stream service subparameters

The ISS defined in IEEE Std 802.1AC includes a connection_identifier parameter that is of local
significance (to a system) only. The parameter is not carried across the underlying service. Stream
identification makes use of this parameter to carry parametrized information. Stream identification has need
for more than one subparameter, but an implementor can create mathematical algorithms to combine those
subparameters (and/or other subparameters for other layers) into a single connection_identifier parameter,
especially since the connection_identifier’s values are undefined outside the system implementing them. In
this document, parameters that are assumed to be encoded in the connection_identifier are deemed
subparameters.

The parameters of the service offered by Stream identification include the following subparameters required
by the Stream identification function and other functions defined in this standard:

a) stream_handle: An integer identifying the Stream to which the packet belongs.

b) sequence_number: An unsigned integer identifying the order in which the packet was transmitted
relative to other packets in the same Compound Stream.

Table 6-1—Stream identification functions

Stream
identification

function
Active/passive Examines Overwrites Reference

Null Stream
identification

Passive destination_address,
vlan_identifier

None 6.4, 9.1.2

Source MAC and
VLAN Stream
identification

Passive source_address,
vlan_identifier

None 6.5, 9.1.3

Active Destination
MAC and VLAN
Stream
identification

Active destination_address,
vlan_identifier

destination_address,
vlan_identifier,
priority

6.6, 9.1.4

IP Stream
identification

Passive destination_address,
vlan_identifier, IP
source address, IP
destination address,
DSCP, IP next
protocol, source port,
destination port

None 6.7, 9.1.5
27
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
The numerical value of the stream_handle subparameter is local to a system; this subparameter is not to be
confused with, for example, a field in a Protocol Data Unit (PDU) with a similar function. The value of a
stream_handle is connected to protocol fields by means of protocol actions and network management. It can,
but does not necessarily, have a 1:1 relationship with an explicit field in the packet.

Not every sequence of packets of interest to FRER (Clause 7) requires the relay systems along its path to
identify to which Stream the packets belong. FRER does require the stream_handle and sequence_number
subparameters in systems where a Sequence recovery function (7.4.2) or Individual recovery function (7.5)
is configured for a Stream.

The numerical value of the sequence_number subparameter can be explicitly encoded in the packet by either
the Stream identification function (6.2) or the Sequence encode/decode function (7.6).

6.2 Stream identification function

As illustrated in Figure 6-3, the Stream identification function can be described as having two SAPs (see
IEEE Std 802.1AC). One SAP connects Stream identification function to the upper layers. This SAP
includes a stream_handle subparameter and can include a sequence_number subparameter. The other SAP
connects to the lower layers. This SAP can, but typically does not, include the stream_handle or
sequence_number subparameters.

Equivalently, the Stream identification function can be described as having the same SAP to the lower
layers, but as having an array of SAPs to the upper layers. A unique SAP corresponds to each value of the
stream_handle subparameter, including one SAP for packets belonging to no known Stream. An SAP can
serve more than one stream_handle value. This is illustrated in Figure 6-4.

The Stream identification function performs two functions:

a) Packets received from the lower layer are examined by the Stream identification function to
determine a value for the stream_handle subparameter for that packet, i.e., to determine to which
Stream the packet belongs.
1) If the packet belongs to a Stream known to this Stream identification function the resultant

packet is passed, along with the stream_handle and any other subparameters (e.g.,
sequence_number) extracted from the packet, to the upper layers. Depending on the particular
Stream identification method (or methods) employed, parameters can be modified (e.g., a tag
can be removed or an address changed) by the Stream identification function.

Service interface +
stream_handle +
sequence_number

Service interface

(SAP)

Stream identification function

(SAP)

Figure 6-3—Stream identification function: single upper SAP

Figure 6-4—Stream identification function: array of upper SAPs

(SAP)(SAP)

Stream identification function

(SAP)

Packets belonging to no Stream, or
to a Stream unknown to this Stream

identification function

Packets having
stream_handle 1

Packets having
stream_handles 2,
16, 28, and 63119

...
(SAP)

Service interface +
stream_handle +
sequence_number

Service interface
28
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
2) Otherwise (the packet belongs to no known Stream), the packet is passed unchanged to the next
upper layer with null values for the stream_handle and sequence_number subparameters.

b) For packets passed down from the upper layers for transmission, the Stream identification function
uses the packet’s stream_handle subparameter to determine how to handle the packet:

1) If the packet belongs to a Stream known to this Stream identification function the resultant
packet is passed to the lower layers. Depending on the particular Stream identification method
(or methods) employed, parameters can be modified (e.g., a tag can be added or an address
changed) by the Stream identification function.

2) Otherwise (the packet belongs to no known Stream), the packet is passed unchanged to the next
lower layer with all parameters intact.

NOTE—The Stream identification method does not necessarily involve an actual transformation of the packet. See 6.4
and 6.6 for examples of both cases.

6.3 Stream identification in systems

FRER (Clause 7) capabilities generally require Stream identification in order to function. How the Stream
identification function (6.2) and the various FRER functions (7.4, 7.6) are arranged to accomplish a given
task, and how they are described for the purposes of standards specification, can vary. Diagram a in
Figure 6-5 illustrates a relay system (e.g., 8.6 of IEEE Std 802.1Q-2014) with two ports, that has its FRER
capabilities embedded in its forwarding function, and not shown explicitly in the diagram. This formulation
is the simplest, but does not make clear the ordering of operations, at least in the diagram.

Diagram b in Figure 6-5 shows that same relay system, this time with the FRER functions placed explicitly
in one of its ports, the picture of which is greatly expanded. In Diagram b, the forwarding function has no
FRER capabilities. Stream identification functions extract Stream identification function subparameters in
order to enable an FRER function. The Stream Transfer Function acts as a two-port packet relay, residing
entirely inside the one port of the relay system, relaying packets belonging to Streams. The Non-Stream
Transfer Function (NSTF) does the same, but attaches to the “unknown” SAP of Figure 6-4, and thus relays
packets not recognized as belonging to Streams. The Lower Stream identification functions separate FRER
packets from non-FRER packets; the latter are relayed across the NSTF as if the FRER capabilities were not
present. The Upper Stream identification functions identify the FRER packets’ Streams so that the other
FRER functions can perform their tasks. Each of the two-port transfer functions have a pair of SAPs, and
transfer all packet receive indications into packet requests on the other SAP. This formulation illustrates
exactly the peering relationships among the various functions, but is too complex for many purposes.

PHY

MAC MAC

Relay system with
FRER function

PHY PHY

MAC Internal LAN

Relay system
forwarding function

PHY

MAC

Stream Transfer Function

a. Relay system with
FRER capability

b. Relay system with separated FRER capability,
e.g., packet counting, on an output port.

PHY

MAC

Relay system
forwarding function

PHY

MAC

c. Shorthand for an FRER
function on a port

FRER port
function

Upper Stream
identification

Upper Stream
identification

Lower Stream
identification

Lower Stream
identification

FRER function FRER function

NSTF

(NSTF = Non-Stream
Transfer Function)

Figure 6-5—Stream functions in a relay system (three views of same system)
29
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
Diagram c in Figure 6-5 shows a way of illustrating the function in diagram b in a more compact manner.
The operations to be performed can be more explicit than for diagram a, but the FRER sublayers are not at
the right peering level).

It is sometimes necessary to differentiate between functions that are on one side or the other of the expanded
port diagram (diagram b in Figure 6-5), Figure 6-6 illustrates a relay system with two ports, one of which
has in- and out-facing FRER functions, and an end system with one port, with out-facing FRER functions.
Every function communicates to its peers by sending and receiving packets through the real or virtual
service layers below it. Thus, in-facing functions are on the side of the Stream Transfer Function towards the
relay system’s forwarding function, and out-facing functions are on either the side of the Stream Transfer
Function away from the forwarding function, or on a simple port, between the forwarding function and the
underlying real or virtual service layer. Typically, in-facing FRER functions are used for proxy functions
operating on behalf of end systems that are not FRER-capable. See Annex C for examples of the use of in-
and out-facing FRER functions. (The MAC and PHY layers are the Media Access Control and physical
layers, respectively.)

6.4 Null Stream identification

The Null Stream identification is a passive Stream identification function that operates at the frame level. It
can be defined using the Enhanced Internal Sublayer Service (EISS) described in 6.9 of
IEEE Std 802.1Q-2014, in which case it is enhanced with the extra stream_handle subparameter of the
connection_identifier, specified in 6.1 of the present standard. It discards the stream_handle subparameter
passed down the stack. It generates a stream_handle subparameter on frames passed up the stack based on
the frame’s destination MAC address and VLAN ID. It does not change any of a packet’s other parameters.
It is suitable for applications in which all data packets to a particular {MAC address, VLAN} pair are
Stream packets. For example, AVB Streams (IEEE Std 802.1BA-2011 [B1]) have a unique {destination
MAC address, VLAN} pair per Stream. In order to instantiate the Null Stream identification function, the
tsnStreamIdIdentificationType managed object (9.1.1.6) is encoded using the OUI (00-80-C2) and the type
values as shown in Table 9-1.

The managed objects for Null Stream identification are described in 9.1.2.

NOTE—The drop_eligible parameter is also present, along with the VLAN identifier and priority, in an IEEE 802.1Q
VLAN tag. FRER does not affect the use of this parameter. It passes through Null Stream identification unchanged, and
defaults to False when not present.

Figure 6-6—In- and out-facing functions

PHY

MAC Internal LAN

Relay system
forwarding function

PHY

MAC

Stream Transfer Function

FRER
in-facing

function(s)

FRER
out-facing
function(s)

PHY

MAC

FRER
out-facing
function(s)

Upper layers

Relay system End system

Lower Stream
identification

Lower Stream
identification

NSTF

(NSTF = Non-Stream
Transfer Function)
30
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
6.5 Source MAC and VLAN Stream identification

The Source MAC and VLAN Stream identification is a passive Stream identification function that operates
at the frame level. It can be defined using the EISS described in 6.9 of IEEE Std 802.1Q-2014, in which case
it is enhanced with the extra stream_handle subparameter of the connection_identifier, specified in 6.1 of the
present standard. It discards the stream_handle subparameter passed down the stack. It generates a
stream_handle subparameter on frames passed up the stack based on the frame’s source MAC address and
VLAN ID. It does not change any of a packet’s parameters. It is suitable for applications in which all data
packets from a particular {source MAC address, VLAN} pair are Stream packets. In order to instantiate the
Source MAC and VLAN Stream identification function, the tsnStreamIdIdentificationType managed object
(9.1.1.6) is encoded using the OUI (00-80-C2) and the type values as shown in Table 9-1.

The managed objects for Source MAC and VLAN Stream identification are described in 9.1.3.

NOTE—The drop_eligible parameter is also present, along with the VLAN identifier and priority, in an IEEE 802.1Q
VLAN tag. FRER does not affect the use of this parameter. It passes through Source MAC and VLAN Stream
identification unchanged, and defaults to False when not present.

6.6 Active Destination MAC and VLAN Stream identification

The Active Destination MAC and VLAN Stream identification is an active Stream identification function
that operates at the frame level. It can be defined using the EISS described in 6.9 of IEEE Std 802.1Q-2014,
in which case it is enhanced with the extra stream_handle subparameter of the connection_identifier,
specified in 6.1 of the present standard. In order to instantiate the Active Destination MAC and VLAN
Stream identification function, the tsnStreamIdIdentificationType managed object (9.1.1.6) is encoded using
the OUI (00-80-C2) and the type values as shown in Table 9-1.

In the Active Destination MAC and VLAN Stream identification, the destination_address, vlan_identifier,
and priority parameters of the frame passed down the stack from the upper layers or up the stack from the
lower layers are replaced with alternate values. The replacement values for frames transmitted down the
stack to the Active Destination MAC and VLAN Stream identification, and used to recognize frames passed
up the stack to the Active Destination MAC and VLAN Stream identification function, are those listed in
9.1.2. The replacement values for frames passed up the stack (not including the priority parameter) are in
9.1.4.

Active Destination MAC and VLAN Stream identification is useful for translating a particular Stream,
within a Talker, to use a particular {MAC address, VLAN} pair to identify the Stream to IEEE 802.1Q
Bridges in the network, and within a Listener, to recover the original addressing information before passing
the packet up the protocol stack. It is also useful in a relay system that is providing that restoration as a proxy
service for a Listener.

The managed objects for Active Destination MAC and VLAN Stream identification are described in 9.1.4.

NOTE 1—The drop_eligible parameter is also present, along with the VLAN identifier and priority, in an IEEE 802.1Q
VLAN tag. FRER does not affect the use of this parameter. It passes through Active Destination MAC and VLAN
Stream identification unchanged, and defaults to False when not present.

NOTE 2—Changing the destination MAC address and/or VLAN must be done carefully, if the receiver is to recognize
the packet. For example, if Active Destination MAC and VLAN Stream identification is used along with IP Stream iden-
tification (6.7), the user can configure Active Destination MAC and VLAN Stream identification at the receiving end to
restore the original destination MAC address and VLAN before delivery up the protocol stack.
31
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
6.7 IP Stream identification

The IP Stream identification is a passive Stream identification function that operates at the transport layer
and Internet Protocol (IP) interface layer. It can be defined using the union of the IP address primitives listed
in 9.1.5 and parameters defined by the EISS described in 6.9 of IEEE Std 802.1Q-2014, in which case it is
enhanced with the stream_handle subparameter of the connection_identifier, specified in 6.1 of the present
standard. In IP Stream identification, the IP and higher layer address parameters and the EISS parameters are
used to determine the stream_handle subparameter of packets passed up the stack, and discards the
stream_handle subparameter for packets passed down the stack. It does not change any of a packet’s other
parameters. In order to instantiate the IP Stream identification function, the tsnStreamIdIdentificationType
managed object (9.1.1.6) is encoded using the OUI (00-80-C2) and the type values as shown in Table 9-1.

IP Stream identification can be coupled, for example, with Active Destination MAC and VLAN Stream
identification (6.6) to assign a particular {MAC address, VLAN, priority} triple to packets belonging to a
particular unicast IP Stream, as shown in Figure 8-1, Port A, where IP Stream identification would be in the
box labeled “Passive Upper Stream identification functions (6.2).”

The managed objects for IP Stream identification are described in 9.1.5.

NOTE—The drop_eligible parameter is also present, along with the VLAN identifier and priority, in an IEEE 802.1Q
VLAN tag. FRER does not affect the use of this parameter. It passes through IP Stream identification unchanged, and
defaults to False when not present.
32
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
7. Frame Replication and Elimination for Reliability

7.1 Overview of Frame Replication and Elimination for Reliability

7.1.1 Goals and objectives

FRER, as specified in this clause, provides increased reliability (reduced packet loss rates) for a Stream by
sequence numbering and replicating every packet, in the source end system and/or in relay systems in the
network, and eliminating those replicates in the destination end system and/or in other relay systems.

Figure 7-1 illustrates an example of a Compound Stream with four component Member Streams. In this
example, a sequence_number subparameter (6.1) is generated and encoded into each packet in the leftmost
box. Sequence recovery functions (7.4.2) eliminate duplicate packets, and the non-duplicate packets copied
as a new Member Stream (with sequence numbers unchanged), at two intermediate points. The final two
Member Streams are brought together and the duplicates eliminated at the destination at right. This
configuration protects against all 7 possible one-link failures, and against 16 of 21 possible two-link failures.

FRER has the following goals and objectives:

a) Packet replication: By replicating packets, sending them on separate paths, and then using the
sequence_number to eliminate replicates, the effective probability of packet loss is reduced.

NOTE 1—The means by which the multiple paths are created is the subject of other standards, including
IEEE Std 802.1Q™, IEEE Std 802.1Qca™, and IEEE P802.1Qcc™.10

b) Multicast or unicast: A path on which a Stream is sent can be a point-to-point path or a point-to-
multipoint tree.

c) Intermittent Streams: A Stream such that there can be no more than one packet in flight on any
given path than on any other path.

d) Bulk Streams: A Stream such that there can be many more packets in flight on any given path than
on any other path.

NOTE 2—An equivalent distinction between bulk and intermittent Streams is that, at the point at which the Streams are
combined, the difference between the sequence numbers of an intermittent Stream along the two paths can be no greater
than 1. Bulk Streams, for which the difference can be greater than 1, require a somewhat more complex replicate
deletion capability than intermittent Streams.

10Numbers preceded by P are IEEE authorized standards projects that were not approved by the IEEE-SA Standards Board at the time
this publication went to press. For information about obtaining drafts, contact the IEEE.

Figure 7-1—Compound Stream built from four Member Streams

Sequence gener-
ation function

Stream 2

Stream 3

Stream 4

Stream 1

Sequence recovery functions
33
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
e) Flexible positioning: The FRER functions have to be usable in a number of configurations, as
explained in Annex C, including (but not limited to):

1) In an end system’s protocol stack.
2) In a relay system’s protocol stack (e.g., systems C and F in Figure C-4).
3) In a relay system’s protocol stack, where the FRER functions are acting in proxy for an

adjacent end system that lacks a FRER capability (e.g., system B in Figure C-4).

f) Latent error detection: When replicating a Stream, if a component along one path fails, it is not
immediately apparent to the receiver that something is wrong, since the other path continues to
deliver data. Given the higher reliability achievable with FRER, some means of detecting a failure to
actually deliver copies of each packet is required at the point that the replicated packets are
discarded.

g) Interoperability: There exist protocols antecedent to this standard that provide a similar function,
but have details that are different from this standard that would make it difficult or impossible to
design an interworking function that translates between the different standards’ packet formats. This
standard defines a small number of controls that make such interoperation possible (see Annex B).

h) Backward compatibility: To increase the number of uses available for FRER, it is desirable for a
set of end systems conforming to this standard to obtain most or all of the benefits of FRER when
connected to a network that is not aware of FRER, and for a network of conformant relay systems to
offer these benefits to unaware end systems.

i) Dynamic capability: Some applications will need to turn FRER on or off on an operational Stream,
rather than only when the Stream is quiescent.

j) Robustness: At packet loss rates targeted by FRER, certain classes of errors, e.g., a stuck transmit-
ter repeatedly sending the same packet, become more important than, for example, simple packet
loss events. FRER has to be proof against such errors.

k) Zero congestion loss: Various techniques (e.g., IEEE 802.1BA-2011 [B1], Audio Video Bridging)
can be used to provide a Stream with zero (or very low) packet loss due to congestion. FRER has to
be compatible with such techniques.

NOTE 3—There are additional QoS features provided by Time-Sensitive Networking (TSN). FRER offers the most
benefit when used in combination with other features, including especially zero congestion loss.

l) Ease of use: It must be possible to employ FRER without per-Stream configuration in each relay
system.

In addition to the above goals, there are other possible capabilities that are explicitly not goals of this
standard:

m) In-order delivery: FRER can cause packets belonging to a Compound Stream to be delivered in a
sequence other than that in which they were transmitted. Rectifying this is beyond the scope of this
standard.

If the paths of the Member Streams comprising a Compound Stream have significantly different lengths, and
if the Streams are bulk Streams (item d), then a lost packet on the shorter path can easily give rise to an out-
of-order delivery when its duplicate arrives via the longer path, even though in-order delivery is maintained
for each Member Stream along its own path. Delivering packets in their original order for the Compound
Stream, as indicated by the sequence numbers, would require buffering the packets. Because of this
buffering requirement, in-order delivery for a Compound Stream is explicitly not a goal of FRER. Users of
Bridged Virtual LANs, as defined in IEEE Std 802.1Q, need to understand that the usual expectations of
in-order delivery can be compromised by FRER.

FRER can be configured to apply recursively, so that a Compound Stream composed of Member Streams
can itself be a Member Stream to an enclosing Compound Stream.
34
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
7.2 Use of the term Stream

Readers of this standard who are familiar with IEEE Std 802.1Q will recognize that the distinction between
a Member Stream and a Compound Stream is required by the present standard. For example, in
IEEE Std 802.1Q, the Stream is both the entire Talker-to-Listener path and that for which a bandwidth
reservation must be made before the Stream can obtain the desired QoS. It is expected that bandwidth
reservations using the mechanisms of IEEE Std 802.1Q could be made for each of the four Member Streams
illustrated in Figure 7-1, while the end-to-end Talker-to-Listener path is the whole Compound Stream. (See
C.9.)

In addition, IEEE Std 802.1Q defines a StreamID that is used to identify a stream between a Talker and one
or more Listener(s). In contrast, the present standard defines a stream_handle subparameter that is used
internally to identify a Stream.

Some end systems sequence number their packets per system, rather than per-Stream. Such an end system
can transmit any number of separate Streams (in the sense of data flows), each with different
destination_mac_address, IP address, TCP port numbers, VLANs, etc., each with its own entries in a relay
system’s forwarding database and/or each with its own bandwidth reservation. In receiving end systems or
in relay systems, Source MAC and VLAN Stream identification (6.5) is useful for organizing Individual
recovery functions and Sequence recovery functions, because the sequence_number parameter is per-source
MAC address, not per-destination MAC address; each state machine can operate on all of the individual
Streams transmitted by a single source as a single Stream. Therefore, any number of individual Streams (in
the bandwidth reservation sense) can be considered a single Stream (in the source MAC address sense) by
different systems in a network. See also B.2.

7.3 Frame Replication and Elimination for Reliability functions

FRER provides five of the functions illustrated in Figure 7-2. Not all functions are required in every protocol
stack.

a) Sequencing: This function (see 7.4):

1) Supplies a sequential value for the sequence_number subparameter for packets passed down
from the upper layer for transmission (7.4.1);

2) Examines the sequence numbers of received packets passed up to it (from multiple Streams),
and discards packets whose sequence_number subparameter indicates that it is a duplicate of a
packet received previously (7.4.2); and

3) Monitors counter variables to detect latent errors of Streams passed up to it (7.4.4).

Figure 7-2—Frame Replication and Elimination for Reliability functions

Upper layer

Sequencing function (7.4)

Lower layer

Sequence encode/decode function (7.6)

Stream identification (Clause 6)

Individual recovery function (7.5)

Stream splitting function (7.7)
35
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
b) Stream splitting: This function (see 7.7):

1) Replicates each packet passed down to it, assigning each replicate a different stream_handle, at
most one of which can be the same as the original.

2) Passes packets unchanged up the stack.

c) Individual recovery: This function (see 7.5):

1) Examines the sequence numbers of received packets passed up to it (belonging to Member
Streams), and discards packets whose sequence_number subparameter indicates that it is a
duplicate of a packet received previously.

d) Sequence Encode/Decode: This function (see 7.6):

1) Encodes the sequence_number subparameter into the packet in a manner such that it can be
decoded by its peer Sequencing function(s) by altering the other packet parameters, typically
by encoding the sequence_number in the packet data by some means, e.g., an R-TAG (7.8).

2) Extracts the sequence_number from a received packet passed up to it. Depending on the Stream
identification function used, the Sequencing function can remove the sequence_number
encapsulation from the packet.

The Sequence encode/decode function is not required if the Stream identification function used in
the stack encodes all of the required subparameters.

FRER also requires the Stream identification function (Clause 6):

e) Stream identification: This function (see Clause 6):

1) Passes each packet down the stack and, if required by the particular encapsulation method
configured, uses the stream_handle to alter the packet; and

2) Derives a stream_handle from a received packet and passes it up the stack, altering the packet if
required by the encapsulation method.

7.4 Sequencing function

The Sequencing function makes use of the stream_handle and sequence_number service subparameters of
6.1. The Sequencing function has two kinds of component functions. Sequence generation functions (7.4.1)
operate on packets passed down the protocol stack towards the physical layer in Figure 7-2 and generate a
value for the sequence_number subparameter. Sequence recovery functions (7.4.2) operate on packets
passed up the stack towards the higher layer functions and use the sequence_number subparameter to decide
which packets to pass and which to discard.

On any given port, zero or more instances of the Sequence generation function, and/or Sequence recovery
function can be instantiated. These functions can be instantiated as in-facing or out-facing functions. For
both kinds of functions, the stream_handle subparameter of a packet determines through which function, if
any, the packet is passed. Each instance of each function has its own set of state variables.

7.4.1 Sequence generation function

The sequence generation function resides in the Sequencing function (7.4). It generates a sequence_number
subparameter for each packet of a Stream passed down to the lower layers. There is at most one sequence
generation function per port per stream_handle value per direction (in-facing or out-facing), as specified
through managed objects (10.3).

The sequence generation function is described in terms of the following:

a) Managed objects that control the sequence generation function and that are affected by the sequence
generation function (10.3, 10.8);
36
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
b) Events, the occurrence of which trigger the execution of code routines, and that can be triggered by
the code routines (7.4.1.1);

c) Variables that are manipulated by the code routines and maintain the state of the sequence
generation function between routine executions (7.4.1.2); and

d) Two code routines that interact with the managed objects, events, and variables (7.4.1.4, 7.4.1.3).

7.4.1.1 Events for sequence generation

There are two events that can affect the sequence generation function, and one that it produces.

a) BEGIN: The global event that resets all functions, including the sequence generation function. This
event triggers the execution of the SequenceGenerationReset routine (7.4.1.3).

b) DATA_REQUEST: The event that presents a packet from the upper layers to the sequence
generation function for transmission to the lower layers, e.g., the M_UNITDATA.request primitive
of the ISS of IEEE Std 802.1AC. This event triggers the execution of the
SequenceGenerationAlgorithm routine (7.4.1.4).

c) SEND_DATA: The event that presents a packet down the stack from the sequence generation
function to the lower layers, e.g., the M_UNITDATA.request primitive of the ISS of
IEEE Std 802.1AC.

7.4.1.2 Variables for sequence generation

Each instance of the sequence generation function has its own set of variables, independent from any other
instance.

7.4.1.2.1 GenSeqSpace

GenSeqSpace specifies the range of values for the sequence_number subparameter and other variables that
depend on it. It is a constant with the value 65 536.

7.4.1.2.2 GenSeqNum

The GenSeqNum variable contains the value that the sequence generation function increments after passing
down to the lower layer as the sequence_number subparameter. The variable is an unsigned integer in the
range 0 to (GenSeqSpace – 1). GenSeqSpace is defined in 7.4.1.2.1. GenSeqNum is initialized to 0
whenever the function is reset (7.4.1.3), and incremented by 1 after its value is copied to the
sequence_number subparameter. When incremented past its maximum value, the new value is 0.

7.4.1.3 SequenceGenerationReset

The SequenceGenerationReset function is called whenever the BEGIN event occurs (item a in 7.4.1.1) or
the value True is written to the frerSeqRcvyReset managed object (10.4.1.4). It resets GenSeqNum
(7.4.1.2.2) and increments frerCpsSeqGenResets (10.8.2).

void SequenceGenerationReset () {
 GenSeqNum = 0;
 frerCpsSeqGenResets = frerCpsSeqGenResets + 1;
}

7.4.1.4 SequenceGenerationAlgorithm

The SequenceGenerationAlgorithm function is called whenever the DATA_REQUEST (item b in 7.4.1.1)
event occurs. It copies GenSeqNum (7.4.1.2.2) to the sequence_number subparameter (item b in 6.1) and
37
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
increments GenSeqNum. It then triggers the SEND_DATA primitive (item c in 7.4.1.1) to pass the packet
on to the next lower layer.

void SequenceGenerationAlgorithm () {
 unsigned int sequence_number = GenSeqNum;
 if (GenSeqNum >= (GenSeqSpace - 1))
 GenSeqNum = 0;
 else
 GenSeqNum = GenSeqNum + 1;
 SEND_DATA; // Pass packet & sequence_number subparameter down stack
}

7.4.2 Sequence recovery function

The Sequence recovery function operates on a merged set of Member Streams originally marked with
sequence_number (6.1) values from a single instance of the Sequence generation function (7.4.1). It is not to
be confused with the Individual recovery function (7.5) that applies to only one Member Stream, although
both use the same basic algorithms.

An instantiation of the Sequence recovery function consists of the following:

a) An instantiation of the Base recovery function (7.4.3), either the VectorRecoveryAlgorithm
(7.4.3.4) or the MatchRecoveryAlgorithm (7.4.3.5), with its frerSeqRcvyIndividualRecovery object
(10.4.1.10) set to False, configured to apply to one or more values of the sequence_number
subparameter; and

b) An instantiation of the Latent error detection function (7.4.4).

Managed objects (Clause 9 and Clause 10) are used to instantiate these functions on ports of a system.

NOTE—The managed objects in Clause 9 and Clause 10 create an instantiation of the Sequence recovery function per
port. In fact, a relay system can choose to create a single instance of the Sequence recovery function as part of its
forwarding function, or one instance per line card, or in some other, distributed fashion, without violating the externally
visible behaviors specified by this standard. The per-instantiation variables are internal to the system, so their definitions
are not affected by this choice. See 10.8.1 for a discussion of what this choice means for the counters in Clause 9 and
Clause 10 that are referenced by instantiations of the Sequence recovery function.

7.4.3 Base recovery function

A Base recovery function resides in the Sequencing function (7.4). It evaluates the sequence_number
subparameter of a packet of one or more Member Streams passed up from the lower layers, in order to
discard duplicated packets. A given instantiation of a Base recovery function can function as either a
Sequence recovery function (7.4.2) or an Individual recovery function (7.5). This choice, the selection of
stream_handle subparameter value(s) to which an instantiation applies, the port and direction (in-facing or
out-facing) on which it resides, and other operational parameters are specified through managed objects
(10.4).

The sequence recovery function is described in terms of the following:

a) Managed objects that control the sequence recovery function and that are affected by the sequence
recovery function (10.4, 10.8);

b) Events, the occurrence of which trigger the execution of code routines and which can be triggered by
the code routines (7.4.3.1);
38
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
c) Variables that are manipulated by the code routines and maintain the state of the sequence recovery
function between routine executions (7.4.3.2); and

d) Four code routines that interact with the managed objects, events, and variables (7.4.3.3, 7.4.3.4,
7.4.3.5, 7.4.3.6).

The sequence recovery function has two sequence recovery algorithms (7.4.3.4, 7.4.3.5) so that it can be
used either for Intermittent Streams (item c in 7.1.1) or for Bulk Streams (item d in 7.1.1). As long as the
maximum difference in the number of packets in flight among all of the paths taken by the Member Streams
served by a given sequence recovery function does not exceed the size of the SequenceHistory variable
(7.4.3.2.2, 10.4.1.6), the packets are delivered without duplication, but can be delivered out-of-order. If the
difference exceeds this value, then duplicate packets can be delivered.

NOTE 1—The requirements for conformance to this standard, particularly item c in 5.9 and item e in 5.12, specify that
the sequence recovery function need only support a minimum difference in path length for the correct elimination of
duplicates in Bulk Streams. If the actual path difference in a given network exceeds the capability of a sequence
recovery function, then duplicate packets will be delivered. It is up to the user to see that the capabilities of the systems
purchased match the needs of the particular network in which they are employed.

A FRER recovery function shall not process a packet unless the lower-level packet validity checks (e.g.,
IEEE Std 802.3 [B2], Frame Check Sequence) have been completed successfully.

NOTE 2—This restriction has the effect of disallowing cut through forwarding on a port on which the FRER recovery
function is discarding packets.

7.4.3.1 Events for sequence recovery

There are three events that can affect the sequence recovery function, and one that the Base recovery
function can trigger.

a) BEGIN: The global event that resets all functions, including the sequence recovery function. This
event triggers the execution of the SequenceRecoveryReset routine (7.4.3.3).

b) DATA_INDICATION: The event that presents a packet up the stack to the sequence recovery
function from the lower layers, e.g., the M_UNITDATA.indication primitive of the ISS of
IEEE Std 802.1AC.

c) RECOVERY_TIMEOUT: The event that occurs when the RemainingTicks (7.4.3.2.4) variable
reaches 0. It triggers the execution of the SequenceRecoveryReset routine (7.4.3.3).

d) PRESENT_DATA: The event that presents a packet up the stack from the sequence recovery func-
tion to the upper layers, e.g., the M_UNITDATA.indication primitive of the ISS of
IEEE Std 802.1AC. This event can be triggered by the VectorRecoveryAlgorithm routine (7.4.3.4)
and the MatchRecoveryAlgorithm routine (7.4.3.5).

7.4.3.2 Variables for sequence recovery

Each instance of the sequence recovery function has its own set of variables, independent from any other
instance.

7.4.3.2.1 RecovSeqSpace

RecovSeqSpace specifies the range of values for the sequence_number subparameter and other variables
that depend on it. It is a constant with the value 65 536.
39
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
7.4.3.2.2 SequenceHistory

The SequenceHistory variable maintains a history of the sequence_number subparameters of recently
received packets. The SequenceHistory variable is a bit vector, with one bit for each value from 0 to
(frerSeqRcvyHistoryLength – 1), corresponding to sequence_numbers in the range RecovSeqNum
(7.4.3.2.3) through (RecovSeqNum – frerSeqRcvyHistoryLength + 1), inclusive, with the arithmetic in both
expressions performed modulo frerSeqRcvyHistoryLength. A 1 in the SequenceHistory indicates that the
corresponding sequence_number has been received, and a 0 that it has not.

7.4.3.2.3 RecovSeqNum

The RecovSeqNum variable holds the highest sequence_number value received (modulo RecovSeqSpace),
or the value (RecovSeqSpace – 1), if none have been received since the sequence recovery function was
reset. The variable is an unsigned integer in the range 0 to (RecovSeqSpace – 1). RecovSeqSpace is defined
in 7.4.3.2.1. RecovSeqNum is initialized to (RecovSeqSpace – 1) whenever the function is reset (7.4.3.3).
When incremented past its maximum value, the new value is 0.

7.4.3.2.4 RemainingTicks

An unsigned integer variable that holds the number of clock ticks remaining until a
RECOVERY_TIMEOUT event (item c in 7.4.3.1) occurs. It is decremented regularly, at the rate indicated
by TicksPerSecond (7.4.3.2.5), and can be reset by the VectorRecoveryAlgorithm (7.4.3.4) and the
MatchRecoveryAlgorithm (7.4.3.5). When RemainingTicks decrements from 1 to 0, a
RECOVERY_TIMEOUT event occurs, and RemainingTicks remains at 0.

7.4.3.2.5 TicksPerSecond

An unsigned integer value, supplied by the implementation, that indicates the number of times per second
that the variable RemainingTicks (7.4.3.2.4) is decremented. The value of TicksPerSecond shall be 100 or
greater.

7.4.3.2.6 TakeAny

A Boolean value indicating whether the recovery algorithm (7.4.3.4 or 7.4.3.5) is to accept the next packet,
no matter what the value of its sequence_number subparameter.

7.4.3.3 SequenceRecoveryReset

SequenceRecoveryReset is called whenever the BEGIN event (item a in 7.4.3.1) or the
RECOVERY_TIMEOUT event (item c in 7.4.3.1) occurs. It resets the RecovSeqNum (7.4.3.2.3) and
SequenceHistory (7.4.3.2.2) variables to their initial states, increments frerCpsSeqRcvyResets (10.8.9), and
sets TakeAny (7.4.3.2.6). Note that RecovSeqNum and SequenceHistory are reset only if the
VectorRecoveryAlgorithm (7.4.3.4) is configured.

void SequenceRecoveryReset (
 if (frerSeqRcvyAlgorithm == Vector_Alg) {
 int i;
 RecovSeqNum = RecovSeqSpace - 1;
 for (i = 0; i < frerSeqRcvyHistoryLength; i = i + 1)
 SequenceHistory[i] = 0; // Set all bits 0 (packet not seen)
 }
 frerCpsSeqRcvyResets = frerCpsSeqRcvyResets + 1;
 TakeAny = true;
}

40
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
7.4.3.4 VectorRecoveryAlgorithm

VectorRecoveryAlgorithm is called whenever the DATA_INDICATION event occurs (item b in 7.4.3.1)
and the Sequence recovery function is configured to use the VectorRecoveryAlgorithm
(frerSeqRcvyAlgorithm = Vector_Alg, 10.4.1.5). If it terminates without triggering the PRESENT_DATA
event (item d in 7.4.3.1), then the packet is effectively discarded. Each instance of the function is controlled
by the constant RecovSeqSpace (7.4.3.2.1) and the managed object frerSeqRcvyHistoryLength (10.4.1.6).

One can observe that if the managed object frerSeqRcvyHistoryLength contains the value 1, then this
algorithm is suitable for Intermittent Streams (item c in 7.1.1). In that case, the SequenceHistory variable
(7.4.3.2.2) merely records whether the RecovSeqNum (7.4.3.2.3) does or does not record the
sequence_number subparameter of a received packet. [It does not immediately after
SequenceRecoveryReset (7.4.3.3) is called.] If frerSeqRcvyHistoryLength contains a value greater than one,
VectorRecoveryAlgorithm serves as the more complex algorithm suitable for Bulk Streams (item d in
7.1.1).

Immediately after SequenceRecoveryReset (7.4.3.3) is called, the VectorRecoveryAlgorithm accepts the
first packet received as valid. After the first packet has been accepted, all subsequent packets that are in the
window last packet number accepted ± frerSeqRcvyHistoryLength are accepted, and those packets with
sequence_number values outside that range are discarded. Each packet accepted and passed up the stack
resets the timer variable RemainingTicks (7.4.3.2.4). If that variable ticks down to 0, meaning that no packet
has been accepted in frerSeqRcvyResetMSec milliseconds (10.4.1.7), then SequenceRecoveryReset again
resets the algorithm, and the next packet received is accepted.

This timeout mechanism means that:

a) “Rogue” packets, meaning packets outside the frerSeqRcvyHistoryLength window, are discarded as
invalid.

b) If a Base recovery function somehow gets out of step with its corresponding Sequence generation
function, then after frerSeqRcvyResetMSec milliseconds, the Base recovery function will be reset
and data will again be passed.

c) If a Sequence generation function is reset, perhaps by rebooting a system, then Base recovery
functions that have not been reset are likely to discard packets until the timeout has occurred.

d) If a Talker or a relay system fails in such a way as to repeatedly transmit packets with the same
sequence_number subparameter (perhaps repeating exactly the same packet), those packets will
continue to be discarded, at least until the sequence_number wraps around.

NOTE—Individual recovery functions (7.5) can be configured to discard repeated sequence_number values (or
sequences of values) and prevent even this wrap around problem.

As a result of item d, it is advisable for a Listener or relay system to be configured to discard packets in a
single Member Stream. See 7.5 and C.10.

void VectorRecoveryAlgorithm () {
 // Check that sequence number is present in the packet
 unsigned int sequence_number;
 if (sequence_number == frerSeqRcvyInvalidSequenceValue) {
 frerCpsSeqRcvyTaglessPackets = frerCpsSeqRcvyTaglessPackets + 1;
 if (frerSeqRcvyTakeNoSequence) {
 frerCpsSeqRcvyPassedPackets = frerCpsSeqRcvyPassedPackets + 1;
 frerCpSeqRcvyPassedPackets = frerCpSeqRcvyPassedPackets + 1;
 RemainingTicks =
 ((frerSeqRcvyResetMSec*TicksPerSecond)+999)/1000;
 PRESENT_DATA;
 } else {
41
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
 frerCpsSeqRcvyDiscardedPackets =
 frerCpsSeqRcvyDiscardedPackets + 1;
 frerCpSeqRcvyDiscardPackets = frerCpSeqRcvyDiscardPackets + 1;
 }
 return;
 }
 // Compute signed difference modulo RecovSeqSpace.
 int delta = (sequence_number-RecovSeqNum) & (RecovSeqSpace - 1);
 if (0 != (delta & (RecovSeqSpace/2)))
 delta = delta - RecovSeqSpace;
 // Here, -(RecovSeqSpace/2)<=delta<=((RecovSeqSpace/2)-1)
 // After reset, accept any packet
 if (TakeAny) {
 TakeAny = false;
 SequenceHistory[0] = 1; // Shift, adding a "seen" bit
 RecovSeqNum = sequence_number;
 frerCpsSeqRcvyPassedPackets = frerCpsSeqRcvyPassedPackets + 1;
 frerCpSeqRcvyPassedPackets = frerCpSeqRcvyPassedPackets + 1;
 RemainingTicks =
 ((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;
 PRESENT_DATA;
 } else if (delta >= frerSeqRcvyHistoryLength ||
 delta <= -frerSeqRcvyHistoryLength)
 {
 // Packet is out-of-range. Count and discard it.
 frerCpsSeqRcvyRoguePackets = frerCpsSeqRcvyRoguePackets + 1;
 frerCpSeqRcvyDiscardPackets = frerCpSeqRcvyDiscardPackets + 1;
 // Reset timer if working on an individual Stream
 if (frerSeqRcvyIndividualRecovery)
 RemainingTicks =
 ((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;
 } else if (delta <= 0) {
 // Packet is old and in SequenceHistory; have we seen it before?
 if (0 == SequenceHistory[-delta]) {
 // Packet has not been seen. Take it.
 SequenceHistory[-delta] = 1;
 frerCpsSeqRcvyOutOfOrderPackets =
 frerCpsSeqRcvyOutOfOrderPackets + 1;
 frerCpsSeqRcvyPassedPackets = frerCpsSeqRcvyPassedPackets + 1;
 frerCpSeqRcvyPassedPackets = frerCpSeqRcvyPassedPackets + 1;
 RemainingTicks =
 ((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;
 PRESENT_DATA;
 } else {
 // Packet has been seen. Do not forward. Count the discard.
 frerCpsSeqRcvyDiscardedPackets =
 frerCpsSeqRcvyDiscardedPackets + 1;
 frerCpSeqRcvyDiscardPackets = frerCpSeqRcvyDiscardPackets + 1;
 // Reset timer if working on an individual Stream
 if (frerSeqRcvyIndividualRecovery)
 RemainingTicks =
 ((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;
 }
 } else {
42
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
 // Packet is not too far ahead of the one we want.
 // Packet is out-of-order unless it directly follows RecovSeqNum
 if (delta != 1)
 frerCpsSeqRcvyOutOfOrderPackets =
 frerCpsSeqRcvyOutOfOrderPackets + 1;
 // Shift the history until bit 0 refers to sequence_number.
 while (0 != (delta = delta - 1))
 ShiftSequenceHistory(0); // Shift, adding a "not seen" bit
 ShiftSequenceHistory(1); // Shift, adding a "seen" bit
 RecovSeqNum = sequence_number;
 frerCpsSeqRcvyPassedPackets = frerCpsSeqRcvyPassedPackets + 1;
 frerCpSeqRcvyPassedPackets = frerCpSeqRcvyPassedPackets + 1;
 RemainingTicks =
 ((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;
 PRESENT_DATA;
 }
}

7.4.3.5 MatchRecoveryAlgorithm

MatchRecoveryAlgorithm is called whenever the DATA_INDICATION event occurs (item b in 7.4.3.1)
and the Sequence recovery function is configured to use the MatchRecoveryAlgorithm
(frerSeqRcvyAlgorithm = Match_Alg, 10.4.1.5). If it terminates without triggering the PRESENT_DATA
event (item d in 7.4.3.1), then the packet is effectively discarded.

Immediately after SequenceRecoveryReset (7.4.3.3) is called, the MatchRecoveryAlgorithm accepts the
first packet received as valid. After the first packet has been accepted, all subsequent packets either match
the last packet number accepted, and are therefore discarded, or do not, in which case they are accepted.
Each packet accepted and passed up the stack resets the timer variable RemainingTicks (7.4.3.2.4). If that
variable ticks down to 0, meaning that no packet has been accepted in frerSeqRcvyResetMSec milliseconds
(10.4.1.7), then SequenceRecoveryReset again resets the algorithm, and the next packet received is
accepted.

The timer mechanism prevents the MatchRecoveryAlgorithm from getting stuck forever, blocking packet 1,
in case a Talker fails or is reset soon after initialization.

If a Talker or a relay system fails in such a way as to repeatedly transmit packets with the same
sequence_number subparameter (perhaps repeating exactly the same packet), those packets will continue to
be discarded, at least until the sequence_number wraps around. At that point, either the stuck packet or the
right packet could be passed. Therefore, it is advisable for a Listener or relay system to be configured to
discard packets in a single Member Stream. See 7.5 and C.10.

NOTE—Individual recovery functions (7.5) can be configured to discard repeated sequence_number values (or
sequences of values) and prevent even this wrap around problem.

void MatchRecoveryAlgorithm () {
 // Check that sequence number is present in the packet
 unsigned int sequence_number;
 if (sequence_number; == frerSeqRcvyInvalidSequenceValue) {
 frerCpsSeqRcvyTaglessPackets = frerCpsSeqRcvyTaglessPackets + 1;
 frerCpsSeqRcvyPassedPackets = frerCpsSeqRcvyPassedPackets + 1;
 frerCpSeqRcvyPassedPackets = frerCpSeqRcvyPassedPackets + 1;
 PRESENT_DATA;
 return;
 }
43
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
 // After reset, accept any packet
 if (TakeAny) {
 TakeAny = false;
 RecovSeqNum = sequence_number;
 frerCpsSeqRcvyPassedPackets = frerCpsSeqRcvyPassedPackets + 1;
 frerCpSeqRcvyPassedPackets = frerCpSeqRcvyPassedPackets + 1;
 RemainingTicks =
 ((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;
 PRESENT_DATA;
 }
 // Compute signed difference modulo RecovSeqSpace.
 int delta = (sequence_number-RecovSeqNum) & (RecovSeqSpace - 1);
 if (delta == 0) {
 // Packet has been seen. Do not forward. Count the discard.
 frerCpsSeqRcvyDiscardedPackets =
 frerCpsSeqRcvyDiscardedPackets + 1;
 frerCpSeqRcvyDiscardPackets = frerCpSeqRcvyDiscardPackets + 1;
 // Reset timer if working on an individual Stream
 if (frerSeqRcvyIndividualRecovery)
 RemainingTicks =
 ((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;
 } else {
 // Packet has not been seen; accept it.
 // Packet is out-of-order unless it directly follows RecovSeqNum
 if (delta != 1)
 frerCpsSeqRcvyOutOfOrderPackets =
 frerCpsSeqRcvyOutOfOrderPackets + 1;
 RecovSeqNum = sequence_number;
 frerCpsSeqRcvyPassedPackets = frerCpsSeqRcvyPassedPackets + 1;
 frerCpSeqRcvyPassedPackets = frerCpSeqRcvyPassedPackets + 1;
 RemainingTicks =
 ((frerSeqRcvyResetMSec * TicksPerSecond) + 999) / 1000;
 PRESENT_DATA;
 }
}

7.4.3.6 ShiftSequenceHistory

This routine is called by the VectorRecoveryAlgorithm routine (7.4.3.4) to advance the SequenceHistory bit
array (7.4.3.2.2) and to count lost packets (frerCpsSeqRcvyLostPackets, 10.8.7). ShiftSequenceHistory
takes one parameter, which is the new value for index 0 in the SequenceHistory bit array.

void ShiftSequenceHistory (int newZeroValue) {
 int i;
 if (0 == SequenceHistory[frerSeqRcvyHistoryLength - 1])
 frerCpsSeqRcvyLostPackets = frerCpsSeqRcvyLostPackets + 1;
 for (i = frerSeqRcvyHistoryLength - 1; i != 0; i = i - 1)
 SequenceHistory[i] = SequenceHistory[i - 1];
 SequenceHistory[0] = newZeroValue;
}

44
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
7.4.4 Latent error detection function

Each instance of a Latent error detection function is part of a Sequence recovery function (7.4.2). It monitors
the managed objects associated with a single instance of the Base recovery function (7.4.3), in order to
detect the condition that relatively few packets are being discarded by that function. Latent error detection
operates on the assumption that, in a properly functioning Compound Stream employing n paths into the
current system, there will be n – 1 packets discarded for every packet passed through the Base recovery
function (7.4.3). The latent error detection function issues a SIGNAL_LATENT_ERROR (item d in 7.4.4.1)
when that assumption is violated.

There is at most one latent error detection function per port per stream_handle value per direction (in-facing
or out-facing), as specified through the managed objects (10.4) that control both functions. For every Base
recovery function configured, there can be only zero or one associated latent error detection function. Any
implementation that supports the Base recovery function shall support the Latent error detection function.

Latent error detection is accomplished by two periodic functions. The first (LatentErrorTest, 7.4.4.4)
examines the number of packets passed and discarded, and reports a latent error if the differences among
those counters exceed a set threshold. The other periodic function (LatentErrorReset, 7.4.4.3) resets the
variables used by the first, so that occasional random packet losses do not accumulate forever. These
functions are driven by timers, not by the receipt or transmission of packets.

The latent error detection function is described in terms of the following:

a) Managed objects that control the latent error detection function and that are affected by the latent
error detection function (10.4, 10.8);

b) Events, the occurrence of which trigger the execution of code routines, and that can be triggered by
the code routines (7.4.4.1);

c) Variables that are manipulated by the code routines, and maintain the state of the latent error
detection function between routine executions (7.4.4.2); and

d) Two code routines that interact with the managed objects, events, and variables (7.4.4.3, 7.4.4.4).

NOTE—The latent error detection algorithm (7.4.4.3, 7.4.4.4) cannot catch all errors. For example, if one path
erroneously produces twice the proper number of copies and the other path fails, LatentErrorTest will generate no error.
For this reason, the LatentErrorTest should be used in conjunction with Individual recovery functions (7.5).

7.4.4.1 Events for latent error detection

There are three events that can affect the latent error detection function:

a) BEGIN: The global event that resets all functions, including the latent error detection function. This
event triggers the execution of the LatentErrorReset routine (7.4.4.3).

b) RESET_LATENT_ERROR: This event is generated periodically and is controlled by
frerSeqRcvyLatentResetPeriod (10.4.1.12.4). It triggers the execution of the LatentErrorReset
routine (7.4.4.3).

c) TRIGGER_LATENT_ERROR_TEST: This event is generated periodically and is controlled by
frerSeqRcvyLatentErrorPeriod (10.4.1.12.2). It triggers the execution of the LatentErrorTest routine
(7.4.4.4).

The latent error detection function can trigger one event:

d) SIGNAL_LATENT_ERROR: The event generated by the latent error detection function that
indicates to the upper layers a possible error condition.
45
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
7.4.4.2 Variables for latent error detection

Each instance of the latent error detection function has its own set of variables, independent from any other
instance.

7.4.4.2.1 CurBaseDifference

The CurBaseDifference variable is an unsigned integer that is the same size as the counters (e.g.,
frerCpsSeqRcvyPassedPackets, 10.8.5) from which its value is computed. It contains the offset between the
expected and actual number of discarded packets as it was the last time that the LatentErrorReset function
(7.4.4.3) was called.

7.4.4.3 LatentErrorReset

LatentErrorReset is called whenever the BEGIN event (item a in 7.4.4.1) or the RESET_LATENT_ERROR
(item b in 7.4.4.1) event occur. It recomputes the CurBaseDifference (7.4.4.2.1) variable based on
frerCpsSeqRcvyPassedPackets (10.8.5), frerSeqRcvyLatentErrorPaths (10.4.1.12.3), and
frerCpsSeqRcvyDiscardedPackets (10.8.6), and increments frerCpsSeqRcvyLatentErrorResets (10.8.10).

void LatentErrorReset () {
 CurBaseDifference = (frerCpsSeqRcvyPassedPackets *
 (frerSeqRcvyLatentErrorPaths - 1)) -
 frerCpsSeqRcvyDiscardedPackets;
 frerCpsSeqRcvyLatentErrorResets = frerCpsSeqRcvyLatentErrorResets +1;
}

7.4.4.4 LatentErrorTest

LatentErrorTest is called whenever the TRIGGER_LATENT_ERROR_TEST event occurs (item c in
7.4.4.1). It tests to see whether the number of packets discarded by the sequence recovery function is
approximately the expected number, and triggers an event if not, using CurBaseDifference
(7.4.4.2.1), frerCpsSeqRcvyPassedPackets (10.8.5), frerSeqRcvyLatentErrorPaths
(10.4.1.12.3), frerCpsSeqRcvyDiscardedPackets (10.8.6), frerSeqRcvyLatentErrorPeriod
(10.4.1.12.2), and frerSeqRcvyLatentErrorDifference (10.4.1.12.1).

void LatentErrorTest () {
 int diff = CurBaseDifference - ((frerCpsSeqRcvyPassedPackets *
 (frerSeqRcvyLatentErrorPaths - 1)) -
 frerCpsSeqRcvyDiscardedPackets);
 if (frerSeqRcvyLatentErrorPaths > 1 && // There are multiple paths
 frerSeqRcvyLatentErrorPeriod > 0) // LE detection is turned on
 {
 if (diff < 0)
 diff = - diff;
 if (diff > frerSeqRcvyLatentErrorDifference) {
 SIGNAL_LATENT_ERROR;
 }
 }
}

NOTE—This algorithm has, in effect, a quantization error of 2. That is, if the user is unlucky in the timing of
LatentErrorTest and LatentErrorReset, it may take a diff of 2*frerSeqRcvyLatentErrorDifference to trigger a fault.
46
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
7.5 Individual recovery function

The Individual recovery function is defined in order to meet the Robustness goal (item j in 7.1.1). It
accomplishes this by removing repeating sequence numbered packets received from a stuck transmitter. An
instantiation of the Individual recovery function consists of an instantiation of the Base recovery function
(7.4.3) with its frerSeqRcvyIndividualRecovery object (10.4.1.10) set to True, configured to apply to a
single Member Stream. [A Sequence recovery function (7.4.2) operates on all Member Streams of a
Compound Stream.] An instantiation of the Individual recovery function does not include an instance of the
Latent error detection function (7.4.4). An instantiation of the Individual recovery function can employ
either the VectorRecoveryAlgorithm (7.4.3.4) or the MatchRecoveryAlgorithm (7.4.3.5).

By applying the Individual recovery function (7.5) to Member Streams, whether before or without the
application of the Sequence recovery function (7.4.2) to Compound Streams, errored Streams can be
discovered early, and pollution of the merged Stream avoided. Figure 7-3 shows the example network of
Figure 7-1, to which instances of the Individual recovery function have been added. See also C.10.

Unlike the Sequence recovery function, which is modeled as being instantiated on a specific port, a single
instantiation of an Individual recovery function can be applied to any number of ports. See C.11.

7.6 Sequence encode/decode function

The Sequence encode/decode function is responsible for inserting the sequence_number subparameter (item
b in 6.1) into the packet, and extracting it from the packet. If the Stream identification function (6.2) also
encodes and decodes the sequence_number subparameter for a given Stream on a particular port and
direction, then no Sequence encode/decode sublayer is needed. Instances of the Sequence encode/decode
function are instantiated via managed objects (10.5).

The only Sequence encode/decode format specified as required, separately from any Stream identification
function, is the Redundancy tag (R-TAG, 7.8). In addition, two optional formats (7.9, 7.10) are defined.

7.7 Stream splitting function

The Stream splitting function accepts a packet from the upper layers with a stream_handle subparameter
(item a in 6.1), makes zero or more copies of that packet, each with a stream_handle subparameter that can
be different from the original stream_handle, and passes those packets to the next-lower layer. This

Figure 7-3—Sequence recovery functions and Individual recovery functions

Sequence gener-
ation function

Member Stream 2

Member Stream 3

Member Stream 4

Member Stream 1

Sequence recovery functions
Individual recovery
functions
47
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
effectively creates Member Stream(s) from a Compound Stream. Packets passing up the stack are
unchanged by the Stream splitting function.

Instances of the Stream splitting function are created to process specific Streams by means of the Stream
split table (10.6) managed object. A packet passed down from the upper layers is acted upon by a Stream
splitting function on a particular port (10.6.1.1) and direction (10.6.1.2) only if its stream_handle
subparameter is in the frerSplitInputIdList (10.6.1.3) configured for that port and direction in some entry in
the Stream split table (10.6). If the stream_handle matches any of the items in that list, then one copy of the
packet is generated for each item in that same frerSplitEntry’s frerSplitOutputIdList (10.6.1.4), each copy
with one of those values for its stream_handle subparameter.

7.8 Redundancy tag

The Redundancy tag (R-TAG) is an example of a Sequence encode/decode function (7.6). It operates at the
frame level and can be defined using the ISS defined by IEEE Std 802.1AC, or the EISS described in 6.9 of
IEEE Std 802.1Q-2014, enhanced with the extra stream_handle and sequence_number subparameters
specified in 6.1. In order to instantiate the Sequence encode/decode function using the R-TAG, the
frerSeqEncEncapsType managed object (10.5.1.5) is encoded using the OUI (00-80-C2) and the type values
as shown in Table 10-2. The R-TAG is illustrated in Figure 7-4. The value for the EtherType for the R-TAG
is given in Table 7-1.

When presented by the upper layers with a service request (ISS M_UNITDATA.request or EISS
EM_UNITDATA.request), the Redundancy tag Sequence encode/decode function:

a) Creates an Redundancy tag information (7.8.2) word by copying the low-order 16 bits from the
sequence_number subparameter to the Sequence Number field of the Redundancy tag information,
and fills the Reserved field with zeros. The most-significant octet of the low-order 16 bits of the
sequence_number goes in the first octet (octet 4 in Figure 7-4).

NOTE 1—Any high-order bits above the low-order 16 bits of the sequence_number subparameter are ignored.

b) Inserts an EtherType (7.8.1) and the Redundancy tag information as the first octets of the
mac_service_data_unit parameter, thus increasing the size of the mac_service_data_unit parameter
by 6 octets.

When presented by the lower layers with a service indication (ISS M_UNITDATA.indication or EISS
EM_UNITDATA.indication), the Redundancy tag Sequence encode/decode function:

c) Examines the first two octets of the mac_service_data_unit parameter for equality with the
Redundancy tag EtherType specified in 7.8.1. If it is equal, and if the mac_service_data_unit is at
least 6 octets in length, then the Redundancy tag Sequence encode/decode function:
1) Removes the first 6 octets of the mac_service_data_unit, shortening it by 6 octets; and
2) Copies the Sequence Number field of the Redundancy tag information to the sequence_number

subparameter, ignoring the contents of the Reserved field.
d) If the first two octets of the mac_service_data_unit parameter are not equal to the Redundancy tag

EtherType, or if the mac_service_data_unit is less than 6 octets in length, then the Redundancy tag
Sequence encode/decode function:
1) Sets the sequence_number subparameter to frerSeqRcvyInvalidSequenceValue (10.4.1.8).

Figure 7-4—R-TAG format

EtherType
(see Table 7-1)

octet: 0 1 2 3

Sequence Number (7.8.2)Reserved (7.8.2)

4 5
48
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
2) Increments the frerCpsSeqEncErroredPackets and frerCpSeqEncErroredPackets managed
objects (10.8.11, 10.9.3).

NOTE 2—The position of the R-TAG in a frame relative to other tags depends on the number and relative position of the
Sequence encode/decode functions and other functions in the protocol stacks of the various components of a network.
The managed objects in Clause 9 and Clause 10 support placing the Sequence encode/decode functions in any position
to suit the needs of an application. See Clause 8 for a typical application of FRER to an IEEE 802.1Q Bridge.

7.8.1 Redundancy tag EtherType

The Tag Protocol Identifier (TPID) of the R-TAG shall use the value shown in Table 7-1.

7.8.2 Redundancy tag information

The R-TAG information consists of two fields:

a) The first two octets of the R-TAG information is a 16-bit Reserved field. This field shall be
transmitted with all zeros and shall be ignored on receipt. It is intended that future revisions of this
standard can use the most-significant bits of the Reserved field for sub-typing purposes, as described
in 9.2.1 of IEEE Std 802-2014.

b) The last two octets of the R-TAG information are a 16-bit value, the Sequence Number field.

7.9 HSR sequence tag

The optional High-availability Seamless Redundancy (HSR) sequence tag is an example of a Sequence
encode/decode function (7.6). It operates at the frame level and can be defined using the ISS defined by
IEEE Std 802.1AC, or the EISS described in 6.9 of IEEE Std 802.1Q-2014, enhanced with the extra
stream_handle and sequence_number subparameters specified in 6.1. In order to instantiate the Sequence
encode/decode function using the HSR sequence tag, the frerSeqEncEncapsType managed object (10.5.1.5)
is encoded using the OUI (00-80-C2) and the type values as shown in Table 10-2. The HSR sequence tag is
described in 5.7.1 of IEC 62439-3:2016.

When presented by the upper layers with a service request (ISS M_UNITDATA.request or EISS
EM_UNITDATA.request), the HSR sequence tag Sequence encode/decode function:

a) Creates an HSR sequence tag by:

1) Copying the low-order 16 bits from the sequence_number subparameter to the SeqNr field of
the HSR sequence tag;

2) Setting the LSDU Size field in accordance with 5.7.1 of IEC 62439-3:2016;
3) Setting the PathId field according to the per-port per-Stream managed object

frerSeqEncPathIdLanId (10.5.1.6); and
4) Setting the EtherType field according to 5.7.1 of IEC 62439-3:2016.

NOTE 1—Any high-order bits above the low-order 16 bits of the sequence_number subparameter are ignored.

b) Inserts the HSR sequence tag as the first octets of the mac_service_data_unit parameter, thus
increasing the size of the mac_service_data_unit parameter by 6 octets.

Table 7-1—R-TAG EtherType

Purpose EtherType

Redundancy tag (R-TAG) F1-C1
49
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
When presented by the lower layers with a service indication (ISS M_UNITDATA.indication or EISS
EM_UNITDATA.indication), the HSR sequence tag Sequence encode/decode function:

c) Examines the first two octets of the mac_service_data_unit parameter for equality with the HSR
sequence tag EtherType specified in 5.7.1 of IEC 62439-3:2016. If it is equal, and if the
mac_service_data_unit is at least 6 octets in length, then the HSR sequence tag Sequence encode/
decode function:
1) Removes the first 6 octets of the mac_service_data_unit, shortening it by 6 octets; and
2) Copies the SeqNr field to the sequence_number subparameter.

d) If the first two octets of the mac_service_data_unit parameter are not equal to the HSR sequence tag
EtherType, or if the mac_service_data_unit is less than 6 octets in length, then the HSR sequence tag
Sequence encode/decode function:
1) Sets the sequence_number subparameter to frerSeqRcvyInvalidSequenceValue (10.4.1.8).
2) Increments the frerCpsSeqEncErroredPackets and frerCpSeqEncErroredPackets managed

objects (10.8.11, 10.9.3).

NOTE 2—No part of this standard is to be construed in a manner so as to alter the specifications in, or the intent of, IEC
62439-3:2016, or to restrict its future development in any way. The purpose of 7.9 is to enable the creation of interwork-
ing functions between end systems employing the R-TAG (7.8) and the HSR sequence tag.

NOTE 3—See B.2 for additional considerations when interworking between FRER and HSR.

NOTE 4—The position of the Sequence encode/decode function in the protocol stack does not need to change
depending on whether the R-TAG, the HSR tag, or the PRP trailer is used.

7.10 PRP sequence trailer

The optional Parallel Redundancy Protocol (PRP) sequence trailer is an example of a Sequence encode/
decode function (7.6). It operates at the frame level and can be defined using the ISS defined by
IEEE Std 802.1AC, or the EISS described in 6.9 of IEEE Std 802.1Q-2014, enhanced with the extra
stream_handle and sequence_number subparameters specified in 6.1. In order to instantiate the Sequence
encode/decode function using the PRP sequence trailer, the frerSeqEncEncapsType managed object
(10.5.1.5) is encoded using the OUI (00-80-C2) and the type values as shown in Table 10-2. The PRP
sequence trailer is described in 4.2.7.3 of IEC 62439-3:2016.

When presented by the upper layers with a service request (ISS M_UNITDATA.request or EISS
EM_UNITDATA.request), the PRP sequence trailer Sequence encode/decode function:

a) Creates an PRP sequence trailer by:

1) Copying the low-order 16 bits from the sequence_number subparameter to the SeqNr field of
the PRP sequence trailer;

2) Setting the LSDU Size field in accordance with 4.2.7.3 of IEC 62439-3:2016;
3) Setting the LanId field according to the per-port per-Stream managed object

frerSeqEncPathIdLanId (10.5.1.6); and
4) Setting the PRPsuffix field according to 4.2.7.3 of IEC 62439-3:2016.

NOTE 1—Any high-order bits above the low-order 16 bits of the sequence_number subparameter are ignored.

b) Inserts the PRP sequence trailer as the final octets of the mac_service_data_unit parameter, thus
increasing the size of the mac_service_data_unit parameter by 6 octets.

When presented by the lower layers with a service indication (ISS M_UNITDATA.indication or EISS
EM_UNITDATA.indication), the PRP sequence trailer Sequence encode/decode function:

c) Examines the last two octets of the mac_service_data_unit parameter for equality with the PRP
sequence trailer PRPsuffix field specified in 4.2.7.3 of IEC 62439-3:2016. If it is equal, and if the
50
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
mac_service_data_unit is at least 8 octets in length, then the PRP sequence trailer Sequence encode/
decode function:

1) Removes the last 6 octets of the mac_service_data_unit, shortening it by 6 octets; and
2) Copies the SeqNr field to the sequence_number subparameter.

d) If the last two octets of the mac_service_data_unit parameter are not equal to the PRP sequence
trailer EtherType, or if the mac_service_data_unit is less than 8 octets in length, then the PRP
sequence trailer Sequence encode/decode function:

1) Sets the sequence_number subparameter to frerSeqRcvyInvalidSequenceValue (10.4.1.8).
2) Increments the frerCpsSeqEncErroredPackets and frerCpSeqEncErroredPackets managed

objects (10.8.11, 10.9.3).

NOTE 2—No part of this standard is to be construed in a manner so as to alter the specifications in, or the intent of, IEC
62439-3:2016, or to restrict its future development in any way. The purpose of 7.10 is to enable the creation of
interworking functions between end systems employing the R-TAG (7.8) and the PRP sequence trailer.

NOTE 3—See B.2 for additional considerations when interworking between FRER and PRP.

7.11 Autoconfiguration

7.11.1 Introduction to autoconfiguration

In order to satisfy the goal of Ease of use (item l in 7.1.1), there are two methods by which Stream
identification functions (6.2), Individual recovery functions (7.5), Sequence recovery functions (7.4.2), and
Sequence encode/decode functions (7.6) can be configured in a system:

a) Explicit configuration of entries in the Stream identity table (9.1), Sequence recovery table
(10.4), Sequence identification table (10.5), and Sequence identification table (10.5); and

b) Autoconfiguration of entries in these tables using the Sequence autoconfiguration table (10.7.1) and
Output autoconfiguration table (10.7.2).

Autoconfiguration can only be used with Source MAC and VLAN Stream identification (6.5) and the
MatchRecoveryAlgorithm (7.4.3.5).

Whenever a packet is received that has a sequence_number subparameter encoded in a manner identified in
an entry in the Sequence autoconfiguration table, but for which there is no tsnStreamIdEntry (9.1.1) in the
Stream identity table, a new entry in the Stream identity table is created for the packet’s Stream, and
optionally, a new entry in the Sequence recovery table for an Individual recovery function for that Stream. If
a second or subsequent such Stream identity table entry is created that shares all the same key parameters as
another autoconfigured tsnStreamIdEntry, except for port number
(tsnStreamIdOutFacInputPortList, 9.1.1.5) and/or LanId/PathId (tsnStreamIdLanPathId, 10.2.2), then
another entry in the Sequence recovery table, this time for a Sequence recovery function, is created (for the
second Member Stream) or is expanded (for subsequent Member Streams) for what is now known to be a
Compound Stream.

The Sequence autoconfiguration table controls whether Individual recovery functions, Sequence recovery
functions, neither, or both, are created automatically. Stream identification functions are always created. If
the R-TAG (7.8) is used to encode the sequence_number, entries autoconfigured in the Sequence
identification table, and thus the Individual recovery functions (7.5) created, are keyed to the individual
ports and VLANs on which the first packet of each Member Stream is received. If the HSR sequence tag
(7.9) or PRP sequence trailer (7.10) is used, entries autoconfigured in the Sequence identification table and
the autocreated Individual recovery functions are keyed to the PathId or LanId of the first-received packet of
each Member Stream, and span all autoconfigurable ports.
51
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
In order to support the goals of Ease of use (item l in 7.1.1) and Interoperability (item g in 7.1.1) among
systems using the HSR sequence tag (7.9), the PRP sequence trailer (7.10), and the R-TAG (7.8), passive
(packet decoding) entries are also automatically created in the Sequence identification table to instantiate
Sequence encode/decode functions as governed by the Sequence autoconfiguration table (10.7.1). Typically,
the Output autoconfiguration table (10.7.2) is configured to construct active (packet encoding) Sequence
encode/decode functions on every port on which a Stream might be output. See C.11.

7.11.2 Creating autoconfigured Stream identity table entries

NOTE 1—The following description, if implemented naïvely, might well result in a relay system delaying the
transmission of the first-received packet of a Member Stream for an unacceptable length of time. The purpose of the
following description is to describe the externally visible behavior of a system solely in terms of the managed objects in
Clause 9 and Clause 10, not to constrain an implementation. It is expected that an actual implementation is likely to
construct databases in software, firmware, and/or hardware that combine elements of the managed objects in Clause 9
and Clause 10, and to perform up-front preliminary configuration, so as to optimize the reaction time when a packet is
actually received.

Autoconfiguration is triggered by the receipt of a packet that matches an entry in the Sequence
autoconfiguration table (10.7.1) as follows:

a) If a packet received on an out-facing port matches an entry in the Stream identity table (9.1), it is
processed according to the managed objects in 10.3, 10.4, 10.5, and 10.6.

NOTE 2—It does not matter whether the Stream identity table entry was configured explicitly, or was created via
Autoconfiguration.

b) If the packet does not match any entry in the Stream identity table at all, the packet is examined to
see if it matches an entry in the Sequence autoconfiguration table. A match between the packet and a
frerAutSeqEntry (10.7.1.1) in the Sequence autoconfiguration table occurs if all of the following
match conditions are met:

1) The packet has a sequence_number encapsulated in the manner specified by
frerAutSeqSeqEncaps (10.7.1.1.1).

2) The packet was received on a port in frerAutSeqReceivePortList (10.7.1.1.2).

3) The packet’s VLAN tag (or lack thereof) matches frerAutSeqTagged (10.7.1.1.3).

4) Either the vlan_identifier parameter is in the list in frerAutSeqVlan (10.7.1.1.4), or that list is
empty.

c) If the packet does not match an entry in the Sequence autoconfiguration table, no further
Autoconfiguration processing takes place. Otherwise (the packet did not match any
tsnStreamIdEntry, but does match a frerAutSeqEntry), Autoconfiguration processing proceeds.

d) The system creates (autoconfigures) new entries in the Stream identity table, the Sequence recovery
table (10.4). and the Sequence identification table (10.5) using the matched frerAutSeqEntry as
follows:

1) One new tsnStreamIdEntry (9.1.1) is created in the Stream identity table as follows:

i) tsnStreamIdHandle (9.1.1.1) = an unused stream_handle value chosen by the
implementation.

ii) tsnStreamIdInFacOutputPortList (9.1.1.2) = empty.
iii) tsnStreamIdOutFacOutputPortList (9.1.1.3) = empty.
iv) tsnStreamIdInFacInputPortList (9.1.1.4) = empty.
v) If frerAutSeqSeqEncaps equals either HSR or PRP, tsnStreamIdOutFacInputPortList

(9.1.1.5) = frerAutSeqReceivePortList (10.7.1.1.2). Otherwise, frerSeqRcvyPortList
(10.4.1.2) = only the port on which the packet was received.

vi) tsnStreamIdIdentificationType (9.1.1.6) = 00-80-C2, 2 = Source MAC and VLAN Stream
identification (6.5).

vii) tsnStreamIdAutoconfigured (10.2.1) = True.
52
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
viii) If frerAutSeqSeqEncaps equals either HSR or PRP, tsnStreamIdLanPathId (10.2.2) = the
PathId or LanId field from the packet. Otherwise, tsnStreamIdLanPathId is not used.

ix) tsnCpeSmacVlanDownSrcMac (9.1.3.1) = the source_mac_address parameter of the
received packet.

x) tsnCpeSmacVlanDownTagged (9.1.3.2) = frerAutSeqTagged (10.7.1.1.3.
xi) tsnCpeSmacVlanDownVlan (9.1.3.3) = the vlan_identifier parameter of the received

packet.

2) If and only if frerAutSeqCreateIndividual (10.7.1.1.10) is True, a frerSeqRcvyEntry (10.4.1) is
created in the Sequence recovery table (10.4) as follows:

i) frerSeqRcvyStreamList (10.4.1.1) = the stream_handle from item d:2:i, above.
ii) frerSeqRcvyPortList (10.4.1.2) = the same list as tsnStreamIdOutFacInputPortList

(9.1.1.5), described in item d:2:v, above. (See C.11.)
iii) frerSeqRcvyDirection (10.4.1.3) = True (out-facing).
iv) frerSeqRcvyReset (10.4.1.4) = True. (The state machine is reset when created.)
v) frerSeqRcvyAlgorithm (10.4.1.5) = Match_Alg (00-80-C2, 1, see Table 10-1).
vi) frerSeqRcvyHistoryLength (10.4.1.6) is not used.
vii) frerSeqRcvyResetMSec (10.4.1.7) = frerAutSeqResetMSec (10.7.1.1.7).
viii) frerSeqRcvyInvalidSequenceValue (10.4.1.8) is a read-only value chosen by the system.
ix) frerSeqRcvyTakeNoSequence (10.4.1.9) = True.
x) frerSeqRcvyIndividualRecovery (10.4.1.10) = True.
xi) frerSeqRcvyLatentErrorDetection (10.4.1.11) = False.

3) One new passive frerSeqEncEntry (10.5.1) is created in the Sequence identification table to
decode further received packets as follows:

i) frerSeqEncStreamList (10.5.1.1) = the stream_handle from item d:2:i, above.
ii) frerSeqEncPort (10.5.1.2) = frerAutSeqReceivePortList (10.7.1.1.2).
iii) frerSeqEncDirection (10.5.1.3) = True (out-facing).
iv) frerSeqEncActive (10.5.1.4) = False (passive).
v) frerSeqEncEncapsType (10.5.1.5) = frerAutSeqSeqEncaps (10.7.1.1.1).
vi) If frerAutSeqSeqEncaps == 00-80-C2, 2 (HSR), frerSeqEncPathIdLanId (10.5.1.6) = the

PathId field of the HSR sequence tag (7.9) found in the packet. If frerAutSeqSeqEncaps
== 00-80-C2, 3 (PRP), frerSeqEncPathIdLanId = the LanId field of the PRP sequence
trailer (7.10) found in the packet. Otherwise, frerSeqEncPathIdLanId is not used.

If a frerSeqEncEntry with the same port list, direction, and encapsulation type is present, a new
entry need not be created; the packet’s stream_handle can be added to that frerSeqEncEntry’s
frerSeqEncStreamList.

4) One new active frerSeqEncEntry (10.5.1) is created in the Sequence identification table for
each frerAutOutEntry (10.7.2.1) in the Output autoconfiguration table (10.7.2) to format
transmitted packets for this packet’s Stream as follows:

i) frerSeqEncStreamList (10.5.1.1) = the stream_handle from item d:2:i, above.
ii) frerSeqEncPort (10.5.1.2) = frerAutOutPortList (10.7.2.1.1).
iii) frerSeqEncDirection (10.5.1.3) = True (out-facing).
iv) frerSeqEncEncapsType (10.5.1.5) = frerAutOutEncaps (10.7.2.1.2).
v) frerSeqEncPathIdLanId (10.5.1.6) = frerAutOutLanPathId (10.7.2.1.3).
If a frerSeqEncEntry with the same port list, direction, encapsulation type, and PathId/LanId is
present, a new entry need not be created; the packet’s stream_handle can be added to that
frerSeqEncEntry’s frerSeqEncStreamList.

e) If none of the ports to which the received packet is to be output are listed in the frerAutSeqEntry’s
frerAutSeqRecoveryPortList (10.7.1.1.5), or if frerAutSeqCreateRecovery (10.7.1.1.11) is false,
Autoconfiguration processing is terminated. No Sequence recovery function need be instantiated.

f) The system next scans the Stream identity table looking for a tsnStreamIdEntry that nearly matches
the received packet, in order to discover whether there are other Streams similar to the received
53
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
packet’s Stream such that they are all Member Streams of a Compound Stream. “Nearly matches”
means that all of the following conditions are met:

1) tsnStreamIdIdentificationType (9.1.1.6) == 00-80-C2, 2 == Source MAC and VLAN Stream
identification (6.5).

2) The packet’s stream_handle is not equal to tsnStreamIdHandle (9.1.1.1).

3) The source_mac_address parameter of the packet == tsnCpeSmacVlanDownSrcMac (9.1.3.1).

4) Either tsnCpeSmacVlanDownVlan (9.1.3.3) is in the frerAutSeqVlan (10.7.1.1.4) list, or that
list is empty.

g) If no tsnStreamIdEntry is found that meets these criteria, then Autoconfiguration processing is
terminated. No Sequence recovery function need be instantiated.

h) If a tsnStreamIdEntry is found that does meet these criteria, then either Sequence recovery functions
need to be instantiated, or existing instantiations need to be modified to include the received
packet’s Member Stream. To determine which, the system searches the Sequence recovery table for
a frerSeqRcvyEntry that meets all of the following criteria:

1) frerSeqRcvyStreamList contains the stream_handle of the found tsnStreamIdEntry.

2) frerSeqRcvyIndividualRecovery (10.4.1.10) == False == Sequence recovery function.

3) frerSeqRcvyPortList (10.4.1.2) == frerAutSeqRecoveryPortList (10.7.1.1.5).

4) For a relay system, frerSeqRcvyDirection (10.4.1.3) is False (in-facing). For an end system,
True (out-facing).

i) If the Sequence recovery table search (item h, above) is found, then the following steps are taken:

1) The packet’s stream_handle is added to the frerSeqRcvyEntry’s frerSeqRcvyStreamList
(10.4.1.1).

2) If frerAutSeqLatErrDetection (10.7.1.1.12) is True, then the following steps are taken:

i) frerSeqRcvyLatentErrorPaths (10.4.1.12.3) is incremented by 1.
ii) The LatentErrorReset function (7.4.4.3) is called for the instantiation of the Latent error

detection function (7.4.4) on every port in the frerSeqRcvyEntry’s frerSeqRcvyPortList
(10.4.1.2).

j) Otherwise (the Sequence recovery table search in item h, above, failed to find a frerSeqRcvyEntry),
a new frerSeqRcvyEntry is created as follows:

1) frerSeqRcvyStreamList (10.4.1.1) = two stream_handle values, the stream_handle from the
received packet (item d:2:i, above) and the tsnStreamIdHandle (9.1.1.1) from the
tsnStreamIdEntry found in item f, above.

2) frerSeqRcvyPortList (10.4.1.2) = frerAutSeqRecoveryPortList (10.7.1.1.5).

3) frerSeqRcvyDirection (10.4.1.3) = False (in-facing) for a relay system, or True (out-facing) for
an end system.

4) frerSeqRcvyReset (10.4.1.4) = True. (The state machine is reset when created.)

5) frerSeqRcvyAlgorithm (10.4.1.5) = frerAutSeqAlgorithm (10.7.1.1.8).

6) frerSeqRcvyHistoryLength (10.4.1.6) = frerAutSeqAlgorithm (10.7.1.1.8). This value is not
used if frerSeqRcvyAlgorithm (10.4.1.5) == Match_Alg (00-80-C2, 1, see Table 10-1).

7) frerSeqRcvyResetMSec (10.4.1.7) = frerAutSeqResetMSec (10.7.1.1.7).

8) frerSeqRcvyInvalidSequenceValue (10.4.1.8) is a read-only value chosen by the system.

9) frerSeqRcvyTakeNoSequence (10.4.1.9) = True.

10) frerSeqRcvyIndividualRecovery (10.4.1.10) = False.

11) frerSeqRcvyLatentErrorDetection (10.4.1.11) = frerAutSeqLatErrDetection (10.7.1.1.12).

12) if frerAutSeqLatErrDetection is True, then the following assignments are made:

i) frerSeqRcvyLatentErrorDifference (10.4.1.12.1) = frerAutSeqLatErrDifference
(10.7.1.1.13).
54
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
ii) frerSeqRcvyLatentErrorPeriod (10.4.1.12.2) = frerAutSeqLatErrPeriod (10.7.1.1.14).
iii) frerSeqRcvyLatentErrorPaths (10.4.1.12.3) = 2.
iv) frerSeqRcvyLatentResetPeriod (10.4.1.12.4) = frerAutSeqLatErrResetPeriod

(10.7.1.1.15).

k) The packet is then processed according to the newly created entries.

l) After the reception of the packet that triggers Autoconfiguration for a stream_handle, if none of the
Individual recovery functions (7.5) or Sequence recovery functions (7.4.2) instantiated by a given
frerAutSeqEntry (10.7.1.1) increment any packet counters (10.8) for longer than the period specified
by the frerAutSeqEntry’s frerAutSeqDestructMSec (10.7.1.1.6) object, the system can destroy the
state machines created by that frerAutSeqEntry.

NOTE 3—As Member Streams are found, instances of the Sequence recovery function are created, and the number of
Member Flows increased to enable Latent Error Detection. If the destruct timer (frerAutSeqDestructMSec, 10.7.1.1.6) is
not much larger than the normal reset period for the state machines (frerSeqRcvyResetMSec, 10.4.1.7), there is a risk
that the state machines will be destroyed due to a temporary service interruption, that one or more of the Member
Streams will fail to be restored after the interruption, and the purpose of Latent Error Detection will be defeated.
55
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
8. Frame Replication and Elimination for Reliability in Bridges

8.1 Limiting options

The arrangements of the various components of Time-Sensitive Networking (TSN) and Frame Replication
and Elimination for Reliability (FRER) in Annex C show that the model described in Clause 6 and Clause 7
has the advantages that proper layering principles are observed, that the descriptions of the individual
functions are simple, and most importantly, that the definition of a relay system’s forwarding function does
not have to be modified in order to add TSN or FRER functions; all of the TSN and FRER capabilities can
be provided as add-ons in the ports. However, this model offers a multitude of options for the placement of
functions in an actual system. Experience shows that such flexibility is often not necessary, and if
implemented naïvely, can increase the complexity of the system both for the implementor and the user.

Most of the flexibility of the model described in Clause 6 and Clause 7 can be achieved in an IEEE 802.1Q
Bridge, if we limit the Bridge to two stages of activity:

1) Input transformations: An expanded port (as in, e.g., Figure C-5) that includes Sequence
generation functions (7.4.1) and active upper Stream identification functions (6.6), shown in
white boxes with boldface type in Figure 8-1.

2) Augmented forwarding: The Bridge Forwarding Process, described in 8.6 of
IEEE Std 802.1Q-2014 (shown in white boxes in Figure 8-1), augmented with Stream
identification functions (6.2, both incoming and outgoing), Sequence encode/decode functions
(7.6, both incoming and outgoing), Sequence recovery functions (7.4.2), Individual recovery
functions (7.5), and their associated infrastructure, all shown in shaded boxes in Figure 8-1.

Item 1, Input transformations, allows the Bridge to:

a) Proxy for FRER-unaware Talkers; and
b) Perform Stream identification or Sequence encapsulation transformations on Streams entering the

Bridge.

Stream Transfer Function (6.3)

Lower Stream
identification (6.3)

NSTF (6.3)

Sequence decoding
(7.6, 7.8)

R-TAG
(7.6, 7.8)

Active Upper Stream
identification functions

(e.g., 6.6)

Sequence recovery
functions (7.4.2)

Individual recovery
functions (7.5)

Lower Stream
identification (6.3)

Passive Upper Stream
identification functions

(6.2)

Stream Transfer Function (6.3)

Lower Stream
identification (6.3)

NSTF (6.3)
Lower Stream

identification (6.3)

Figure 8-1—FRER functions in an FRER C-component

PHY

MAC

PHY

MAC

Port BPort A

Bridge Port Transmit
Receive (802.1Q 8.5)

(NSTF = Non-Stream
Transfer Function)

802.1Q 8.6
Forwarding

Bridge Port Transmit
Receive (802.1Q 8.5)

Internal LAN (6.3) Internal LAN (6.3)

IEEE 802.1Q Bridge Augmented forwardingKEY:

Active upper Stream
identification

function (e.g,.6.6)

Input transformations

Sequence generation
function (7.4.1)
56
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
Item 2, Augmented forwarding, allows the Bridge to:

c) Serve as an intermediate sequence recovery point (e.g., system F in Figure C-4) in a network
providing for multiple failures;

d) Proxy for FRER-unaware Listeners; and

e) Perform Stream identification or Sequence encapsulation transformations on Streams exiting the
Bridge.

As shown in Figure 8-1, the paradigm is that a given Stream is recognized on input, meaning that the
stream_handle and sequence_number subparameters are extracted. The frame is then forwarded normally
through the Bridge. On the output port, the stream-handle and sequence_number subparameters found on the
input port are used to drive the Individual recovery functions, Sequence recovery functions, Sequence
encoding, and Stream identification functions.

Figure 8-1 does not imply that the Augmented forwarding functions have to be placed in expanded ports;
they can be integrated with the Bridge forwarding function (8.6 of IEEE 802.1Q-2014) as shown in Figure 8-2.
The ordering of this functions with respect to 8.6 of IEEE 802.1Q-2014 can be important. In particular:

f) As modeled, the stream_handle subparameter is extracted only once, on ingress. A frame is not re-
identified, even if Input transformations modifies the frame.

g) As modeled, the sequence_number subparameter is not encoded into the frame during Input
transformations; the final output encoding determines the frame format.

Figure 8-2—Augmented Forwarding Process does sequence recovery

Active topology enforcement (IEEE 802.1Q 8.6.1)

ingress (IEEE 802.1Q 8.6.2)

Frame filtering (IEEE 802.1Q 8.6.3)

Individual recovery (7.5)

Queuing frames (IEEE 802.1Q 8.6.6)

active Stream identification (6.2)

Sequence generation (7.4.1)

active Stream identification (6.2)

Input transformations

Augmented forwarding

passive Stream identification (6.2)

Sequence decode (7.6)
Augmented forwarding

IEEE 802.1Q Bridging

IEEE 802.1Q Bridging

Egress filtering (IEEE 802.1Q 8.6.4)

Flow metering (IEEE 802.1Q 8.6.5)

Sequence recovery (7.4.2)

Sequence encode (7.6)
57
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
NOTE—Whether an implementation encodes the stream_handle and sequence_number subparameters into the frame’s
mac_service_data_unit parameter and decodes them again after forwarding, or carries them through the forwarding
process as separate subparameters, does not matter as long as the externally visible behavior conforms to that of the
model.

h) If Input transformations are performed, the frame is forwarded (8.6 of IEEE Std 802.1Q-2014)
according to its post-transformation parameters.

i) Flow metering (8.6.5 of IEEE Std 802.1Q-2014) is placed after the passive Stream identification
function (6.2) and before the Individual recovery functions (7.5). This makes the stream_handle
subparameter available for Flow metering, and means that Flow metering can be applied to the
individual Streams feeding an instance of the Sequence recovery function. As a result, Flow
metering can be applied to frames that will be discarded by the Individual recovery functions or
Sequence recovery functions.

j) Output transformations following the Sequence recovery function take place after all forwarding
(except Queuing frames, 8.6.6 of IEEE Std 802.1Q-2014). Thus, output transformations can appear
to cause violations of the normal forwarding rules, e.g., Egress filtering (8.6.4 of
IEEE Std 802.1Q-2014).

With the model of Figure 8-2, no explicit Stream splitting function (7.7) is required. Frames in a single
Compound Stream can be replicated using the normal multicast mechanisms, and active Stream
identification functions (6.2) on different output ports can cause these to be recognized as different Member
Streams at the next hop. Assigning a single Sequence encode/decode function and Stream identification
function to more than one stream_handle value can cause multiple Member Streams to have the same exact
Stream identification method on output, and thus be merged into a single Stream, as seen by the next
receiver.

In theory, if using the model of Figure 8-2, there exist instantiations of Individual recovery functions (7.5)
and Sequence recovery function (7.4.2) for each distinct set of ports for which an identical set of Streams is
to be output. The vector of output ports that, in principle, accompanies the packet through the IEEE 802.1Q
Forwarding Process, guides the allocation of frames to these functions. After this stage, sets of Sequence
encode/decode functions (7.6), and/or Stream identification functions (6.2) can be configured to further
transform the packet(s).

8.2 FRER C-component input transformations

The Input transformations, marked with white boxed with boldface type in Figure 8-1, enable a Bridge to
proxy for a non-FRER-capable end system. The expanded input port identifies packets belonging to a
Stream (e.g., using IP Stream identification, 6.7), serializes the packets with a Sequence generation function
(7.4.1), encodes the sequence number with an R-TAG (7.8), and then gives the packets belonging to this
Stream a {vlan_identifier, destination_mac_address} pair that is unique, at least inside this Bridge, using
Active Destination MAC and VLAN Stream identification (6.6). The IEEE 802.1Q Forwarding Process,
enhanced with the Individual recovery function (7.5) and Sequence recovery function (7.4.2), then forwards
the frame.

8.3 Frame Replication and Elimination for Reliability and VLAN tags

As illustrated in Figure 8-1 and Figure 8-3, FRER in an IEEE 802.1Q C-VLAN Component is above the
Bridge Port Transmit and Receive function (8.5 of IEEE Std 802.1Q-2014) in the protocol stack. As a
consequence of this placement, a frame containing both an IEEE 802.1Q C-VLAN tag and an R-TAG but no
other IEEE 802.1Q tags, would be as illustrated in Figure 8-3.
58
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
8.4 Configuring Frame Replication and Elimination for Reliability in Bridges

As described in 8.1, we can describe the output transformations, including Individual recovery functions
(7.5), Sequence recovery functions (7.4.2), Sequence encode/decode functions (7.6), and Stream
identification functions (6.2), as being embedded in the IEEE 802.1Q Forwarding Process. However, since
different activities can be required by an application on different output ports, the managed objects in
Clause 9 and Clause 10 can be used to configure an FRER C-component. Figure 8-1 illustrates an allowed
arrangement of FRER functions on an output Bridge port as perceived by the managed objects in Clause 9
and Clause 10.

An FRER C-component shall implement all of the managed objects in Clause 9 and Clause 10 that are
needed to meet the conformance requirements of 5.12 and 5.15 with the exceptions noted in Table 8-1.

Table 8-1—Managed objects for FRER in an FRER C-component

Variable Reference Limitation Reason

tsnStreamIdInFacOutputPortList 9.1.1.2 Only Active Destination
MAC and VLAN Stream
identification (or nothing)
can be configured.

Only needed for Input
transformations.

tsnStreamIdOutFacOutputPortList 9.1.1.3 Only Active Destination
MAC and VLAN Stream
identification (or nothing)
can be configured.

A Bridge can modify the
vlan_identifier and
destination_mac_address of
packets belonging to a particular
Stream

tsnStreamIdInFacInputPortList 9.1.1.4 Not allowed There is no need to re-identify
Streams on their way out of the
Bridge.

tsnStreamIdOutFacInputPortList 9.1.1.5 No limitations —

Figure 8-3—Example Ethernet frame format

Destination MAC address

Source MAC address

C-TAG EtherType

Priority, DE, VLAN ID

R-TAG EtherType

Sequence number

Payload Length/EtherType

Data

Frame Check Sequence

0

6

12

14

16

24

24+n

6

6

2

2

2

2

2

n

4

Field Offset Length

20

22

Reserved 18 2
59
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
tsnCpeDmacVlanDownTagged 9.1.4.2 Not required The decision whether to tag an
outgoing frame is determined, in
an IEEE 802.1Q Bridge, by
other managed objects.

frerSeqGenDirection 10.3.1.2 Must be False (in-facing) Sequence numbers can be added
only to incoming packets.

frerSeqRcvyDirection 10.4.1.3 Must be False (in-facing) Duplicate packets can be
discarded only on outgoing
packets.

frerSeqEncDirection 10.5.1.3 Must be True (out-facing) Packets’ sequence_numbers are
encoded/decoded as they leave.

Stream split table 10.6 Not required —

Table 8-1—Managed objects for FRER in an FRER C-component (continued)

Variable Reference Limitation Reason
60
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
9. Stream Identification Management

The description of the managed objects that control Stream identification are described in the following
subclauses:

a) The Stream identity table (9.1) assigns packets a stream_handle (6.1);
b) The per-port, per-Stream packet counters that are kept by Stream identification functions for

inspection by network management entities are described in 9.2, and the per-port (totaled over all
Streams) counters in 9.3.

The general requirements on the behavior of the Stream Identification counters in 9.2 and 9.3 are described
in 10.1.

9.1 Stream identity table

The Stream identity table consists of a set of tsnStreamIdEntry objects (9.1.1), each relating to a single
Stream, specifying the points in the system where Stream identification functions (6.2) are to be instantiated.
Each entry in the Stream identity table has a tsnStreamIdHandle object (9.1.1.1) specifying a stream_handle
value and one or more tsnStreamIdEntry objects (9.1.1) describing one identification method for that
Stream. If a single Stream has multiple identification methods, perhaps (but not necessarily) on different
ports, then there can be multiple tsnStreamIdEntry objects with the same value for the tsnStreamIdHandle. If
the HSR or PRP method or the Sequence encode/decode function is applied to a packet, then the LanId or
PathId fields are also used to identify the Stream to which the packet belongs.

9.1.1 tsnStreamIdEntry

A set of managed objects, all applying to the Stream specified by tsnStreamIdHandle (9.1.1.1), and all using
the same Stream identification types and parameters (9.1.1.6, 9.1.1.7).

See 10.2 for additional managed objects that are present in the tsnStreamIdEntry only if Autoconfiguration
(7.11) is used.

9.1.1.1 tsnStreamIdHandle

The objects in a given entry of the Stream identity table are used to control packets whose stream_handle
subparameter is equal to the entry’s tsnStreamIdHandle object. The specific values used in the
tsnStreamIdHandle object are not necessarily used in the system; they are used only to relate the various
management objects in Clause 9 and Clause 10.

9.1.1.2 tsnStreamIdInFacOutputPortList

The list of ports on which an in-facing Stream identification function (6.2) using this identification method
(9.1.1.6, 9.1.1.7) is to be placed for this Stream (9.1.1.1) in the output (towards the system forwarding
function) direction. At most one tsnStreamIdEntry can list a given port for a given tsnStreamIdHandle in its
tsnStreamIdInFacOutputPortList.

9.1.1.3 tsnStreamIdOutFacOutputPortList

The list of ports on which an out-facing Stream identification function (6.2) using this identification method
(9.1.1.6, 9.1.1.7) is to be placed for this Stream (9.1.1.1) in the output (towards the physical interface)
direction. At most one tsnStreamIdEntry can list a given port for a given tsnStreamIdHandle in its
tsnStreamIdOutFacOutputPortList.
61
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
9.1.1.4 tsnStreamIdInFacInputPortList

The list of ports on which an in-facing Stream identification function (6.2) using this identification method
(9.1.1.6, 9.1.1.7) is to be placed for this Stream (9.1.1.1) in the input (coming from the system forwarding
function) direction. Any number of tsnStreamIdEntry objects can list the same port for the same
tsnStreamIdHandle in its tsnStreamIdInFacInputPortList.

9.1.1.5 tsnStreamIdOutFacInputPortList

The list of ports on which an out-facing Stream identification function (6.2) using this identification method
(9.1.1.6, 9.1.1.7) is to be placed for this Stream (9.1.1.1) in the input (coming from the physical interface)
direction. Any number of tsnStreamIdEntry objects can list the same port for the same tsnStreamIdHandle in
its tsnStreamIdOutFacInputPortList.

9.1.1.6 tsnStreamIdIdentificationType

An enumerated value indicating the method used to identify packets belonging to the Stream. The
enumeration includes an Organizationally Unique Identifier (OUI) or Company ID (CID) to identify the
organization defining the enumerated type. The values defined by this standard are shown in Table 9-1.

9.1.1.7 tsnStreamIdParameters

The number of controlling parameters for a Stream identification method, their types and values, are specific
to the tsnStreamIdIdentificationType (9.1.1.6) and are referenced in Table 9-1.

9.1.2 Managed objects for Null Stream identification

When instantiating an instance of the Null Stream identification function (6.4) for a particular input Stream,
the managed objects in the following subclauses serve as the tsnStreamIdParameters managed object
(9.1.1.7).

9.1.2.1 tsnCpeNullDownDestMac

Specifies the destination_address that identifies a packet in an EISS indication primitive, to the Null Stream
identification function.

Table 9-1—Stream identification types

OUI/CID Type number Stream identification function Controlling
parameters

00-80-C2 0 Reserved —

00-80-C2 1 Null Stream identification (6.4) 9.1.2

00-80-C2 2 Source MAC and VLAN Stream identification (6.5) 9.1.3

00-80-C2 3 Active Destination MAC and VLAN Stream
identification (6.6)

9.1.4

00-80-C2 4 IP Stream identification (6.7) 9.1.5

00-80-C2 5–255 Reserved —

other — Defined by entity owning the OUI or CID —
62
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
9.1.2.2 tsnCpeNullDownTagged

An enumerated value indicating whether a packet in an EISS indication primitive to the Null Stream
identification function is permitted to have a VLAN tag. It can take the following values:

1) tagged: A frame must have a VLAN tag to be recognized as belonging to the Stream.
2) priority: A frame must be untagged, or have a VLAN tag with a VLAN ID = 0 to be

recognized as belonging to the Stream.
3) all: A frame is recognized as belonging to the Stream whether tagged or not.

9.1.2.3 tsnCpeNullDownVlan

Specifies the vlan_identifier parameter that identifies a packet in an EISS indication primitive to the Null
Stream identification function. A value of 0 indicates that the vlan_identifier parameter is ignored on EISS
indication primitives.

9.1.3 Managed objects for Source MAC and VLAN Stream identification

When instantiating an instance of the Source MAC and VLAN Stream identification function (6.5) for a
particular input Stream, the managed objects in the following subclauses serve as the tsnStreamIdParameters
managed object (9.1.1.7).

9.1.3.1 tsnCpeSmacVlanDownSrcMac

Specifies the source_address that identifies a packet in an EISS indication primitive, to the Source MAC and
VLAN Stream identification function.

9.1.3.2 tsnCpeSmacVlanDownTagged

An enumerated value indicating whether a packet in an EISS indication primitive to the Source MAC and
VLAN Stream identification function is permitted to have a VLAN tag. It can take the following values:

1) tagged: A frame must have a VLAN tag to be recognized as belonging to the Stream.
2) priority: A frame must be untagged, or have a VLAN tag with a VLAN ID = 0 to be

recognized as belonging to the Stream.
3) all: A frame is recognized as belonging to the Stream whether tagged or not.

9.1.3.3 tsnCpeSmacVlanDownVlan

Specifies the vlan_identifier parameter that identifies a packet in an EISS indication primitive to the Source
MAC and VLAN Stream identification function. A value of 0 indicates that the vlan_identifier parameter is
ignored on EISS indication primitives.

9.1.4 Managed objects for Active Destination MAC and VLAN Stream identifications

When instantiating an instance of the Active Destination MAC and VLAN Stream identification function
(6.6) for a particular output Stream, the managed objects in the following subclauses, along with those listed
in 9.1.2, serve as the tsnStreamIdParameters managed object (9.1.1.7).

9.1.4.1 tsnCpeDmacVlanDownDestMac

Specifies the destination_address parameter to use in the EISS request primitive for output packets sent to
lower layers by the Active Destination MAC and VLAN Stream identification function, and the
63
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
destination_address that identifies an input packet in an EISS indication primitive to the Active Destination
MAC and VLAN Stream identification function.

9.1.4.2 tsnCpeDmacVlanDownTagged

An enumerated value indicating whether a packet in an EISS indication or request primitive between the
Active Destination MAC and VLAN Stream identification function and the lower layers is to have a VLAN
tag. It can take the following values:

1) tagged: An input frame must have a VLAN tag to be recognized as belonging to the Stream.
An output frame receives a VLAN tag.

2) priority: An input frame must be untagged, or have a VLAN tag with a VLAN ID = 0 to be
recognized as belonging to the Stream. An output frame is marked with a VLAN tag with
VLAN ID = 0.

3) all: A frame is recognized as belonging to the Stream whether tagged or not. An output frame
is to be untagged.

This variable is not used in an FRER C-component. See 8.4.

9.1.4.3 tsnCpeDmacVlanDownVlan

Specifies the vlan_identifier parameter to use in the EISS request primitive for output packets sent to lower
layers by the Active Destination MAC and VLAN Stream identification function, and the vlan_identifier
that identifies an input packet in an EISS indication primitive to the Active Destination MAC and VLAN
Stream identification function. A value of 0 indicates that the vlan_identifier parameter is ignored on EISS
indication primitives.

9.1.4.4 tsnCpeDmacVlanDownPriority

Specifies the priority parameter to use in the EISS request primitive for output packets sent to lower layers
by the Active Destination MAC and VLAN Stream identification function for all packets in a particular
Stream.

9.1.4.5 tsnCpeDmacVlanUpDestMac

Specifies the destination_address parameter to use in the EISS indication primitive for input packets offered
to upper layers by the Active Destination MAC and VLAN Stream identification layer. This address
replaces the address that was used to identify the packet (tsnCpeDmacVlanDownDestMac, 9.1.4.1).

9.1.4.6 tsnCpeDmacVlanUpTagged

An enumerated value indicating whether a packet in an EISS indication or request primitive between the
Active Destination MAC and VLAN Stream identification function and the upper layers is to have a VLAN
tag. It can take the following values:

1) tagged: An output frame must have a VLAN tag to be recognized as belonging to the Stream.
An input frame receives a VLAN tag.

2) priority: An output frame must be untagged, or have a VLAN tag with a VLAN ID = 0 to be
recognized as belonging to the Stream. An input frame is marked with a VLAN tag with VLAN
ID = 0.

3) all: A frame is recognized as belonging to the Stream whether tagged or not. An input frame is
to be untagged.

This variable is used only by an end system and not by a relay system. See 8.4.
64
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
9.1.4.7 tsnCpeDmacVlanUpVlan

Specifies the vlan_identifier parameter to use in the EISS indication primitive for packets offered to upper
layers, or the VLAN ID field for an IEEE 802.1Q tag in an ISS mac_service_data_unit. This address
replaces the VLAN ID that was used to identify the packet (tsnCpeDmacVlanDownVlan, 9.1.4.3).

9.1.4.8 tsnCpeDmacVlanUpPriority

Specifies the priority parameter to use in the EISS indication primitive for packets offered to upper layers.

9.1.5 Managed objects for IP Stream identification

When instantiating an instance of the IP Stream identification function (6.7), the parameters in the following
subclauses replace the tsnStreamIdParameters managed object (9.1.1.7).

9.1.5.1 tsnCpeIpIdDestMac

Specifies the destination_address parameter that identifies a packet in an EISS indication primitive.

9.1.5.2 tsnCpeIpIdTagged

An enumerated value indicating whether a packet in an EISS indication or request primitive to the IP Stream
identification function is to have a VLAN tag. It can take the following values:

1) tagged: An input frame must have a VLAN tag to be recognized as belonging to the Stream.
An output frame receives a VLAN tag.

2) priority: An input frame must be untagged, or have a VLAN tag with a VLAN ID = 0 to be
recognized as belonging to the Stream. An output frame is marked with a VLAN tag with
VLAN ID = 0.

3) all: A frame is recognized as belonging to the Stream whether tagged or not. An output frame
is to be untagged.

9.1.5.3 tsnCpeIpIdVlan

Specifies the vlan_identifier parameter that identifies a packet in an EISS indication primitive. A value of 0
indicates that the frame is not to have a VLAN tag.

9.1.5.4 tsnCpeIpIdIpSource

Specifies the IPv4 (RFC 791) or IPv6 (RFC 2460) source address parameter that must be matched to identify
packets coming up from lower layers. An address of all 0 indicates that the IP source address is to be ignored
on packets received from lower layers.

9.1.5.5 tsnCpeIpIdIpDestination

Specifies the IPv4 (RFC 791) or IPv6 (RFC 2460) destination address parameter that must be matched to
identify packets coming up from lower layers.

9.1.5.6 tsnCpeIpIdDscp

Specifies the IPv4 (RFC 791) or IPv6 (RFC 2460) differentiated services codepoint (DSCP, RFC 2474) that
must be matched to identify packets coming up from the lower layers. A value of 64 decimal indicates that
the DSCP is to be ignored on packets received from lower layers.
65
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
9.1.5.7 tsnCpeIpIdNextProtocol

Specifies the IP next protocol parameter that must be matched to identify packets coming up from lower
layers. The value of this parameter must specify either none, UDP (RFC 768), TCP (RFC 793), or SCTP
(RFC 4960). If “none,” then the tsnCpeIpIdSourcePort (9.1.5.8) and tsnCpeIpIdDestinationPort (9.1.5.9)
managed objects are not used.

9.1.5.8 tsnCpeIpIdSourcePort

Specifies the TCP or UDP Source Port parameter that must be matched to identify packets coming up from
lower layers. A value of 0 indicates that the Source Port number of the packet is to be ignored on packets
received from lower layers.

9.1.5.9 tsnCpeIpIdDestinationPort

Specifies the TCP or UDP Destination Port parameter that must be matched to identify packets coming up
from lower layers. A value of 0 indicates that the Destination Port number of the packet is to be ignored on
packets received from lower layers.

9.2 Operational per-port per-Stream Stream identification counters

The following counters are instantiated for each port on which the Stream identification function (6.2) is
configured. The counters are indexed by port number, facing (in-facing or out-facing), and stream_handle
value (tsnStreamIdHandle, 9.1.1.1). All counters are unsigned integers. If used on links faster than
650 000 000 bits per second, they shall be 64 bits in length to ensure against excessively short wrap times.

9.2.1 tsnCpsSidInputPackets

The tsnCpsSidInputPackets counter is incremented once for each packet identified by the Stream
identification function (6.2).

9.2.2 tsnCpsSidOutputPackets

The tsnCpsSidOutputPackets counter is incremented once for each packet passed down the stack by the
Stream identification function (6.2).

9.3 Operational per-port Stream identification counters

9.3.1 tsnCpSidInputPackets

The tsnCpSidInputPackets counter is incremented once for each packet identified by any Stream
identification function (6.2) on this port. Its value equals the sum (modulo the size of the counters) of all of
the tsnCpsSidInputPackets (9.2.1) counters on this same port.

9.3.2 tsnCpSidOutputPackets

The tsnCpSidOutputPackets counter is incremented once for each packet passed down the stack by any
Stream identification function (6.2) on this port. Its value equals the sum (modulo the size of the counters) of
all of the tsnCpsSidOutputPackets (9.2.2) counters on this same port.
66
Copyright © 2017 IEEE. All rights reserved.

http://www.rfc-editor.org/info/rfc768
http://www.rfc-editor.org/info/rfc793
http://www.rfc-editor.org/info/rfc4960

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
10. Frame Replication and Elimination for Reliability management

The managed objects that control Stream identification are described in Clause 9. The managed objects that
control FRER are described in this Clause 10 as follows:

a) General requirements on the behavior of counters are in 10.1.
b) The various tables of managed objects that can manage, in detail, each individual Stream, are

described in five subclauses, including:
1) Additions (10.2) to the Stream identity table (9.1) required for Autoconfiguration (7.11, 10.7).
2) The Sequence generation table (10.3) that configures instances of the Sequence generation

function (7.4.1);
3) The Sequence recovery table (10.4) that configures instances of the Individual recovery

function (7.5), the Sequence recovery function (7.4.2), and the Latent error detection function
(7.4.4);

4) The Sequence identification table (10.5) that configures instances of the Sequence encode/
decode function (7.6); and

5) The Stream split table (10.6) that configures instances of the Stream splitting function (7.7).
c) The managed objects that support the automatic configuration, upon receipt of a packet, of entries in

the first four of the preceding tables (10.2 through 10.5), are described in the subclause on
Autoconfiguration (10.7).

d) The per-port, per-Stream packet counters that are kept by FRER functions for inspection by network
management entities are described in 10.8, and the per-port (totaled over all Streams) counters in
10.9.

The managed objects in the subclauses under 9.1 make it possible to configure more than one encapsulation
for the same stream_handle subparameter on the same port. Similarly, the managed objects in the subclauses
under 10.3 and 10.4 make it possible to configure more than one Sequence encode/decode function (7.6) or
more than one Sequence generation function (7.4.1) for the same stream_handle subparameter. [The same
value of stream_handle can be in the frerSeqGenStreamList (10.3.1.1) of more than one frerSeqGenEntry
(10.3.1) or in the frerSeqRcvyStreamList (10.4.1.1) of more than one frerSeqRcvyEntry (10.4.1).] A system
shall return an error if an attempt is made to configure conflicting requirements upon that system.

10.1 Counter behavior

All counters defined by this standard (e.g., frerCpsSeqEncErroredPackets, 10.8.11) when incremented past
the maximum value representable shall roll over to 0 and continue. There is no provision for resetting any
counter to any specific value, e.g., 0. A counter can be set to any value when the system is reset. This
standard assumes the following:

a) Any management entity will read any counters often enough that at most one rollover can occur
between examinations;

b) There exists a “time of last counter reset” or “time since last counter reset” or an equivalent
managed object in the system, that the management entity can examine to determine whether the
counters have been reset since the last time they were examined.

c) A counter managed object is large enough to take at least one minute to roll over from 0 to 0.

10.2 Additional tsnStreamIdEntry manged objects

Two managed objects augment each tsnStreamIdEntry (9.1.1) in the Stream identity table (9.1) when
Managed objects for autoconfiguration (7.11, 10.7) is implemented.
67
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
10.2.1 tsnStreamIdAutoconfigured

A read-only Boolean value, supplied by the system, specifying whether this entry was created explicitly
(False) or via the Sequence autoconfiguration table (10.7.1, True).

10.2.2 tsnStreamIdLanPathId

An integer specifying a path or LAN. If and only if a packet matches an entry in the Sequence identification
table (10.5) that specifies HSR or PRP in its frerSeqEncEncapsType (10.5.1.5) object,
tsnStreamIdLanPathId specifies the LanId or PathId value that must be matched for this tsnStreamIdEntry to
apply. A value of –1 indicates that the LanId or PathId are to be ignored.

10.3 Sequence generation table

There is one Sequence generation table in a system, and one entry in the Sequence generation table for each
Sequence generation function (7.4.1).

10.3.1 frerSeqGenEntry

Each frerSeqGenEntry lists the Streams (10.3.1.1) and direction (10.3.1.2) for which a single instance of the
Sequence generation function (7.4.1) is to be placed.

10.3.1.1 frerSeqGenStreamList

A list of stream_handle values, corresponding to the values of the tsnStreamIdHandle objects (9.1.1.1) in the
Stream identity table (9.1), on which this instance of the Sequence generation function (7.4.1) is to operate.
The single instance of the Sequence generation function created by this frerSeqGenEntry operates every
packet belonging to this Stream, regardless of the port on which it is received.

10.3.1.2 frerSeqGenDirection

A Boolean object indicating whether the Sequence generation function (7.4.1) is to be placed on the
out-facing (True) or in-facing (False) side of the port (Figure 6-6).

10.4 Sequence recovery table

There is one Sequence recovery table in a system, and one entry in the Sequence recovery table for each
Sequence recovery function (7.4.2) or Individual recovery function (7.5) that can also be present. The entry
describes a set of managed objects for the single instance of a Base recovery function (7.4.3) and Latent
error detection function (7.4.4) included in the Sequence recovery function or Individual recovery function.

10.4.1 frerSeqRcvyEntry

Each frerSeqRcvyEntry lists the Streams (10.4.1.1), ports (10.4.1.2), and direction (10.4.1.3) for which
instances of a Sequence recovery function (7.4.2) or Individual recovery function (7.5) are to be instantiated.

10.4.1.1 frerSeqRcvyStreamList

A list of the stream_handle values, corresponding to the values of the tsnStreamIdHandle objects (9.1.1.1) in
the Stream identity table (9.1), to which the system is to apply the instance of the Sequence recovery
function (7.4.2) or Individual recovery function (7.5).
68
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
10.4.1.2 frerSeqRcvyPortList

The list of ports on each of which the system is to instantiate the Sequence recovery function (7.4.2), or from
which received packets are to be fed to a single instance of the Individual recovery function (7.5).

10.4.1.3 frerSeqRcvyDirection

A Boolean object indicating whether the Sequence recovery function (7.4.2) or Individual recovery function
(7.5) is to be placed on the out-facing (True) or in-facing (False) side of the port (Figure 6-6).

10.4.1.4 frerSeqRcvyReset

A Boolean object indicating that the Sequence recovery function (7.4.2) or Individual recovery function
(7.5) is to be reset by calling its corresponding SequenceGenerationReset function (7.4.1.3). Writing the
value True to frerSeqRcvyReset triggers a reset; writing the value False has no effect. When read,
frerSeqRcvyReset always returns the value False.

10.4.1.5 frerSeqRcvyAlgorithm

This object is an enumerated value specifying which sequence recovery algorithm is to be used for this
instance of the Sequence recovery function (7.4.2). The enumeration uses an OUI or CID as shown in
Table 10-1. The default value for frerSeqRcvyAlgorithm is Vector_Alg (00-80-C2, 0).

10.4.1.6 frerSeqRcvyHistoryLength

An integer specifying how many bits of the SequenceHistory variable (7.4.3.2.2) are to be used. The
minimum and the default value is 2, maximum is the maximum allowed by the implementation. [Not used if
frerSeqRcvyAlgorithm (10.4.1.5) = Match_Alg (00-80-C2, 1).]

10.4.1.7 frerSeqRcvyResetMSec

An unsigned integer specifying the timeout period in milliseconds for the RECOVERY_TIMEOUT event
(item c in 7.4.3.1).

10.4.1.8 frerSeqRcvyInvalidSequenceValue

A read-only unsigned integer value that cannot be encoded in a packet as a value for the sequence_number
subparameter (item b in 6.1), i.e., frerSeqRcvyInvalidSequenceValue is larger than or equal to
RecovSeqSpace (7.4.3.2.1).

Table 10-1—Enumerated values for frerSeqRcvyAlgorithm

Enumeration OUI/CID Type number Sequence recovery function algorithm

Vector_Alg 00-80-C2 0 VectorRecoveryAlgorithm (7.4.3.4)

Match_Alg 00-80-C2 1 MatchRecoveryAlgorithm (7.4.3.5)

— 00-80-C2 2–255 Reserved

— Other — Defined by entity owning the OUI or CID
69
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
10.4.1.9 frerSeqRcvyTakeNoSequence

A Boolean value specifying whether packets with no sequence_number subparameter are to be accepted
(True) or not (False). Default value False. See item i in 7.1.1.

10.4.1.10 frerSeqRcvyIndividualRecovery

A Boolean value specifying whether this entry describes a Sequence recovery function (7.4.2) or Individual
recovery function (7.5).

a) True: The entry describes an Individual recovery function (7.5). Packets discarded by the
SequenceGenerationAlgorithm (7.4.1.4) will cause the variable RemainingTicks (7.4.3.2.4) to be
reset. There is no Latent error detection function (7.4.4) associated with this entry, so
frerSeqRcvyLatentErrorDetection (10.4.1.11) cannot also be True.

b) False: The entry describes a Sequence recovery function (7.4.2). Packets discarded by the
SequenceGenerationAlgorithm (7.4.1.4) will not cause the variable RemainingTicks (7.4.3.2.4) to
be reset.

10.4.1.11 frerSeqRcvyLatentErrorDetection

A Boolean value indicating whether an instance of the Latent error detection function (7.4.4) is to be
instantiated along with the Base recovery function (7.4.3) in this Sequence recovery function (7.4.2) or
Individual recovery function (7.5). frerSeqRcvyLatentErrorDetection cannot be set True if
frerSeqRcvyIndividualRecovery (10.4.1.10) is also True; an Individual recovery function does not include a
Latent error detection function.

10.4.1.12 Latent error detection managed objects

The objects in the following subclauses are present if and only if frerSeqRcvyIndividualRecovery
(10.4.1.10) is False.

10.4.1.12.1 frerSeqRcvyLatentErrorDifference

An integer specifying the maximum difference between frerCpsSeqRcvyDiscardedPackets (10.8.6), and the
product of frerCpsSeqRcvyPassedPackets (10.8.5) and (frerSeqRcvyLatentErrorPaths – 1) (10.4.1.12.3) that
is allowed. Any larger difference will trigger the detection of a latent error by the LatentErrorTest function
(7.4.4.4).

10.4.1.12.2 frerSeqRcvyLatentErrorPeriod

The integer number of milliseconds that are to elapse between instances of running the LatentErrorTest
function (7.4.4.4). An implementation can have a minimum value for frerSeqRcvyLatentErrorPeriod, below
which it cannot be set, but this minimum shall be no larger than 1000 ms (1 s). Default value 2000 (2 s).

10.4.1.12.3 frerSeqRcvyLatentErrorPaths

The integer number of paths over which FRER is operating for this instance of the Base recovery function
(7.4.3) and Latent error detection function (7.4.4).
70
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
10.4.1.12.4 frerSeqRcvyLatentResetPeriod

The integer number of milliseconds that are to elapse between instances of running the LatentErrorReset
function (7.4.4.3). An implementation can have a minimum value for LatentErrorReset, below which it
cannot be set, but this minimum shall be no larger than 1000 ms (1 s). Default value 30000 (30 s).

10.5 Sequence identification table

There is one Sequence identification table per system, and one entry in the Sequence identification table for
each port and direction for which an instance of the Sequence encode/decode function (7.6) is to be created.

10.5.1 frerSeqEncEntry

Each entry in the Sequence identification table specifies a port (10.5.1.2) and direction (10.5.1.3) on which
an instance of the Sequence encode/decode function is to be instantiated for a list of Streams (10.5.1.1).

10.5.1.1 frerSeqEncStreamList

A list of stream_handles, corresponding to the values of the tsnStreamIdHandle objects (9.1.1.1) in the
Stream identity table (9.1), for which the system is to use the same encapsulation (10.5.1.5) for the Sequence
encode/decode function.

10.5.1.2 frerSeqEncPort

The port on which the system is to place an instance of the Sequence encode/decode function (7.6).

10.5.1.3 frerSeqEncDirection

A Boolean object indicating whether the Sequence encode/decode function (7.6) is to be placed on the
out-facing (True) or in-facing (False) side of the port (Figure 6-6).

10.5.1.4 frerSeqEncActive

A Boolean value specifying whether this frerSeqEncEntry is passive (False), and therefore is used only to
decode (extract information from) input packets passing up the protocol stack, or active (True), and
therefore is used both for recognizing input packets and for encoding output packets being passed down the
protocol stack.

10.5.1.5 frerSeqEncEncapsType

An enumerated value indicating the type of encapsulation used for this instance of the Sequence encode/
decode function (7.6). The type includes an OUI or CID. The values defined by this standard are shown in
Table 10-2.

10.5.1.6 frerSeqEncPathIdLanId

A 4-bit integer value to be placed in the PathId field of an HSR sequence tag (7.9) or the LanId field of a
PRP sequence trailer (7.10) added to an output packet. This managed object is used only if:

a) The HSR sequence tag or the PRP sequence trailer is selected by the frerSeqEncEncapsType object
(10.5.1.5); and

b) frerSeqEncActive (10.5.1.4) is False (passive)
71
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
10.6 Stream split table

There is one Stream split table per system, with one frerSplitEntry (10.6.1) per Stream splitting function
(7.7) per set of stream_handle values.

10.6.1 frerSplitEntry

Each entry in the Stream split table specifies a port (10.6.1.1) and direction (10.6.1.2) on which an instance
of the Stream splitting function (7.7) is to be instantiated, and the list of stream_handles specifying its
operation.

10.6.1.1 frerSplitPort

The port on which the system is to place an instance of the Stream splitting function (7.7) performing the
stream_handle translations specified by frerSplitInputIdList and frerSplitOutputIdList (10.6.1.3, 10.6.1.4) is
to be placed.

10.6.1.2 frerSplitDirection

A Boolean object indicating whether the instance of the Stream splitting function (7.7) performing the
stream_handle translations specified by frerSplitInputIdList and frerSplitOutputIdList (10.6.1.3, 10.6.1.4) is
to be placed on the out-facing (True) or in-facing (False) side of the port (Figure 6-6).

10.6.1.3 frerSplitInputIdList

A list of stream_handles (tsnStreamIdHandle values, 9.1.1.1) that are to be split.

10.6.1.4 frerSplitOutputIdList

A list of stream_handles (tsnStreamIdHandle values, 9.1.1.1) into which the input packet is to be split, one
copy per item in the frerSplitOutputIdList.

10.7 Managed objects for autoconfiguration

10.7.1 Sequence autoconfiguration table

There is one Sequence autoconfiguration table per system. It contains any number of table entries (10.7.1.1).
No two (or more) entries in the Sequence autoconfiguration table can have the same values for

Table 10-2—Sequence Encode/Decode types

OUI/CID Type number Sequence encode/decode method

00-80-C2 0 Reserved

00-80-C2 1 R-TAG (7.8)

00-80-C2 2 HSR sequence tag (7.9)

00-80-C2 3 PRP sequence trailer (7.10)

00-80-C2 4–255 Reserved

Other — Defined by entity owning the OUI or CID
72
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
frerAutSeqSeqEncaps (10.7.1.1.1), frerAutSeqTagged (10.7.1.1.3), and frerAutSeqVlan (10.7.1.1.4) on any
given port (10.7.1.1.2).

10.7.1.1 frerAutSeqEntry

Each frerAutSeqEntry objects (10.7.1.1) relates to a single class of Streams, and specifies how entries are
created (and destroyed) in the Stream identity table (9.1), the Sequence recovery table (10.4), and the
Sequence identification table (10.5).

10.7.1.1.1 frerAutSeqSeqEncaps

An enumerated value from Table 10-2, specifying which Sequence encode/decode function, and therefore,
which type sequence_number encoding, is to be recognized for the purposes of Autoconfiguration.

10.7.1.1.2 frerAutSeqReceivePortList

The list of ports to which this frerAutSeqEntry applies, and on which Stream identification functions
(6.2), Sequence encode/decode functions (7.6), and Individual recovery functions (7.5) are to be
autocreated.

10.7.1.1.3 frerAutSeqTagged

An enumerated value indicating whether packets to be matched by this frerAutSeqEntry are permitted to
have a VLAN tag. It can take the following values:

1) tagged: A frame must have a VLAN tag to be matched.
2) priority: A frame must be untagged, or have a VLAN tag with a VLAN ID = 0 to be matched.
3) all: A frame is matched whether tagged or not.

10.7.1.1.4 frerAutSeqVlan

A list of vlan_identifiers for the packet to match. A null list matches all vlan_identifiers.

10.7.1.1.5 frerAutSeqRecoveryPortList

The list of ports on which Sequence recovery functions (7.4.2) are to be autocreated by this
frerAutSeqEntry.

10.7.1.1.6 frerAutSeqDestructMSec

An integer number of milliseconds after which an idle set of functions created by this frerAutSeqEntry can
be destroyed. A value of 0 indicates that idle autoconfigured functions are not to be destroyed. Default value
is 86 400 000 decimal (one day).

10.7.1.1.7 frerAutSeqResetMSec

The value used to fill frerSeqRcvyResetMSec (10.4.1.7) when autoconfiguring entries in the Sequence
recovery table.

10.7.1.1.8 frerAutSeqAlgorithm

The value used to fill frerSeqRcvyAlgorithm (10.4.1.5) when autoconfiguring entries in the Sequence
recovery table.
73
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
10.7.1.1.9 frerAutSeqHistoryLength

The value used to fill frerSeqRcvyHistoryLength (10.4.1.6) when autoconfiguring entries in the Sequence
recovery table.

10.7.1.1.10 frerAutSeqCreateIndividual

A Boolean value. If True, the receipt of a packet that triggers the autoconfiguration of a new
tsnStreamIdEntry also triggers the instantiation of a frerSeqRcvyEntry for an Individual recovery function.

10.7.1.1.11 frerAutSeqCreateRecovery

A Boolean value. If True, the receipt of a packet that triggers the autoconfiguration of a new
tsnStreamIdEntry can also trigger the instantiation of a frerSeqRcvyEntry for a Sequence recovery function.

10.7.1.1.12 frerAutSeqLatErrDetection

A Boolean value. If True, the autoconfiguration of a new Sequence recovery function also creates an
associated Latent Error Detection function.

10.7.1.1.13 frerAutSeqLatErrDifference

The value used to fill frerSeqRcvyLatentErrorDifference (10.4.1.12.1) when autoconfiguring entries in the
Sequence recovery table.

10.7.1.1.14 frerAutSeqLatErrPeriod

The value used to fill frerSeqRcvyLatentErrorPeriod (10.4.1.12.2) when autoconfiguring entries in the
Sequence recovery table.

10.7.1.1.15 frerAutSeqLatErrResetPeriod

The value used to fill frerSeqRcvyLatentResetPeriod (10.4.1.12.4) when autoconfiguring entries in the
Sequence recovery table.

10.7.2 Output autoconfiguration table

There is one Output autoconfiguration table per system. It contains any number of frerAutOutEntry objects
(10.7.2.1), each relating to a single class of Streams specifying how active entries are created in the
Sequence identification table (10.5).

10.7.2.1 frerAutOutEntry

No two (or more) entries in the Output autoconfiguration table can include the same port in their
frerAutSeqReceivePortList objects (10.7.1.1.2).

10.7.2.1.1 frerAutOutPortList

The list of ports to which this frerAutOutEntry applies, and on which active Sequence encode/decode
functions (7.6) are to be autocreated.
74
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
10.7.2.1.2 frerAutOutEncaps

An enumerated value from Table 10-2, specifying which Sequence encode/decode function, and therefore,
which type sequence_number encoding, is to be used for autoconfigured Streams on the ports in
frerAutSeqReceivePortList (10.7.1.1.2).

10.7.2.1.3 frerAutOutLanPathId

An integer specifying a path or LAN. If and only if frerAutOutEncaps (10.7.2.1.2) specifies HSR or PRP
frerAutOutLanPathId specifies the LanId or PathId value to be inserted into the HSR sequence tag or PRP
sequence trailer of autoconfigured packets transmitted on the ports in frerAutSeqReceivePortList
(10.7.1.1.2).

10.8 Operational per-port and per-Stream FRER counters

The following counters are instantiated for each port on which any of the Stream identification function
(6.2), Sequencing function (7.4), or Sequence encode/decode function (7.6) is configured. The counters are
indexed by port number, facing (in-facing or out-facing), and stream_handle value
(tsnStreamIdHandle, 9.1.1.1). All counters are unsigned integers. If used on links faster than
650 000 000 bits per second, they shall be 64 bits in length to ensure against excessively short wrap times.

A Stream identification component (5.3) shall implement the first two counters tsnCpsSidInputPackets
(9.2.1) and tsnCpsSidOutputPackets (9.2.2); the remainder of the counters in 10.8 are optional for such a
system.

10.8.1 Per-Stream vs. per-Stream-per-port counters

The preceding managed objects create an instantiation of the Sequence recovery function (7.4.2) per port. In
fact, a relay system can choose to create a single instance of the Sequence recovery function as part of its
forwarding function, or one instance per line card, or in some other, distributed fashion, without violating
the externally visible behaviors specified by this standard. The per-instantiation variables defined in
Clause 7 are internal to the system, so their definitions are not affected by this choice.

However, when the algorithms of Clause 7 [e.g., the MatchRecoveryAlgorithm (7.4.3.5)] reference counters
[e.g., frerCpsSeqRcvyPassedPackets (10.8.5)] defined as follows, this choice becomes important. Whenever
an algorithm in Clause 7 increments a counter in the following subclauses, it increments each of the relevant
counters, according to the ports on which the packet is (or would have been) output, no matter how many
instantiations of the Sequence recovery function actually exist. Thus, if a duplicate packet that would have
been output on ports 1, 6, and 27 is discarded by a single instantiation of the Sequence recovery function
residing in a relay system’s forwarding function, three instances of the frerCpsSeqRcvyDiscardedPackets
(10.8.6) counter are incremented, one for each of those ports.

10.8.2 frerCpsSeqGenResets

The frerCpsSeqGenResets counter is incremented each time the SequenceGenerationReset function
(7.4.1.3) is called.

10.8.3 frerCpsSeqRcvyOutOfOrderPackets

The frerCpsSeqRcvyOutOfOrderPackets counter is incremented once for each packet accepted out-of-order
by the VectorRecoveryAlgorithm (7.4.3.4) or MatchRecoveryAlgorithm (7.4.3.5). Out-of-order means that
the packet’s sequence number is not one more than the previous packet received. (See item m in 7.1.1.)
75
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
10.8.4 frerCpsSeqRcvyRoguePackets

The frerCpsSeqRcvyRoguePackets counter is incremented once for each packet discarded by the
VectorRecoveryAlgorithm (7.4.3.4) because its sequence_number subparameter is more than
frerSeqRcvyHistoryLength (10.4.1.6) from RecovSeqNum (7.4.3.2.3).

10.8.5 frerCpsSeqRcvyPassedPackets

The frerCpsSeqRcvyPassedPackets counter is incremented once for each packet passed up the stack by the
VectorRecoveryAlgorithm (7.4.3.4) or MatchRecoveryAlgorithm (7.4.3.5).

10.8.6 frerCpsSeqRcvyDiscardedPackets

The frerCpsSeqRcvyDiscardedPackets counter is incremented once for each packet discarded due to a
duplicate sequence number by the VectorRecoveryAlgorithm (7.4.3.4) or MatchRecoveryAlgorithm
(7.4.3.5).

10.8.7 frerCpsSeqRcvyLostPackets

The frerCpsSeqRcvyLostPackets counter is incremented once for each packet lost by the
VectorRecoveryAlgorithm (7.4.3.4). A packet is counted as lost if its sequence number is not received on
any ingress port.

NOTE—If per-source sequence numbering is used, frerCpsSeqRcvyLostPackets can count, as lost, packets that were
sent to another destination, but not lost. See B.2.

10.8.8 frerCpsSeqRcvyTaglessPackets

The frerCpsSeqRcvyTaglessPackets counter is incremented once for each packet received by the
VectorRecoveryAlgorithm (7.4.3.4) that has no sequence_number subparameter (item b in 6.1).

10.8.9 frerCpsSeqRcvyResets

The frerCpsSeqRcvyResets counter is incremented once each time the SequenceRecoveryReset function
(7.4.3.3) is called.

10.8.10 frerCpsSeqRcvyLatentErrorResets

The frerCpsSeqRcvyLatentErrorResets counter is incremented once each time the LatentErrorReset
function (7.4.4.3) is called.

10.8.11 frerCpsSeqEncErroredPackets

The frerCpsSeqEncErroredPackets counter is incremented once each time the Sequence encode/decode
function (7.6) receives a packet that it is unable to decode successfully.

10.9 Operational per-port FRER counters

The following counters are instantiated for each port on which any of the Stream identification function
(6.2), Sequencing function (7.4), or Sequence encode/decode function (7.6) is configured. The counters are
indexed by port number and facing (in-facing or out-facing). All counters are unsigned integers. If used on
links faster than 650 000 000 bits per second, they shall be 64 bits in length to ensure against excessively
short wrap times.
76
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
A Stream identification component (5.3) shall implement the first two counters tsnCpSidInputPackets
(9.3.1) and tsnCpSidOutputPackets (9.3.2); the remainder of the counters in 10.9 are optional for such a
system.

10.9.1 frerCpSeqRcvyPassedPackets

The frerCpSeqRcvyPassedPackets counter is incremented once for each packet passed up the stack by the
VectorRecoveryAlgorithm (7.4.3.4) or MatchRecoveryAlgorithm (7.4.3.5). Its value equals the sum
(modulo the size of the counters) of all of the frerCpsSeqRcvyPassedPackets (10.8.5) counters on this same
port.

10.9.2 frerCpSeqRcvyDiscardPackets

The frerCpSeqRcvyDiscardPackets counter is incremented once for each packet discarded due to a duplicate
sequence number or for being a rogue packet by any VectorRecoveryAlgorithm (7.4.3.4) or
MatchRecoveryAlgorithm (7.4.3.5) on this port. Its value equals the sum (modulo the size of the counters)
of all of the frerCpsSeqRcvyRoguePackets (10.8.4) and frerCpsSeqRcvyDiscardedPackets (10.8.6) counters
on this same port.

10.9.3 frerCpSeqEncErroredPackets

The frerCpSeqEncErroredPackets counter is incremented once each time the Sequence encode/decode
function (7.6) receives a packet that it is unable to decode successfully. Its value equals the sum (modulo the
size of the counters) of all of the frerCpsSeqEncErroredPackets (10.8.11) counters on this same port.
77
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
Annex A

(normative)

Protocol Implementation Conformance Statement (PICS)
proforma

A.1 Introduction11

The supplier of an implementation that is claimed to conform to Clause 7 shall complete the following
protocol implementation conformance statement (PICS) proforma.

A completed PICS proforma is the PICS for the implementation in question. The PICS is a statement of
which capabilities and options of the protocol have been implemented. A PICS is included at the end of each
clause as appropriate. The PICS can be used for a variety of purposes by various parties, including the
following:

a) As a checklist by the protocol implementor, to reduce the risk of failure to conform to the standard
through oversight;

b) As a detailed indication of the capabilities of the implementation, stated relative to the common
basis for understanding provided by the standard PICS proforma, by the supplier and acquirer, or
potential acquirer, of the implementation;

c) As a basis for initially checking the possibility of interworking with another implementation by the
user, or potential user, of the implementation (note that, while interworking can never be guaranteed,
failure to interwork can often be predicted from incompatible PICS);

d) As the basis for selecting appropriate tests against which to assess the claim for conformance of the
implementation, by a protocol tester.

A.1.1 Abbreviations and special symbols

The following symbols are used in the PICS proforma:

M mandatory field/function
! negation
O optional field/function
O.<n> optional field/function, but at least one of the group of options labeled by

the same numeral <n> is required
O/<n> optional field/function, but one and only one of the group of options

labeled by the same numeral <n> is required
X prohibited field/function
<item>: simple-predicate condition, dependent on the support marked for <item>
<item1>*<item2>: AND-predicate condition, the requirement must be met if both optional

items are implemented
<item1>+<item2>: OR-predicate condition, the requirement must be met if either of the

optional items are implemented

11Copyright release for PICS proformas: Users of this standard may freely reproduce the PICS proforma in this subclause so that it can
be used for its intended purpose and may further publish the completed PICS.
78
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
A.1.2 Instructions for completing the PICS proforma

The first part of the PICS proforma, Implementation Identification and Protocol Summary, is to be
completed as indicated with the information necessary to identify fully both the supplier and the
implementation.

The main part of the PICS proforma is a fixed-format questionnaire divided into subclauses, each containing
a group of items. Answers to the questionnaire items are to be provided in the right-most column, either by
simply marking an answer to indicate a restricted choice (usually Yes, No, or Not Applicable), or by
entering a value or a set or range of values. (Note that there are some items where two or more choices from
a set of possible answers can apply; all relevant choices are to be marked.)

Each item is identified by an item reference in the first column; the second column contains the question to
be answered; the third column contains the reference or references to the material that specifies the item in
the main body of the standard; the sixth column contains values and/or comments pertaining to the question
to be answered. The remaining columns record the status of the items—whether the support is mandatory,
optional, or conditional—and provide the space for the answers.

The supplier may also provide, or be required to provide, further information, categorized as either
Additional Information or Exception Information. When present, each kind of further information is to be
provided in a further subclause of items labeled A<i> or X<i>, respectively, for cross-referencing purposes,
where <i> is any unambiguous identification for the item (e.g., simply a numeral); there are no other
restrictions on its format or presentation.

A completed PICS proforma, including any Additional Information and Exception Information, is the
protocol implementation conformance statement for the implementation in question.

Note that where an implementation is capable of being configured in more than one way, according to the
items listed under Major Capabilities/Options, a single PICS may be able to describe all such configurations.
However, the supplier has the choice of providing more than one PICS, each covering some subset of the
implementation’s configuration capabilities, if that would make presentation of the information easier and
clearer.

A.1.3 Additional information

Items of Additional Information allow a supplier to provide further information intended to assist the
interpretation of the PICS. It is not intended or expected that a large quantity will be supplied, and the PICS
can be considered complete without any such information. Examples might be an outline of the ways in
which a (single) implementation can be set up to operate in a variety of environments and configurations; or
a brief rationale, based perhaps upon specific application needs, for the exclusion of features that, although
optional, are nonetheless commonly present in implementations.

References to items of Additional Information may be entered next to any answer in the questionnaire, and
may be included in items of Exception Information.

A.1.4 Exceptional information

It may occasionally happen that a supplier will wish to answer an item with mandatory or prohibited status
(after any conditions have been applied) in a way that conflicts with the indicated requirement. No
preprinted answer will be found in the Support column for this; instead, the supplier is required to write into
the Support column an X<i> reference to an item of Exception Information, and to provide the appropriate
rationale in the Exception item itself.
79
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
An implementation for which an Exception item is required in this way does not conform to this standard.

Note that a possible reason for the situation described above is that a defect in the standard has been
reported, a correction for which is expected to change the requirement not met by the implementation.

A.1.5 Conditional items

The PICS proforma contains a number of conditional items. These are items for which both the applicability
of the item itself, and its status if it does apply—mandatory, optional, or prohibited—are dependent upon
whether or not certain other items are supported.

Individual conditional items are indicated by a conditional symbol of the form “<item>:<s>” in the Status
column, where “<item>” is an item reference that appears in the first column of the table for some other
item, and “<s>” is a status symbol, M (Mandatory), O (Optional), or X (Not Applicable).

If the item referred to by the conditional symbol is marked as supported, then 1) the conditional item is
applicable, 2) its status is given by “<s>”, and 3) the support column is to be completed in the usual way.
Otherwise, the conditional item is not relevant and the Not Applicable (N/A) answer is to be marked.

Each item whose reference is used in a conditional symbol is indicated by an asterisk in the Item column.

A.1.6 Identification

A.1.6.1 Implementation identification

Supplier (Note 1)

Contact point for queries about the PICS (Note 1)

Implementation Name(s) and Version(s) (Notes 1 and 3)

Other information necessary for full identification—
e.g., name(s) and version(s) of machines and/or
operating system names (Note 2)

NOTE 1—Required for all implementations.
NOTE 2—May be completed as appropriate in meeting the requirements for the identification.
NOTE 3—The terms Name and Version should be interpreted appropriately to correspond with a supplier’s
terminology (e.g., Type, Series, Model).

A.1.6.2 Protocol summary

Identification of protocol specification IEEE Std 802.1CB-2017, IEEE Standard for Frame
Replication and Elimination for Reliability

Identification of amendments and corrigenda to the
PICS proforma that have been completed as part of
the PICS

Amd : ________________ Cor: _________________

Amd : ________________ Cor: _________________

Have any exceptions been noted? (See A.1.4. The
answer, “Yes” means that the implementation does not
conform to IEEE Std 802.1CB.)

Yes [] No []
80
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
A.2 PICS proforma for Frame Replication and Elimination for Reliability

A.2.1 Major capabilities/options

A.2.2 Stream identification component

Item Feature Subclause Value/Comment Status Support

BG FRER C-component
implemented?

5.15 O Yes []
No []

IS Stream identification system
implemented?

5.3, 5.4, 5.5

One or more of IS,
TE, LE, and/or RS
must be answered
“Yes.”

O.1 Yes []
No []

TE Talker end system implemented? 5.6, 5.7, 5.8 O.1 Yes []
No []

LE Listener end system
implemented?

5.9, 5.10,
5.11

O.1 Yes []
No []

RS Relay system implemented? 5.12, 5.13,
5.14, 5.15:b,
5.15:c

BG:M +
O.1

Yes []
No []

Item Feature Subclause Value/Comment Status Support

IS1 Can the system identify frames
using the Null Stream
identification function?

5.3:b, 6.4 IS: M Yes []

IS2 Does the system implement the
required managed objects of
Clause 9?

5.3:c, 9 IS: M Yes []

IS3 Can the system encode frames
using the Active Destination
MAC and VLAN Stream
identification?

5.4:a, 6.6 IS: O Yes []
No []
—a

aIf “No,” supply a reason why.

IS4 Can the system identify packets
using the IP Stream
identification?

5.5:c, 6.7 IS: O Yes []
No []

IS5 For what additional Stream
decodings can the system be
configured?

5.5:d IS: O —

IS6 Explain the limits on which
ports the above features can be
configured.

5.5:a IS: O —

IS7 Explain the limits on the number
of Streams for which the above
features can be configured.

5.5:b IS: O —
81
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
A.2.3 Talker end system

Item Feature Subclause Value/Comment Status Support

TE8 Can the system identify frames
using the Null Stream
identification function?

5.6:b, 6.4 TE: M Yes []

TE9 Can the system be configured
with a Sequence generation
function?

5.6:c, 7.4.1 TE: M Yes []

TE10 Can the system be configured
with a Sequence encode/decode
function?

5.6:d, 7.8 TE: M Yes []

TE11 Does the system implement the
managed objects of Clause 9 and
Clause 10 (10.7 not required)?

5.6:e, 9, 10 TE: M Yes []

TE12 Can the system encode frames
using the Active Destination
MAC and VLAN Stream
identification?

5.7:a, 6.6 TE: O Yes []
No []
—a

aIf “No,” supply a reason why.

TE13 Can the system be configured
with a Stream splitting function?

5.7:b, 7.7 TE: M Yes []
No []
—a

TE14 Can the system identify packets
using the IP Stream
identification?

5.8:c, 6.7 TE: O Yes []
No []

TE15 For what additional Stream
decodings can the system be
configured?

5.8:d TE: O —

TE16 Can the system encode frames
using HSR sequence tag?

5.8:e, 7.9 TE: O Yes []
No []

TE17 Can the system encode frames
using PRP sequence trailer?

5.8:f, 7.10 TE: O Yes []
No []

TE18 For what additional Sequence
encode/decode functions can the
system be configured?

5.8:g TE: O —

TE19 Explain the limits on which
ports the above features can be
configured.

5.8:a TE: O —

TE20 Explain the limits on the number
of Streams for which the above
features can be configured.

5.8:b TE: O —
82
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
A.2.4 Listener end system

Item Feature Subclause Value/Comment Status Support

LE1 Can the system identify frames
using the Null Stream
identification?

5.9:b, 6.4 LE: M Yes []

LE2 Can the system be configured
with at least two Individual
recovery functions?

5.9:c, 7.5 LE: M Yes []

LE3 Can the system be configured
with at least one Sequence
recovery function using the
MatchRecoveryAlgorithm?

5.9:c, 7.4.2,
7.4.3.5

LE: M Yes []

LE4 Does the system support the
Sequence recovery function
using the
VectorRecoveryAlgorithm with
a value of
frerSeqRcvyHistoryLength ≥ 2?

5.9:c, 7.4.2,
7.4.3.4

LE: M Yes []

LE5 Can the system be configured
with at least two Individual
recovery functions using the
MatchRecoveryAlgorithm?

5.9:d, 7.5,
7.4.3.5

LE: M Yes []

LE6 Can the system be configured
with a Sequence decoding
function?

5.9:e, 7.8 LE: M Yes []

LE7 Does the system implement the
managed objects of Clause 9 and
Clause 10 (10.7 not required)?

5.9:f, 9, 10 LE: M Yes []

LE8 Does the Base recovery function
process a frame before its FCS
has been verified?

7.4.3 LE: M No []

LE9 Can the system decode frames
using the Active Destination
MAC and VLAN Stream
identification?

5.10:a, 6.6 LE: O Yes []
No []
—a

LE10 Can the system decode packets
using the IP Stream
identification?

5.11:c, 6.7 LE: O Yes []
No []

LE11 For what additional Stream
decodings can the system be
configured?

5.11:d LE: O —

LE12 Can the system decode frames
using HSR sequence tag?

5.11:e, 7.9 LE: O Yes []
No []

LE13 Can the system decode frames
using PRP sequence trailer?

5.11:f, 7.10 LE: O Yes []
No []

LE14 For what additional Sequence
decodings can the system be
configured?

5.11:g LE: O —
83
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
A.2.5 Relay system

LE15 Can the system be configured
with at least two Individual
recovery functions using the
VectorRecoveryAlgorithm?

5.11:h, 7.5,
7.4.3.4

LE: O Yes []

LE16 Explain the limits on which
ports the above features can be
configured.

5.11:a LE: O —

LE17 Explain the limits on the number
of Streams for which the above
features can be configured.

5.11:b LE: O —

aIf “No,” supply a reason why.

Item Feature Subclause Value/Comment Status Support

RS1 Can the system identify frames
using the Null Stream
identification function?

5.12:b, 6.4 RS: M Yes []

RS2 Can the system be configured
with a Sequence generation
function?

5.12:c, 7.4.1 RS: M Yes []

RS3 Can the system be configured
with at least two Individual
recovery functions?

5.12:e, 7.5 RS: M Yes []

RS4 Can the system be configured
with at least one Sequence
recovery function using the
MatchRecoveryAlgorithm?

5.12:e, 7.4.2,
7.4.3.5

RS: M Yes []

RS5 Does the system support the
Sequence recovery function
using the
VectorRecoveryAlgorithm with a
value of
frerSeqRcvyHistoryLength ≥ 2?

5.12:e, 7.4.2,
7.4.3.4

RS: M Yes []

RS6 Can the system be configured
with at least two Individual
recovery functions using the
MatchRecoveryAlgorithm?

5.12:f, 7.5,
7.4.3.5

RS: M Yes []

RS7 Can the system be configured
with a Sequence encode/decode
function?

5.12:d, 7.8 RS: M Yes []

RS8 Does the system implement the
managed objects of Clause 9 and
Clause 10 (including 10.7)?

5.12:g, 9, 10 RS: M Yes []

RS9 Does the Base recovery function
process a frame before its FCS
has been verified?

7.4.3 RS: M No []

Item Feature Subclause Value/Comment Status Support
84
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
RS10 Can the system encode/decode
frames using the Active
Destination MAC and VLAN
Stream identification?

5.13:a, 6.6 RS: O Yes []
No []
—a

RS11 Can the system identify packets
using the IP Stream
identification?

5.13:b, 6.7 RS: O Yes []
No []

—a

RS12 For what additional Stream
identification functions can the
system be configured?

5.14:c RS: O —

RS13 Can the Stream splitting function
be configured on the system?

5.14:d, 7.7 RS: O Yes []
No []

RS14 Can the system encode/decode
frames using HSR sequence tag?

5.14:e, 7.9 RS: O Yes []
No []

RS15 Can the system encode/decode
frames using PRP sequence
trailer?

5.14:f, 7.10 RS: O Yes []
No []

RS16 For what additional Sequence
encode/decode functions can the
system be configured?

5.14:g RS: O —

RS17 Can the system be configured
with at least two Individual
recovery functions using the
VectorRecoveryAlgorithm?

5.14:i, 7.5,
7.4.3.4

RS: O Yes []
No []

RS18 Can the system be configured for
Autoconfiguration via the
Managed objects for
autoconfiguration?

5.14:j, 7.11,
10.7

RS: O Yes []
No []

RS19 Explain the limits on which ports
the above features can be
configured.

5.14:a RS: O —

RS20 Explain the limits on the number
of Streams for which the above
features can be configured.

5.14:b RS: O —

RS21 Explain the limits on whether the
above features can be configured
at in-facing or out-facing
positions.

5.14:h RS: O —

aIf “No,” supply a reason why.

Item Feature Subclause Value/Comment Status Support
85
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
A.2.6 FRER 802.1Q C-component

A.2.7 Common requirements

Item Feature Subclause Value/Comment Status Support

CB1 Does the FRER 802.1Q
C-component conform to the
required and optional behaviors
required of an IEEE 802.1Q
C-VLAN component?

5.15:a BG:M Yes []

CB1 Does the FRER 802.1Q
C-component conform to the
placement of the FRER
functions of Clause 8?

5.15:d, 8 BG:M Yes []

CB2 Does the FRER 802.1Q
C-component implement all
required managed objects?

8.4 BG:M Yes []

Item Feature Subclause Value/Comment Status Support

COM1 Does the R-TAG use the
specified EtherType?

7.8.1 M Yes []

COM1 Is the Reserved field of the
R-TAG transmitted as 0 and
ignored on receipt?

7.1.1:d M Yes []

COM2 Do all managed object counters
roll over to 0 from their
maximum value?

10.1 M Yes []

COM3 Can the system be configured
with a latent error detection
function?

7.4.4 Latent error
detection required
if sequence
recovery
supported

LE+RS:
M

N/A []
Y []

COM4 Is the minimum value for
frerSeqRcvyLatentErrorPeriod
no larger than 1 s?

10.4.1.12.2 LE+RS:
M

N/A []
Y []

COM5 Is the RemainingTicks
decremented at least 100 ticks/s?

7.4.3.2.5 LE+RS:
M

N/A []
Y []

COM6 Does the system return an error
if an attempt is made to
configure conflicting
requirements?

10 M Yes []

COM7 Is the minimum supported value
of
frerSeqRcvyLatentResetPeriod
no larger than 1 s?

10.4.1.12.4 LE+RS:
M

N/A []
Y []

COM8 Are all counters 64 bits in length
on links faster than
650 000 000 bits/s?

10.8, 10.9 M N/A []
Y []
86
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
Annex B

(informative)

Interoperability with other standards

IEC 62439-3 defines High-availability Seamless Redundancy (HSR) and the Parallel Redundancy Protocol
(PRP). IEEE 802.1CB Frame Replication and Elimination for Reliability (FRER) has features that enable,
though the procedures are not specified by this standard, to achieve a degree of interoperation between
systems employing IEEE Std 802.1CB, and systems employing some other, similar protocol, including HSR
and PRP, and RFC 3985 pseudowires (see [B4]).

B.1 Sequence number size

HSR, PRP, and pseudowires all use 16-bit sequence numbers. This standard supports the same sized
sequence_number subparameter, in order to be maximally compatible.

B.2 Per-Stream versus per-source sequencing

IEC 62439-3 HSR/PRP uses one variable per source MAC address to sequence Ethernet frames. That is,
frames belonging to different flows, and sent to different destinations, all share a single sequence number
space. FRER, as defined in this standard, can be configured in the same way, or can be configured to
generate a separate sequence number space for each Stream. For interoperability with HSR or PRP, per-
source sequence numbering should be configured by the user.

A problem needs to be considered if one configures a VectorRecoveryAlgorithm (7.4.3.4) to receive
Intermittent Streams (item c in 7.1.1) transmitted by an HSR/PRP end system. The HSR/PRP end system
uses a single sequence number, not one per Stream. If that end system is transmitting more than one Stream,
and some Listener is receiving less than all of those Streams, then that Listener can observe gaps in the
sequence_number subparameters of the received packets, which will be counted in
frerCpsSeqRcvyLostPackets (10.8.7). For both Intermittent Streams and Bulk Streams, the Base recovery
function’s frerSeqRcvyHistoryLength managed object (10.4.1.6) has to be large enough to accommodate
both the delivery time difference and the maximum possible gap due to packets sent to other destinations,
because packets received outside the window defined by frerSeqRcvyHistoryLength are discarded. If
frerSeqRcvyHistoryLength is not large enough, duplicate packets will be delivered.
87
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
Annex C

(informative)

Frame Replication and Elimination for Reliability in systems

The building blocks described in Clause 6 and Clause 7 can be put together in many ways to achieve
particular goals. A few examples are given in this annex. These examples are chosen, rather arbitrarily, to
illustrate the range of applicability of FRER; they are not meant to constrain its use or to describe the only
way to accomplish any given goal.

C.1 Example 1: End-to-end FRER

Illustrated in Figure C-1 is a simple network utilizing FRER for a single Compound Stream. In this example,
all FRER functions are confined to the two end systems B and G. “Split” indicates that the Stream splitting
function (7.7) is acting on transmitted packets. “Seq.” and “Rec.” indicate whether the Sequencing function
is acting on transmitted packets (Sequence generation function, 7.4.1) or received packets (Sequence
recovery function, 7.4.1, 7.4.2).

In this example, both end systems utilize IEEE 802.1AX Link Aggregation along with FRER in order to
connect their two ports (each) to a single protocol stack, as shown in Figure C-2 (end system B) and
Figure C-3 (end system G). In end system B, each packet is replicated and given two different
stream_handle subparameter values. The two stream_handles result in the two packets being assigned two
different VLAN IDs. Based on those VLAN IDs, the two packets are both transmitted, on different physical
ports, by Link Aggregation. The Distributed Resilient Network Interconnect (DRNI) feature of
IEEE Std 802.1AX-2014 allows each end system’s aggregation to terminate in two relay systems.

In this example, the two-port end systems never relay packets from one port to the other; they are strictly end
systems, and never act as relay systems. See C.2 and C.6 for similar examples that use alternative methods
for building an end system.

Figure C-1—Dual-homed end systems using Link Aggregation

End
System B

Relay
system D

Relay
system C

Relay
system F

Relay
system E

Seq.
Rec.

Split

End
System G

Rec.
88
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability

C.2 Example 2: Various stack positions

Illustrated in Figure C-4 is a simple network utilizing FRER for a single Compound Stream, in which a relay
system serves as a proxy for an end system that has no FRER capability (see item h in 7.1.1). In this figure,
the numbers (1, 2, 3) are points in item e in 7.1.1. “Split” indicates that the Compound Stream is split into
two streams by the ordinary bridge multicast mechanism, with the {VLAN, destination address} altered by
Stream identification functions on output. [No Stream splitting function (7.7) is used.] “Seq.” and “Rec.”
indicate whether the Sequencing function is acting on transmitted packets (sequence generation) or received
packets (sequence recovery).

Stream splitting function (7.7)

Figure C-2—Protocol stack for End System B in Figure C-1

Upper layers

Sequence generation function (7.4.1)

IEEE 802.1AX Link Aggregation

Stream identification function (6.2)

PHY

MAC

PHY

MAC

Sequence encode/decode function (7.6)

Figure C-3—Protocol stack for End System G in Figure C-1 and Figure C-4

Upper layers

Sequence recovery function (7.4.2)

IEEE 802.1AX Link Aggregation

Stream identification (6)

PHY

MAC

PHY

MAC

Sequence encode/decode function (7.6)
89
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
In Figure C-4, End System A is transmitting a Stream, but has no FRER functions. Relay system B
transforms that Stream into a Compound Stream by sequencing the packets and splitting them into Member
Streams 26 and 31 to go to relay systems C and D. Relay system C further splits the Stream into Streams 15
and 26 to go to relay systems E and F. (No sequencing is required; the packets were sequenced by relay
system B.) Relay system F combines the two Member Streams 26 from relay systems C and D, outputting a
single copy of each Packet on Stream 26 to End System G. End System G merges the two remaining
Member Streams 15 and 26, and discards the extras.

NOTE—In this example, stream_handle values are shown on the wires, being relayed from system to system. This is for
the convenience of the example. In an actual network, the stream_handle is an arbitrary integer that has meaning only
within a system, and is mapped to or from an external representation by the Stream identification functions (6.2) in the
various systems. That external representation can, but does not necessarily, include an explicit field corresponding to a
stream_handle subparameter.

Figure C-5 illustrates relay system B in Figure C-4. As the packets enter from the left, from End System A,
they pass first through a Stream identification function [IP Stream identification (6.7)], which identifies the
Stream. The Stream Transfer Function delivers the packet with all TSN parameters, including the
stream_handle subparameter, to the Sequence generation function (7.4.1, marked “Seq.” in Figure C-4),
which adds a sequence_number subparameter with a steadily-increasing integer sequence value (modulo the
size of the packet field carrying the sequence_number). The sequence_number subparameter is encapsulated
into the packet by the Sequence encode/decode function (7.6). A Stream identification function [this time,
Active Destination MAC and VLAN Stream identification (6.6)] modifies the two packets’ destination
MAC addresses and VLANs for identification through the bridged network. Relay system B’s forwarding
function then outputs the two packets on two different ports. The external form of the packets are labeled
differently, as indicated by the italic numbers 26 and 31 in Figure C-4.

Figure C-6 illustrates relay system C in Figure C-4. The packets on Stream 31 enter from the left, from relay
system B. On output, they pass first through a passive Stream identification (Clause 6) function, which
identifies the Stream. The Stream Transfer Function delivers the packet with all TSN parameters, including
the stream_handle subparameter, to an active Stream identification (Clause 6) function. No Sequencing
function, Sequence generation function, or Sequence recovery functions are needed, because the packets
have already been sequenced (by relay system B) and none are being discarded. Stream identification
encapsulates the two packets differently on the two output ports (only one output port is shown in Figure C-6),
marking them as belonging to Streams 15 and 26, and relay system C’s forwarding function outputs the two
packets on two different ports.

Figure C-4—Frame Replication and Elimination for Reliability flexible positioning

End
System A

Relay
system B

Relay
system D

Relay
system C

Split

Relay
system F

Relay
system E

End
System G
1

3

2

2

Seq.

Rec.

Rec.

26

31

26

26

15

15

26

Split
90
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
Figure C-7 illustrates relay system F in Figure C-4. In this case, the TSN layers are on the output port, rather
than the input port, as was the case for relay system B. Data packets from both Streams 26 are brought
together simply by the fact that they are both output to the same port. On that port, the Stream identification
function gives them both the same stream_handle subparameter, effectively merging them into a single
Stream. A Sequence encode/decode function (7.6) extracts the sequence_number subparameters from the
packets, so that the Sequence recovery function (7.4.2) can discard the replicates. The Stream Transfer
Function delivers all of these parameters to a Sequencing function and a Stream identification function that
re-encapsulate the packets, marking them all as belonging to Stream 26, the same as when they were
received. In this particular example, unlike Figure C-5, no translation of Stream identification functions is
being performed.

Finally, the protocol stack in the right-hand End System G of Figure C-4 is shown in Figure C-3. We assume
in this example that relay systems E and F use IEEE 802.1AX Distributed Resilient Network Interface
(DRNI), and that End System G uses IEEE 802.1AX Link Aggregation, in order to make End System G’s
two physical ports appear, to the network, to be a single port, even though they are connected to two
different relay systems. The packets on Streams 15 and 26 are brought together by Link Aggregation. The
Stream identification function assigns the same stream_handle subparameter to packets of both Streams,
effectively merging them into a single Stream. They then pass through the Sequence recovery function,
which deletes the replicates for delivery to the upper layers. See Figure C-2 for a similar example of a
Talker, and C.6 for another type of two-port end system.

Figure C-5—Protocol stack for relay system B, proxying for End System A, in Figure C-4

PHY

MACInternal LAN

Relay system B
forwarding function

IP Stream identification
(6.7)

PHY

MAC

Stream Transfer Function

PHY

MAC

NSTF

(NSTF = Non-Stream
Transfer Function)

Sequence generation
function (7.4.1)

Sequence encode/decode
function (7.6)

Active Destination MAC and
VLAN Stream identification

Figure C-6—Protocol stack for relay system C in Figure C-4

Stream Transfer Function

PHY

MAC

PHY

MACInternal LAN

Active Stream identification
(Clause 6)

Passive Stream identification
(Clause 6)

NSTF
Relay system C

forwarding function
91
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
C.3 Example 3: Ladder redundancy

Illustrated in Figure C-8 is a network implementing “ladder redundancy.” This network will continue to
function in the face of multiple failures, because the Stream is repeatedly split and remerged.

In Figure C-8, the Talker end system sequences Stream 31, then splits it into two Streams 26 and 31, sending
one on each of its two ports. The network “ladder” has two “rails,” an upper (relay systems B and D) and a
lower (relay systems C and E). The “rungs” are the connections B–C and D–E. Each relay system sends the
Stream received on the rail from the left both to the right, along the rail, and up or down, over the rung. It
forwards the packets received from the rung only to the right, along the rail. At each output port to the rail,
the end systems have a Sequence recovery function (7.4.2) to eliminate duplicates.

Each of the relay systems in Figure C-8 uses the protocol stack illustrated in Figure C-7.

Figure C-7—Protocol stack for relay system F in Figure C-4

PHY

MAC Internal LAN

Relay system F
forwarding function

PHY

MAC

Stream Transfer Function

Stream identification
(Clause 6)

PHY

MAC

Stream identification
(Clause 6)

Sequence encode/decode
function (7.6)

Sequence encode/decode
function (7.6)

Sequence recovery function
(7.4.2)

NSTF

End
Sys-
tem
A

31

26

Relay system B

Relay system C

End Sys-
tem F

31 26

26
26

26

31

31

31

c, d

e, f

Figure C-8—Ladder redundancy

a: Add sequence numbers to Stream 31.
b: Split Stream 31 into Streams 26 and 31.
c: Merge Streams 26 and 31 into Stream 31.
d: Eliminate duplicates on Stream 31.

a, b c, d

31
26, 31

26, 31
26

Relay system D

c, d31
26, 31

Relay system E

e, f
26, 31

26

e: Merge Streams 26 and 31 into Stream 26.
f: Eliminate duplicates on Stream 26.
Each system’s output ports marked with
Streams transmitted and functions performed.

Key:

26

31
92
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
C.4 Example 4: Multicast trees

Illustrated in Figure C-9 is a multicast FRER application. Each Stream is a multicast Stream. There are two
paths to get from the Talker to each Listener; no single failure can disrupt both paths to any relay system.
Presumably, each relay system has a Sequence recovery function (7.4.2) on each port to each Listener, so
that each Listener receives only one copy of each packet of the Stream.

NOTE—The reader may find it informative to see that not all packets are replicated on all links in Figure C-9. It is not
necessary to use each link twice; it is only necessary to get each packet to each relay system twice.

C.5 Example 5: Protocol interworking

Figure C-10 illustrates a simple protocol interworking function in one port of a relay system. In this
example, two different encapsulation schemes 1 and 2 are used for the two legs of the Stream Transfer
Function, so that packets are transformed from using one encapsulation to using the other encapsulation as
they pass through the port. No additional functions, e.g., a Sequence recovery function (7.4.2) are shown,
although they would be perfectly admissible. If this were a port of a bridge attached to an end system,
encapsulation 1 could be the Active Destination MAC and VLAN Stream identification (6.6), and
encapsulation 2 could be the IP Stream identification (6.7). The net result for the end system could be to
convert a specific unicast IP Stream to use a specific multicast destination address and VLAN, in order to
direct the packet through a specific path through the bridged network. Presumably, a similar interworking
pair at the other end of the Stream would restore the packet to its original destination MAC address and
VLAN.

Relay
System

A

31

26

Relay system B

Relay system C

Relay
Sys-

tem F

31

26

Figure C-9—Multicast trees

26

Relay system D

31

Relay system E

26

Each port is labeled with the Stream that it
outputs. Every relay system receives Stream 26
and Stream 31 on a different port.

Key:

26

31

31

31
26

Figure C-10—Protocol interworking

PHY

MAC Internal LAN

Forwarding function

PHY

MAC

Stream Transfer Function

Stream identification 1

PHY

MAC

Stream identification 2

NSTF

Sequence Endode/Decode 1 Sequence Endode/Decode 2
93
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
C.6 Example 6: Chained two-port end systems

Illustrated in Figure C-11 is a simple network utilizing FRER for a single Compound Stream. In this
example, all FRER functions are confined to the two end systems B and G. “Seq.” and “Rec.” indicate
whether the Sequencing function is acting on transmitted packets (sequence generation) or received packets
(sequence recovery). In this example, unlike that in C.1, both end systems are composite systems; each uses
a separate one-port end system (B1, G1) attached to a three-port FRER C-component (B2, G2) in order to
connect their two ports (each) to a single protocol stack, as shown in Figure C-12.

In this example, we assume that the relay systems are all FRER C-components, and that the network has
been configured so that:

a) The Stream packets carry a multicast destination MAC address;
b) Bridge B2 has been configured to transmit the (multicast) Member Stream on both ports; and
c) The other Bridges, especially G2, have been configured to allow both Member Streams to enter

Bridge G2, but that Bridge G2 passes the Stream to end system G1 only (that is, the normal rules for
a multicast tree are broken).

Given this configuration, no Stream splitting function (7.7) is necessary for end system B1; packet
duplication is handled by the multicast forwarding functions performed in its associated relay system B2.

Unlike the example in C.1, the two-port composite end systems’ Bridge functions (B2, G2) are required to
play their part in the network as Bridges, operating protocols and forwarding packets.

Figure C-11—Dual-homed end systems using 3-port bridge

Relay Sys-
tem B2

Relay
system D

Relay
system C

Relay
system F

Relay
system E

Relay Sys-
tem G2

End Sys-
tem B1

Seq
End Sys-
tem G1

Rec.

System G

System B

Figure C-12—Protocol stacks for Systems B and G in Figure C-11

Upper layers

Sequence generation
function (7.4.1)

Sequence encode/de-
code function (7.6)

IEEE 802.1Q Bridge Relay

PHY

Internal LAN

PHY

MACMAC

Upper layers

Sequence recovery
function (7.4.1)

Sequence encode/de-
code function (7.6)

IEEE 802.1Q Bridge Relay

PHY

Internal LAN

PHY

MAC MAC

System B System G

B1
B2 G2

G1
94
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
C.7 Cautions

Explicit path creation carries a clear danger when combined with automatic network forwarding, e.g., as
defined by IEEE Std 802.1Q. Figure C-13 shows an explicit tree (the dashed arrows) established in relay
system D that sends a particular Stream to relay system B and end system F. (Perhaps, at one time, the
Talker was attached to relay system D and the Listeners were towards B and F.) Now, end system A starts
transmitting that Stream along an IEEE 802.1Q spanning tree. When the Stream hits relay system D, it is
directed back to relay system B, and the Stream loops, multiplying the packets until the bandwidth is
saturated. Note also that, if this is a bridged network, relay system B (a bridge) learns conflicting
information about the path to the Stream’s source; System A’s source MAC address is being received both
from end system A and relay system D.

In order to avoid this situation in a bridged network, the application or individual that sets up the explicit
paths can configure them so that they are kept, end-to-end, on separate VLANs from traffic that is not
following explicit paths. On the explicit path VLANs, source learning is not performed, and destination
addresses not found in the filtering database are discarded, not flooded.

C.8 Balancing tag insertion and removal

A Sequence encode/decode function will often add something to a packet. The R-TAG described in 7.8, for
example, adds six octets. In a network in which not all end systems contain a Sequence encode/decode
function (7.6), instances of that function can be configured in relay systems adjacent to the end systems
lacking the layer, in order to remove the extra information (e.g., the R-TAG) from the packets before
delivery to the end system. If the tag is not removed, and the end system has no Sequence encode/decode
function, the end system will be unable to parse the received packet. It is up to the network administrator
and/or configuration and management software to make sure that this does not happen.

C.9 FRER and reserved bandwidth

Satisfying the Zero congestion loss goal (item k in 7.1.1) can require the forwarding of packets to be
delayed. The problem is that the different paths taken by packets in a Compound Stream can take different
times to reach various Sequence recovery functions (7.4.2). If these times are very different, and if the faster
path fails and then recovers, the receiving Sequence recovery function can be presented with a double-rate
load of packets that all have to be delivered.

Figure C-13—Explicit path causing a loop

End Sys-
tem A
Talker

Relay
system B

Relay
system D

Relay
system C

End Sys-
tem E

(Listener)

End Sys-
tem F

(Listener)Explicit
path

Explicit
path
95
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
As an example, Figure C-14 illustrates a network with two Member Streams being merged into a single
Stream by a Sequence recovery function. The two paths are of different lengths such that, typically, there are
40 more packets in flight on one path than on the other.

Let us examine a hypothetical sequence of events as Link 2 in Figure C-14 fails, and then recovers. In the
following list, the sequence numbers of packets taking the path through Link 2 (the short path) are in italics,
and packets that are discarded by the Sequence recovery function are marked with asterisks (*).

a) The network is in a steady state. The Sequence recovery function receives packets:
1040, 1000*, 1041, 1001*, 1042, 1002*, …
That is, excepting the occasional random packet loss (not shown), the packets taking the short path
(Link 2) are passed on, and those taking the long path (Link 1) are discarded.

b) Link 2 fails sometime later (4000 packets later). The Sequence recovery function receives:
5040, 5000* (failure occurs), 5001*, 5002*, …
That is, for a while at least, no packets are passed on; those in the slow path have already been seen.

c) The discards continue with no packets passed until the backlog on the slow path is emptied:
5038*, 5039*, 5040*, 5041, 5042, 5043, …
Normal output rates then resume, with all packets coming from the long path (Link 1).

d) When the short path (Link 2) heals (3000 packets later), the Sequence recovery function receives:
7998, 7999, (link heals) 8040, 8000, 8041, 8001, 8042, 8002, …
Note that the Sequence recovery function is now passing packets at twice the normal rate, until the
40-packet backlog on the long (Link 1) path has been passed along.

e) Finally, the backlog is exhausted, and the Sequence recovery function resumes the normal output
rate, passing packets from the short path (Link 2) and discarding those from the long path (Link 1):
8078, 8038, 8079, 8039, 8080, 8040*, 8081, 8041*, 8082, 8042*, …

Zero congestion loss goal (item k in 7.1.1) can require that packets be output to the Listener at a fixed
maximum rate over some observation interval smaller than the transmission time of this 80-packet burst.
(See, for example, Clauses 34 and 35 of IEEE Std 802.1Q-2014.) In that case, some means of buffering, and
thus delaying the packets in this burst, is required at or near the Sequence recovery function.

This buffering and/or delaying is beyond the scope of this standard. We can observe, however, that the extra
buffering required by FRER in order to prevent congestion loss when bandwidth reservation is employed,
due to this problem, can be calculated separately from the buffering required for the non-FRER case, based
on the bandwidth of the Compound Stream and the difference in worst-case delivery latency along the two
(or more) Member Streams’ paths.

Figure C-14—Example of Long and short paths

Talker and Sequence gen-
eration function (7.4.1)

Listener

Sequence recov-
ery function (7.4.2)

X packets
in flight

X+40 packets
in flight 1

2

T

L

96
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
C.10 Use of the Individual recovery function

The Individual recovery function is described in 7.5, and a sample network employing the Individual
recovery function is illustrated in Figure 7-3. The primary use of the Individual recovery function is to
prevent stale data from being transmitted in the event that one of the Member Streams of a Compound
Stream fails such that the same packet is sent over and over again. Imagine, in Figure 7-3, that the leftmost
system fails on its upper port, resending the packet with sequence_number 5 over and over again on Member
Stream 1. The Sequence recovery functions (7.4.2) in the two systems receiving the Member Streams 1 and
2 will discard the repeated packets until the sequence_number subparameter on the good Member Stream 2
wraps around after 65 536 packets. Then, whichever packet 5 is received first will be relayed to the next
stage. It could be the new, good, Member Stream 2’s packet 5 or the old, bad, Member Stream 1’s packet 5.
If Individual recovery functions are configured for Member Stream 1 as shown by the triangles in the two
systems receiving that Stream, then all of the packet 5s after the first will be discarded there, and never reach
the Sequence recovery functions.

C.11 Use of autoconfiguration

Every last detail of the operation of FRER on each individual Stream can be configured by using the
managed objects in Clause 9 and Clause 10. Often, however, there is enough regularity in the use of FRER
across various Streams in a network that Autoconfiguration (7.11) can be used. There are four steps to using
Autoconfiguration in a given relay system or end system, as follows:

a) Deciding on which port(s) packets belonging to Member Streams will be received and transmitted,
using what translations are required that do not use active Stream identification functions (C.11.1).

b) Deciding which packets can trigger Autoconfiguration (C.11.2).

c) Deciding which method for encoding the sequence_number subparameter will be used for input and
output on each port (C.11.3).

d) Deciding on whether Individual recovery functions, Sequence recovery functions, or both, are to be
automatically instantiated, and what controlling parameters are to be used for each instantiation
(C.11.4).

NOTE—Although the following examples describe interoperation between HSR/PRP and the R-TAG, such
interoperability is not the primary reason for defining autoconfiguration. Autoconfiguration greatly simplifies the
amount of configuration required for networks that use only the R-TAG.

C.11.1 Routing and labeling Member Streams

Figure C-15 illustrates an example network with four Member Streams constituting a Compound Stream.
This example is similar to that illustrated in Figure 7-3.

In general, the selection of paths taken by Member Streams through the network is not determined by FRER,
but by other standards. Autoconfiguration does not provide a means of establishing active Stream
identification functions to perform per-Stream identification transformations. In Figure C-15, let us assume
for the sake of example that Member Stream 1 and Member Stream 2 both have the same destination MAC
address, but are on two special VLANs 1000 and 1001, used exclusively in this network for fully managed
pinned-down paths. That is, these two VLANs are not controlled by the topology protocols defined in
IEEE Std 802.1Q. Let us further suppose that Member Stream 3 and Member Stream 4 are similar, but both
use the same VLANs 2000. (Presumably, source address learning is disabled on this VLAN.)
97
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
Looking at relay system B in Figure C-15, we can see that all packets in Member Stream 3 are to be output
on VLAN 2000 with a PRP sequence trailer specifying LanId 0. That means that packets from Member
Streams 1 and 2 that are accepted by the Sequence recovery function in relay system B must be translated
from VLAN 1000 or 1001 to VLAN 2000. The Autoconfiguration facility of 7.11 does not automatically
setup or change vlan_identifiers. Relay system B must be configured to perform a VLAN ID translation on
its right-hand port, translating both VLAN 1000 and VLAN 1001 to VLAN 2000 on output. If there are a
great many Compound Streams, then presumably they would share the same VLAN assignments and thus
make use of the same VLAN translations. IEEE 802.1Q bridges have such a VLAN ID translation
capability.

Although not shown in Figure C-15, we can imagine that there are Streams with Talkers in the right side of
the figure and listeners on the left. Additional VLAN mapping would then be required on the left and bottom
ports of relay system B to map VLAN 2000 to VLAN 1000 and VLAN 1001. If the VLAN situation were
significantly more complex, then the network might not be suitable for Autoconfiguration.

C.11.2 Recognizing packets that trigger autoconfiguration

In the example in Figure C-15, let us consider only relay system B, and only packets that follow the same
routes as Member Streams 1 and 2. In that case, we expect relay system B to receive packets suitable for
Autoconfiguration only on its left and bottom ports, all encoded with the R-TAG (7.8). Thus, an
administrator would construct a frerAutSeqEntry (10.7.1.1) in the Sequence autoconfiguration table
specifying that tag on those ports, for VLANs 1000 and 1001. This entry will, when a matching packet is
received, create a tsnStreamIdEntry (9.1.1) in the Sequence identification table (10.5) using Source MAC
and VLAN Stream identification (6.5). Since the R-TAG contains no indication as to which Member Stream
a packet belongs, the entry is tied to the port and VLAN on which the packet was received. In this way, all of
the Member Streams from end system A that take the path of Member Stream 1 are assigned one
stream_handle, and all those following the path of Member Stream 2 get a second stream_handle.

Again, we can imagine that there are Streams with Talkers in the right side of Figure C-15 and listeners on
the left. A second frerAutSeqEntry is required in the Sequence autoconfiguration table is required to
recognize, for Autoconfiguration, the packets coming in on relay system B’s right-hand port, and create
entries in the Sequence identification table. This single entry specifies packets encoded with the PRP
sequence trailer (see a further explanation of this in C.11.3), and includes all PRP ports—in this example,
just the one. A tsnStreamIdEntry created for HSR or PRP by this entry that assigns packets a stream_handle
would not be tied to the port and VLAN on which the packet was received, but to all ports covered by the

Figure C-15—Autoconfiguration example

Sequence gener-
ation function

Member Stream 2

Member Stream 3

Member Stream 4

Member Stream 1

Sequence recovery functions
Individual recovery
functions

end A

relay B

relay C

relay D

relay E

end F

vlan 1000

vlan 1001

vlan 2000

vlan 2000

PRP 0

PRP 1
98
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability
tsnStreamIdEntry, and to the LanId or PathId contained in the packet. That is, the contents of the HSR
sequence tag or the PRP sequence trailer override the port number.

C.11.3 Per-port packet decoding and encoding

The example in Figure C-15 also illustrates a second use of Autoconfiguration. In this network, everything
to the right of relay systems B and C, including the rightmost ports on relay systems B and C, use the PRP
sequence trailer (7.10), whereas all ports on relay systems A, B, and C to the left use the R-TAG (7.8).
Packets transmitted to the right by relay system B, and all packets transmitted by system D and the upper
port of system F are marked as being on LanId 0, and by other ports on the right side of the figure as being
on LanId 1. Packets transmitted by any other port on relay systems B and C, or by system A, use the
R-TAG. These distinctions are made using the Output autoconfiguration table (10.7.2). Using this table,
each port is assigned an output encapsulation, including the LanId or PathId for PRP or HSR, respectively.
Again, if the usage is too complex (e.g., one Stream is LanId 0 on a port, while another is LanId 1 on that
same port), Autoconfiguration cannot be used.

Note that the administrator could configure the Sequence autoconfiguration tables and Output
autoconfiguration tables in relay systems D and E to translate among the R-TAG, the HSR sequence tag, and
the PRP sequence trailer for the purpose of interworking, even if no Individual recovery functions or
Sequence recovery functions were desired in those relay systems.

C.11.4 Individual and Sequence recovery functions

Given the explanations in C.11.1, C.11.2, and C.11.3, the reader can consult 7.11.2 to understand how
Individual recovery functions and Sequence recovery functions are configured as a result of
Autoconfiguration. They are set up, along with the input (passive) Stream identification functions, by entries
in the Sequence autoconfiguration table (10.7.1). The reader may find the following facts helpful:

a) At most one instance of the Individual recovery function is instantiated for each stream_handle
associated with an autocreated tsnStreamIdEntry (9.1.1).

a) One instance of the Sequence recovery function is instantiated on each expected output port
(frerAutSeqRecoveryPortList, 10.7.1.1.5) for each Compound Stream.

b) Compound Streams are inferred by associating Member Streams with the same Source MAC
address and VLAN ID.
99
Copyright © 2017 IEEE. All rights reserved.

IEEE Std 802.1CB-2017
IEEE Standard for Local and metropolitan area networks—Frame Replication and Elimination for Reliability

100
Copyright © 2017 IEEE. All rights reserved.

Annex D

(informative)

Bibliography

Bibliographical references are resources that provide additional or helpful material but do not need to be
understood or used to implement this standard. Reference to these resources is made for informational use
only.

[B1] IEEE Std 802.1BA™-2011, IEEE Standard for Local and Metropolitan Area Networks—Audio Video
Bridging (AVB) Systems.12, 13

[B2] IEEE Std 802.3™, IEEE Standard for Ethernet.

[B3] IEEE Std 1722™-2016, IEEE Standard for a Transport Protocol for Time-Sensitive Applications in
Bridged Local Area Networks.

[B4] IETF RFC 3985, Bryant, S., Ed., and P. Pate, Ed., Pseudo Wire Emulation Edge-to-Edge (PWE3)
Architecture, DOI 10.17487/RFC3985, March 2005.14

12The IEEE standards or products referred to in Annex D are trademarks owned by The Institute of Electrical and Electronics Engi-
neers, Incorporated.
13IEEE publications are available from The Institute of Electrical and Electronics Engineers (http://standards.ieee.org).
14IETF documents (i.e., RFCs) are available for download at http://www.rfc-archive.org/.

http://standards.ieee.org

IEEE
standards.ieee.org
Phone: +1 732 981 0060 Fax: +1 732 562 1571
© IEEE

	IEEE Std 802.1CB-2017 Front cover
	Title page
	Important Notices and Disclaimers Concerning IEEE Standards Documents
	Participants
	Introduction
	Contents
	List of figures
	List of tables

	1. Overview
	1.1 Scope
	1.2 Rationale
	1.3 State diagram conventions
	1.4 Specification model
	1.5 Specification precedence
	1.6 Introduction

	2. Normative references
	3. Definitions
	4. Acronyms and abbreviations
	5. Conformance
	5.1 Requirements terminology
	5.2 Conformant components and equipment
	5.3 Stream identification component required behaviors
	5.4 Stream identification component recommended behavior
	5.5 Stream identification component optional behaviors
	5.6 Talker end system required behaviors
	5.7 Talker end system recommended behaviors
	5.8 Talker end system optional behaviors
	5.9 Listener end system required behaviors
	5.10 Listener end system recommended behavior
	5.11 Listener end system optional behaviors
	5.12 Relay system required behaviors
	5.13 Relay system recommended behaviors
	5.14 Relay system optional behaviors
	5.15 FRER C-component required and optional behaviors

	6. Stream identification
	6.1 Stream service subparameters
	6.2 Stream identification function
	6.3 Stream identification in systems
	6.4 Null Stream identification
	6.5 Source MAC and VLAN Stream identification
	6.6 Active Destination MAC and VLAN Stream identification
	6.7 IP Stream identification

	7. Frame Replication and Elimination for Reliability
	7.1 Overview of Frame Replication and Elimination for Reliability
	7.1.1 Goals and objectives

	7.2 Use of the term Stream
	7.3 Frame Replication and Elimination for Reliability functions
	7.4 Sequencing function
	7.4.1 Sequence generation function
	7.4.1.1 Events for sequence generation
	7.4.1.2 Variables for sequence generation
	7.4.1.2.1 GenSeqSpace
	7.4.1.2.2 GenSeqNum

	7.4.1.3 SequenceGenerationReset
	7.4.1.4 SequenceGenerationAlgorithm

	7.4.2 Sequence recovery function
	7.4.3 Base recovery function
	7.4.3.1 Events for sequence recovery
	7.4.3.2 Variables for sequence recovery
	7.4.3.2.1 RecovSeqSpace
	7.4.3.2.2 SequenceHistory
	7.4.3.2.3 RecovSeqNum
	7.4.3.2.4 RemainingTicks
	7.4.3.2.5 TicksPerSecond
	7.4.3.2.6 TakeAny

	7.4.3.3 SequenceRecoveryReset
	7.4.3.4 VectorRecoveryAlgorithm
	7.4.3.5 MatchRecoveryAlgorithm
	7.4.3.6 ShiftSequenceHistory

	7.4.4 Latent error detection function
	7.4.4.1 Events for latent error detection
	7.4.4.2 Variables for latent error detection
	7.4.4.2.1 CurBaseDifference

	7.4.4.3 LatentErrorReset
	7.4.4.4 LatentErrorTest

	7.5 Individual recovery function
	7.6 Sequence encode/decode function
	7.7 Stream splitting function
	7.8 Redundancy tag
	7.8.1 Redundancy tag EtherType
	7.8.2 Redundancy tag information

	7.9 HSR sequence tag
	7.10 PRP sequence trailer
	7.11 Autoconfiguration
	7.11.1 Introduction to autoconfiguration
	7.11.2 Creating autoconfigured Stream identity table entries

	8. Frame Replication and Elimination for Reliability in Bridges
	8.1 Limiting options
	8.2 FRER C-component input transformations
	8.3 Frame Replication and Elimination for Reliability and VLAN tags
	8.4 Configuring Frame Replication and Elimination for Reliability in Bridges

	9. Stream Identification Management
	9.1 Stream identity table
	9.1.1 tsnStreamIdEntry
	9.1.1.1 tsnStreamIdHandle
	9.1.1.2 tsnStreamIdInFacOutputPortList
	9.1.1.3 tsnStreamIdOutFacOutputPortList
	9.1.1.4 tsnStreamIdInFacInputPortList
	9.1.1.5 tsnStreamIdOutFacInputPortList
	9.1.1.6 tsnStreamIdIdentificationType
	9.1.1.7 tsnStreamIdParameters

	9.1.2 Managed objects for Null Stream identification
	9.1.2.1 tsnCpeNullDownDestMac
	9.1.2.2 tsnCpeNullDownTagged
	9.1.2.3 tsnCpeNullDownVlan

	9.1.3 Managed objects for Source MAC and VLAN Stream identification
	9.1.3.1 tsnCpeSmacVlanDownSrcMac
	9.1.3.2 tsnCpeSmacVlanDownTagged
	9.1.3.3 tsnCpeSmacVlanDownVlan

	9.1.4 Managed objects for Active Destination MAC and VLAN Stream identifications
	9.1.4.1 tsnCpeDmacVlanDownDestMac
	9.1.4.2 tsnCpeDmacVlanDownTagged
	9.1.4.3 tsnCpeDmacVlanDownVlan
	9.1.4.4 tsnCpeDmacVlanDownPriority
	9.1.4.5 tsnCpeDmacVlanUpDestMac
	9.1.4.6 tsnCpeDmacVlanUpTagged
	9.1.4.7 tsnCpeDmacVlanUpVlan
	9.1.4.8 tsnCpeDmacVlanUpPriority

	9.1.5 Managed objects for IP Stream identification
	9.1.5.1 tsnCpeIpIdDestMac
	9.1.5.2 tsnCpeIpIdTagged
	9.1.5.3 tsnCpeIpIdVlan
	9.1.5.4 tsnCpeIpIdIpSource
	9.1.5.5 tsnCpeIpIdIpDestination
	9.1.5.6 tsnCpeIpIdDscp
	9.1.5.7 tsnCpeIpIdNextProtocol
	9.1.5.8 tsnCpeIpIdSourcePort
	9.1.5.9 tsnCpeIpIdDestinationPort

	9.2 Operational per-port per-Stream Stream identification counters
	9.2.1 tsnCpsSidInputPackets
	9.2.2 tsnCpsSidOutputPackets

	9.3 Operational per-port Stream identification counters
	9.3.1 tsnCpSidInputPackets
	9.3.2 tsnCpSidOutputPackets

	10. Frame Replication and Elimination for Reliability management
	10.1 Counter behavior
	10.2 Additional tsnStreamIdEntry manged objects
	10.2.1 tsnStreamIdAutoconfigured
	10.2.2 tsnStreamIdLanPathId

	10.3 Sequence generation table
	10.3.1 frerSeqGenEntry
	10.3.1.1 frerSeqGenStreamList
	10.3.1.2 frerSeqGenDirection

	10.4 Sequence recovery table
	10.4.1 frerSeqRcvyEntry
	10.4.1.1 frerSeqRcvyStreamList
	10.4.1.2 frerSeqRcvyPortList
	10.4.1.3 frerSeqRcvyDirection
	10.4.1.4 frerSeqRcvyReset
	10.4.1.5 frerSeqRcvyAlgorithm
	10.4.1.6 frerSeqRcvyHistoryLength
	10.4.1.7 frerSeqRcvyResetMSec
	10.4.1.8 frerSeqRcvyInvalidSequenceValue
	10.4.1.9 frerSeqRcvyTakeNoSequence
	10.4.1.10 frerSeqRcvyIndividualRecovery
	10.4.1.11 frerSeqRcvyLatentErrorDetection
	10.4.1.12 Latent error detection managed objects
	10.4.1.12.1 frerSeqRcvyLatentErrorDifference
	10.4.1.12.2 frerSeqRcvyLatentErrorPeriod
	10.4.1.12.3 frerSeqRcvyLatentErrorPaths
	10.4.1.12.4 frerSeqRcvyLatentResetPeriod

	10.5 Sequence identification table
	10.5.1 frerSeqEncEntry
	10.5.1.1 frerSeqEncStreamList
	10.5.1.2 frerSeqEncPort
	10.5.1.3 frerSeqEncDirection
	10.5.1.4 frerSeqEncActive
	10.5.1.5 frerSeqEncEncapsType
	10.5.1.6 frerSeqEncPathIdLanId

	10.6 Stream split table
	10.6.1 frerSplitEntry
	10.6.1.1 frerSplitPort
	10.6.1.2 frerSplitDirection
	10.6.1.3 frerSplitInputIdList
	10.6.1.4 frerSplitOutputIdList

	10.7 Managed objects for autoconfiguration
	10.7.1 Sequence autoconfiguration table
	10.7.1.1 frerAutSeqEntry
	10.7.1.1.1 frerAutSeqSeqEncaps
	10.7.1.1.2 frerAutSeqReceivePortList
	10.7.1.1.3 frerAutSeqTagged
	10.7.1.1.4 frerAutSeqVlan
	10.7.1.1.5 frerAutSeqRecoveryPortList
	10.7.1.1.6 frerAutSeqDestructMSec
	10.7.1.1.7 frerAutSeqResetMSec
	10.7.1.1.8 frerAutSeqAlgorithm
	10.7.1.1.9 frerAutSeqHistoryLength
	10.7.1.1.10 frerAutSeqCreateIndividual
	10.7.1.1.11 frerAutSeqCreateRecovery
	10.7.1.1.12 frerAutSeqLatErrDetection
	10.7.1.1.13 frerAutSeqLatErrDifference
	10.7.1.1.14 frerAutSeqLatErrPeriod
	10.7.1.1.15 frerAutSeqLatErrResetPeriod

	10.7.2 Output autoconfiguration table
	10.7.2.1 frerAutOutEntry
	10.7.2.1.1 frerAutOutPortList
	10.7.2.1.2 frerAutOutEncaps
	10.7.2.1.3 frerAutOutLanPathId

	10.8 Operational per-port and per-Stream FRER counters
	10.8.1 Per-Stream vs. per-Stream-per-port counters
	10.8.2 frerCpsSeqGenResets
	10.8.3 frerCpsSeqRcvyOutOfOrderPackets
	10.8.4 frerCpsSeqRcvyRoguePackets
	10.8.5 frerCpsSeqRcvyPassedPackets
	10.8.6 frerCpsSeqRcvyDiscardedPackets
	10.8.7 frerCpsSeqRcvyLostPackets
	10.8.8 frerCpsSeqRcvyTaglessPackets
	10.8.9 frerCpsSeqRcvyResets
	10.8.10 frerCpsSeqRcvyLatentErrorResets
	10.8.11 frerCpsSeqEncErroredPackets

	10.9 Operational per-port FRER counters
	10.9.1 frerCpSeqRcvyPassedPackets
	10.9.2 frerCpSeqRcvyDiscardPackets
	10.9.3 frerCpSeqEncErroredPackets

	Annex A (normative) Protocol Implementation Conformance Statement (PICS) proforma
	A.1 Introduction
	A.1.1 Abbreviations and special symbols
	A.1.2 Instructions for completing the PICS proforma
	A.1.3 Additional information
	A.1.4 Exceptional information
	A.1.5 Conditional items
	A.1.6 Identification

	A.2 PICS proforma for Frame Replication and Elimination for Reliability
	A.2.1 Major capabilities/options
	A.2.2 Stream identification component
	A.2.3 Talker end system
	A.2.4 Listener end system
	A.2.5 Relay system
	A.2.6 FRER 802.1Q C-component
	A.2.7 Common requirements

	Annex B (informative) Interoperability with other standards
	B.1 Sequence number size
	B.2 Per-Stream versus per-source sequencing

	Annex C (informative) Frame Replication and Elimination for Reliability in systems
	C.1 Example 1: End-to-end FRER
	C.2 Example 2: Various stack positions
	C.3 Example 3: Ladder redundancy
	C.4 Example 4: Multicast trees
	C.5 Example 5: Protocol interworking
	C.6 Example 6: Chained two-port end systems
	C.7 Cautions
	C.8 Balancing tag insertion and removal
	C.9 FRER and reserved bandwidth
	C.10 Use of the Individual recovery function
	C.11 Use of autoconfiguration
	C.11.1 Routing and labeling Member Streams
	C.11.2 Recognizing packets that trigger autoconfiguration
	C.11.3 Per-port packet decoding and encoding
	C.11.4 Individual and Sequence recovery functions

	Annex D (informative) Bibliography

