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Abstract
Many industries, including the automotive 

industry and industrial automation, have a need 
for reliable real-time communication. To satisfy 
this need, industry-specific, often proprietary, solu-
tions have been developed in recent decades. 
Time-sensitive networking (TSN) is addressing a 
grand unification of these existing technologies to 
leverage cross-industry cost efficiency as well as to 
guarantee a stable growth path of communication 
capabilities. 

While the functionality of time-sensitive net-
working is exhaustively standardized in IEEE 802.1, 
configuration standards for TSN are largely miss-
ing. Thus, in this article we review the IEEE TSN 
standards, in particular 802.1Qbv, and continue 
to illustrate a reference model for traffic planning 
for time-sensitive communication. Furthermore, 
the article references a detailed technical report 
describing the complete model, which is ideally 
suited as a starting point for standardization and 
ensures the interoperability of future TSN traffic 
planning tools. 

Introduction
Many modern cyber-physical systems, such as 
automobiles, airplanes, or industrial automation 
systems, are distributed computer systems that 
more and more rely on the capabilities of a real-
time communication network. A typical use case 
of real-time communication networks are closed-
loop control systems in which a physical entity 
and/or its environment is measured by a set of 
sensors, which communicate their sensor readings 
to one or many processors. The processors then 
calculate correcting actions and communicate 
these actions to a set of actuators for execution. 
This triple [sensing, calculating, acting] is often 
executed periodically with application-specific 
frequencies that vary widely with the application 
area. For example, motion control operates in 
the kilohertz range and higher while some auto-
motive systems operate at a few tens of hertz or 
lower. Timely delivery of messages in such control 
systems is essential to ensure proper system oper-
ation. Sometimes timely message delivery is also 
safety critical. In those cases, the network must 
even give a guarantee for the quality of service 
that it claims to provide. Often such a guaran-
tee is at the level of a mathematical correctness 
proof, e.g., in fly-by-wire systems in airplanes. 

Since the traffic in control systems is highly reg-
ular, it can be statically planned at system design 

time. Furthermore, this plan may not only define 
the communication paths and bandwidth reserva-
tions, but also particular points in a network-wide 
reference time at which messages are to be sent 
and forwarded. Such a plan including temporal 
aspects is called a “communication schedule” 
(or short, schedule) and the synchronized exe-
cution of the schedule by network participants is 
often referred to as “time-triggered communica-
tion.” The IEEE 802.1 Time-Sensitive Networking 
Task Group (TSN1) has standardized a specific 
form of time-triggered communication in the 
IEEE 802.1Qbv project that developed “Amend-
ment 25: Enhancements for Scheduled Traffic.” 
The principle of operation is described in clause 
8.6.8.4 of the amendment to the IEEE 802.1Q 
standard [1] as well as later in this article. Thus, 
TSN enables the use of standard Ethernet as a 
real-time communication network. Furthermore, 
TSN allows sharing an Ethernet network between 
multiple time-critical applications as well as non-
time critical applications. This is a significant 
advantage to the current state-of-the-art where 
systems frequently install independent networks 
for different applications. While there exists a 
wide variety of real-time network solutions, many 
of which are Ethernet-based, the standardization 
within IEEE 802.1 promises broad market accep-
tance of TSN and a grand unification of propri-
etary protocols toward a set of open standards.

In this article we focus on the time-triggered 
communication aspects of TSN, in particular on 
the scheduling problem formulation. We are con-
cerned with configuring IEEE 802.1Qbv to min-
imize transmission latency. For this, we assume 
that end stations and switches are able to execute 
the time-triggered paradigm with a sufficient level 
of quality. This may require hardware mechanisms 
to be in place to ensure timely accuracy of the 
execution of transmission and forwarding events 
in end stations and switches. Although we do not 
cover end stations/switches with relaxed timing 
guarantees in this article, future work will address 
how the formalism presented in this article can be 
adopted to also cover less stringent timing guar-
antees.

We continue with a review of the IEEE 802.1 
model of communication including time-triggered 
communication. We define the scheduling prob-
lem in more detail and reference an in-depth tech-
nical article for the complete formal specification. 
One approach to solving the scheduling prob-
lem is by means of general-purpose tools, like 
SMT-solvers, which we discuss. We give a brief 
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overview of related work and then conclude the 
article. 

TSN Time-Triggered 
Communication Principle

System Model
A network can be represented by a graph G = V, 
E, where V is a set of nodes, E is a set of non-di-
rected edges as well as directed edges connecting 
nodes to each other. Each undirected edge (vi, 
vj)  E between two nodes vi, vj  V defines two 
directed edges [vi, vj], [vj, vi]  E between the two 
nodes, where the first node in the pair description 
defines the source node and the second node 
defines the destination node. In a TSN network 
nodes will typically be switches and end stations. 
The undirected edges, on the other hand, could 
be the physical Ethernet links, while the directed 
nodes represent the full-duplex communication 
capablity of each Ethernet link. An example graph 
G with eight nodes and seven undirected edges 
resulting in 14 directed edges is depicted in Fig. 1. 

Nodes communicate with each other by the 
concepts of streams and frames. A stream (or 
flow) is a periodic multicast data transmission 
from one talker (the sender) to one or multiple 
listeners (the receivers). Typically, the senders and 
the receivers will be end stations, while switches 
will just operate as forwarding nodes. We denote 
the set of streams in the network with S. A stream 
si  S from talker node v1 to listener node vn rout-
ed through the intermediary nodes (i.e. switches) 
v2, v3 …, vn–1 is expressed as

si = [[v1, v2], …, [vn–1, vn]].

We assume that for each stream the sender and 
receiver nodes v1, vn, as well as the routed commu-
nication path that connect the sender and receiver 
nodes are known and given. A stream is defined by 
the tuple si.e2e, si.jitter, si.size, si.period, denoting 
the maximum allowed end-to-end latency, the max-
imum allowed jitter, the data size in bytes, and the 
period of the stream, respectively. 

While the stream defines the overall end-to-
end communication between sender and receiv-
ers, the concept of a frame (also called a frame 
instance) identifies a particular message commu-
nicated between any two nodes. In particular, 
each stream si  S defines a frame fi[va,vb] on each 
edge [va, vb], where [va, vb] is part of the routed 
communication path of stream si. The set of all 
frames (from all streams) communicated on [va, 
vb] is defined by F[va,vb]. Each such frame is char-
acterized by a frame length fi[va,vb].L and a frame 
period fi[va,vb].T. The period of the frame is equal 
to the period of the stream while the length of the 
frame is calculated based on the data size of the 
stream and the link speed.

Classical Time-Triggered Communication
In classical time-triggered communication, the 
sender of a frame is configured to transmit 
the frame at a specific point in time fi[va,vb].off-
set. This transmission point in time relates to a 
network-wide reference time, which can be 
established by an appropriate synchronization 
protocol as, for example, IEEE 802.1AS or other 
IEEE 1588 profiles. Such synchronization proto-

cols ensure that any two non-faulty nodes in the 
network maintain synchronized local clocks Ca, 
Cb which are synchronized to each other with a 
known upper bound: |Ca – Cb|  .  is called 
the “precision” and can be determined at system 
design time. Key parameters for the calculation of 
the precision are the hardware characteristics of 
the nodes, in particular the quality of the oscilla-
tors, the network topology, the communication 
medium, as well as the algorithmic properties of 
the synchronization protocol in use. 

In classical time-triggered protocols, the sched-
uling problem is to find the transmission points 
in time fi[va,vb].offset, given the frame properties, 
topology information, and precision as an input. 
Figure 2 (left side) depicts an example commu-
nication scenario in the example network from 
Fig. 1. In this example end stations v1 and v2 both 
send messages 1 and 2 to end station v8. They 
are doing so by transmitting their respective mes-
sages at the transmission points in time indicated 
by black circles to switch v4. Switch v4 then for-
wards the messages to v5, which in turn delivers 
the messages to end station v8. Thus, in this spe-
cific example the scheduling problem is to find 
concrete values for the black circles. 

Since classical time-triggered communication 
has been invented for networks with physical 
bus connections (later on for networks with 
hubs) [2], rather than for switched networks, the 
schedule of the transmission points in time has 
been mandatory and sufficient. Adding time-trig-
gered forwarding capabilities in the switch-
es eases the integration of time-triggered (i.e., 
scheduled) traffic with event-triggered traffic (i.e., 
standard non-time-triggered traffic), and provides 
more scheduling options to improve network 
efficiency. 

Figure 1. Example network.
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There are different options for time-trig-
gered forwarding in a switch. We briefly discuss 
time-triggered switching as a direct extension of 
classical time-triggered communication next, and 
then focus on TSN IEEE 802.1Qbv in the remain-
der of the article. 

Time-Triggered Switching
While in the classical time-triggered commu-
nication approach only the sender node has a 
scheduled transmission point in time fi[va,vb].offset, 
switch-based network architectures provide more 
capabilities for scheduling [3]. In time-triggered 
switching each switch can schedule the forward-
ing points in time per frame as well. An exam-
ple is depicted in the middle of Fig. 2. Again, end 
stations v1 and v2 send messages 1 and 2 to end 
station v8. The messages are dispatched at the 
same points in time as in classical time-triggered 
communication. However, in contrast to classi-
cal time-triggered communication, time-triggered 
switching allows to schedule the points in time 
when the messages are forwarded in the switches 
v4 and v5. 

Again, an example is presented in Fig. 2 (mid-
dle scenario). End stations v1 and v2 dispatch 
frames to switch v4. Switch v4 now has the capa-
bility to schedule new forwarding points in time 
for the frames. In particular, switch v4 reorders 
the two messages and sends message 2 before 
message 1. 

Thus, the scheduling problem for time-trig-
gered switching extends classical time-triggered 
communication from finding exactly one trans-
mission point fi[va,vb].offset for each message fi (va 
being the sender of a stream) to finding a set of 
points in time fi[vx,vy].offset (vx being any node in 
the path of the stream except the last one).

TSN Variation of  
Time-Triggered Communication

While time-triggered switching provides full con-
trol of the timing of each frame in a switch, it 
needs hardware support that is typically not avail-
able in standard IEEE 802.1 switches. In particular, 
frame memory management in a switch would 
need a major re-design as the communication 
schedule could require arbitrary frame reordering 
when forwarding frames (i.e., a frame received 

at a point in time t1 could be scheduled for for-
warding earlier than another frame that has been 
received before t1). This is not the case in IEEE 
802.1 switches that follow a queue-based model 
of communication that handles frames according 
a first-in first-out (FIFO) paradigm. 

This queue-based model of communication is 
depicted in Fig. 3. Here, an overview of a TSN 
switch with four ports is shown. The three ingress 
ports on the left-hand side receive frames that are 
to be forwarded on the egress port on the right-
hand side. As depicted, a switching fabric iden-
tifies the frames on the ingress, typically based 
on information in the Ethernet frame header, and 
assigns them to the egress port. Furthermore, 
the frames will be specifically assigned to one of 
potentially many queues associated with the same 
port. Usually, a defined priority field in the Ether-
net frame is used for queue selection, although 
other possibilities are currently finalizing standard-
ization. 

We assume that each node (i.e., end station 
and switch) implements at least one queue q for 
each directed edge that it sources. For example, 
v4 implements a queue qi[v4,v5] for the edge [v4, 
v5]. For simplicity, in this article we assume only a 
single queue for scheduled traffic. Thus, all sched-
uled frames to be communicated from one node 
to another one will traverse the same queue. The 
generalization of the approach to multiple queues 
is straightforward.

To realize time-triggered communication, TSN 
defines a specific shaping mechanism on how 
frames are selected for transmission from a queue 
(also depicted in Fig. 3). In particular, each queue 
is assigned to a gate and this gate is at any time 
in one of the two states open or close. When the 
gate of a respective queue is in the open state, 
then frames can be selected for transmission on 
the directed edge associated with the queue in 
first-in first-out (FIFO) order. In case the gate of a 
respective queue is in the close state, frames from 
this queue are not selected. The state of a gate 
may change from open to close and vice versa 
from close to open. These state changes are stat-
ically scheduled with respect to a synchronized 
time and defined at design time of the network 
(or through proper re-configuration events in the 
network). Thus, as synchronized time proceeds, a 
node continually checks whether a state change 
for one of its gates is scheduled. If yes, then the 
state change is executed. An example commu-
nication scenario is depicted in Fig. 2 (right-most 
scenario).

Altering states of a queue’s gate define an 
ordered list of transmission windows on a time-
line, i.e., windows during which the gate is in the 
open state. Each window wk

[vi,vj] is defined by a 
left boundary wk

[vi,vj].open and a right boundary 
wk

[vi,vj].close. As we will see later, the maximum 
number of windows Wmax

[vi ,vj ]  per edge will be an 
essential parameter in the performance of the 
schedule synthesis. 

The TSN IEEE 802.1Qbv also contains claus-
es that standardize end station behavior for TSN 
time-triggered behavior. This behavior is analo-
gous to the window-based approach described 
above for switches.

Figure 2 (right) depicts the communication 
scenario as discussed before for classical time-trig-

Figure 3. Overview of a TSN switch.
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gered communication and time-triggered switch-
ing, but this time using window-based scheduling 
as defined in TSN (plus an additional frame 3). As 
depicted, end stations v1 and v2 define windows 
during which messages 1 and 2 are selected for 
transmission to switch v4. The switches v4 and v5, 
then, do not assign forwarding points in time to 
the individual messages, but rather define points 
in time when to change the state of the gate of 
a respective queue from open to close and from 
close to open. 

Thus, the scheduling problem in TSN time-trig-
gered communication is to find the points in time 
for the open wk

[vx,vy].open and closing events wk
[vx-

,vy].close of the gates. 

TSN Scheduling Problem 
Formulation

Open wk
[vx,vy].open and closing events wk

[vx,vy].
close need to be in certain relations to each other. 
These relations can be mathematically expressed 
in the form of (mostly) linear inequalities that we 
call “constraints.” Each constraint by itself has a 
simple form, only relating a couple of parameters 
to each other. However, the number of such con-
straints grows with the number of nodes in the 
topology and quadratic with the number of mes-
sages. Thus, although each individual constraint is 
trivial, the overall scheduling problem will grow in 
complexity because of the high number of con-
straints. For example, industrial-sized case studies 
can easily imply a million constraints and beyond. 
In this section we only briefly illustrate the formal 
specification approach by means of examples. 
The full specification of the scheduling constraints 
that formulate the scheduling problem of a TSN 
network can be found in [4].

Figure 2 depicts the transmission of frames 
1 and 2 from end stations v1 and v2 to end sta-
tion v8 by passing through the switches v4 and 
v5. The frames are transmitted by the end stations 
and switches only when the gate of the associat-
ed queue is in the open state. As depicted, the 
phases when gates are in the open state form win-
dows wi and the traffic scenario in Fig. 2 defines 
five such windows: two for the transmission from 
v1 to v4 (w1

[v1,v4], w2
[v1,v4]) and one window for 

each other link in the transmission paths of frames 
1 and 2. Thus, each of the windows is defined 
by an open and a close event of the respective 
gate, and it is the purpose of the scheduling tool 
to generate concrete values for these events. 

In this example, we assume that we execut-
ed the scheduling tool and the tool returned the 
concrete values t1 ... t10 which are given in the 
brackets next to the open and close events. Of 
course, in a real scenario, these values would 
likely be integer numbers representing concrete 
points in a synchronized time (e.g., as generated 
by IEEE 802.1AS).

The values t1 ... t10 are generated by the 
scheduling tool by searching for a solution that 
satisfies constraints such as described in [4]. By 
reference to Fig. 2 we can explain some of these 
constraints. One rather simple constraint defines 
that the point in time of the close event of a win-
dow is higher than the open event of the very 
same window. Thus, when the tool returns two 
integers t1, t3 and t1< t3, then this constraint is 

said to be “satisfied” (i.e., it is true). Some more 
complex constraints define how messages are 
assigned to windows, constraints on the messag-
es’ end-to-end transmission latencies, as well as 
constraints on the sizes of the windows. For exam-
ple, since window w1

[v4,v5] will transmit two mes-
sages, the difference between the open event and 
the close event of this window needs to be suffi-
ciently large. Thus, the scheduler needs to return 
values t4 and t8 such that (t8 – t4) is high enough. 

Similar to the examples above, the remaining 
constraints that formulate the overall TSN sched-
uling problem do not get much more complicat-
ed. However, since there will be quite a lot of 
such constraints, the task of the scheduling tool 
becomes very difficult. We will discuss some class-
es of scheduling tools in the next sections. 

Scheduling Performance and 
Results

The mathematical formulation of the TSN sched-
uling problem as discussed in the previous sec-
tion enables us to directly encode concrete 
networks and communication needs as input to 
general-purpose tools. For example, SMT-solvers 
(satisfiability modulo theories) are such general 
purpose tools. This encoding serves two main 
purposes. First, schedules can be synthesized in 
some configurations (as we will see later) mere-
ly by pushing a button. Second, in the case that 
a TSN schedule has been calculated by other 
means (e.g., by a heuristic), this solution together 
with the constraints can both be used as input to 
a tool, like an SMT-solver. In this second case the 
SMT-solver will analyze whether the TSN sched-
ule is consistent with the constraints, or not. This 
analysis is a perfect tool for standardization and 
interoperability tests of TSN schedules. Once the 
constraints are standardized, each vendor can 
produce schedules by whatever means and tricks 
available; a successful consistency check with the 
standardized constraints guarantees interoperabil-
ity. The analysis time of such a consistency check 
is typically in seconds even for large networks [3].

To also demonstrate the schedule synthesis 
(and to discuss trade-offs) we have encoded some 
example networks in SMT formulation and syn-
thesized schedules for small to medium sized 
networks. The results of the schedule synthesis is 
presented in Fig. 4 and Fig. 5. 

The figures present the runtime of the window 
scheduler when varying the number of streams 
(10, 25, 50) and the number of windows per 
queue (1, 2, 3, 5). The z-axis is logarithmic. The 
period of all streams is set to 20 ms and the length 
of the frames to 1 MTU size (13 microseconds on 
a 1 Gbit/s link); the granularity of the timeline is 1 
microsecond. The numbers were obtained on an 
Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz with 
8 Gb of RAM.

As expected, the figures demonstrate two 
trade-offs in generating TSN schedules. The first 
trade-off is between the scheduling time (i.e., 
the time duration it takes the tool to generate a 
schedule) and the number of windows per queue. 
As indicated in Fig. 4, the synthesis time of 50 
streams considering a single window is about 10 
milliseconds, while it grows up to about an hour 
for five windows per queue. Thus, the tool does 

Once the constraints are 
standardized, each vendor 

can produce schedules 
by whatever means and 

tricks available; a suc-
cessful consistency check 

with the standardized 
constraints guarantees 

interoperability. The anal-
ysis time of such a con-
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find solutions for one window much faster than 
for multiple windows. However, fewer windows 
also cause higher transmission latencies and jitter 
as indicated by the second trade-off depicted in 
Fig. 5. While the jitter for the scenario with five 
windows is around 10 microseconds, it grows 
beyond 50 microseonds when only a single win-
dow is used. From the two trade-offs we can also 
conclude that schedules with relaxed latency and 
jitter requirements are synthesized faster than 
those with stringent timing constraints. 

While the number of streams is relatively low 
in the examples, scheduling time-triggered sys-
tems is an active field of research and much larger 
instances can be routinely solved today. We will 
briefly discuss some of the approaches and their 
relation to TSN scheduling in the following sec-
tion. 

Related Work
In general, the time-triggered scheduling prob-
lem has been studied in various forms for many 
decades. In an early incarnation the scheduling 

problem was formulated as static cyclic sched-
uling of a task set by Baker et al. in the late 
1980s [5]. More recently, the implementation 
of time-triggered communication in Ethernet has 
been addressed in scheduling research by Hanza-
lek et al. [6] and by Steiner [3]. 

This article continues the approach present-
ed in [3] which demonstrated that the core 
time-triggered configuration problem is a satis-
fiability problem and that SMT-solvers (satisfiability 
modulo theories) are, therefore, an effective tool 
to develop solutions. Indeed, in [3] scheduling 
instances in complex network topologies with up 
to a thousand messages have been solved in min-
utes by means of an incremental scheduling strat-
egy. Following this strategy instead of solving the 
complete schedule at once, the set of messages 
is partitioned and solved in portions incremen-
tally. Furthermore, in recent years this solution 
has been improved by orders of magnitude in 
the number of messages [7] and can now solve 
scheduling problems with hundreds of thousands 
of messages in a reasonable time span. 

Craciunas et al. [8] have demonstrated how 
the scheduling results from time-triggered switch-
ing can be translated to the TSN time-triggered 
communication principle. In contrast to the for-
malization presented in this article, Craciunas et 
al. directly scheduled frame transmissions, like in 
time-triggered switching, and generated a window 
schedule for TSN in a post-synthesis step. While 
this allows the immediate application of existing 
time-triggered switching scheduling techniques, 
it causes restrictions in the generated schedules. 
In particular, the number of windows becomes 
high in relation to the number of frames. The 
direct encoding of the window-based constraints 
removes these restrictions. 

The typical use case of TSN will be converged 
networks, which maintain time-triggered com-
munication side by side with regular and unsyn-
chronized real-time communication. There is also 
an increasing body of research that addresses 
scheduling and calculation of timing bounds for 
unsynchronized traffic in such converged settings. 
For example, Tamas-Selicean et al. [9] solve the 
time-triggered scheduling problem by means of 
meta-heuristics and include transmission latency 
requirements for unsynchronized communication 
in the schedule synthesis process. Thus, while the 
schedule is generated it is guaranteed that timing 
guarantees for the unsynchronized parts of traf-
fic are also met. Zhao et al. [10] extend network 
calculus, a well known technique to determine 
timing bounds on unsynchronized traffic, to con-
verged networks. Thiele et al. [11] provide a for-
mal analysis to analyze the worst-case timing of 
TSN networks. Finally, Ashjaei et al. [12] address 
the behavior of IEEE AVB traffic (IEEE 802.1Qav) 
in the presence of scheduled traffic. 

Conclusion
IEEE 802.1 TSN defines a set of open standards 
for real-time communication and there are 
well-developed adoption strategies in both the 
automotive and industrial industries. While the 
standards cover all functional aspects of TSN, the 
configuration challenge has not been addressed 
so far. Thus, in this article we have illustrated a for-
malization of the scheduling problem for the TSN 

Figure 4. Schedule synthesis time.
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variation of time-triggered communication and 
referenced a technical report with a full formal 
reference model. We furthermore encoded small 
and medium network instances as an input for an 
SMT-solver and synthesized schedules by using 
the SMT-solver as a black box. We also reviewed 
the current body of research in time-triggered 
communication scheduling and discussed a clear 
growth path for performance improvements for 
TSN scheduling. 

As discussed, the formalization of the sched-
uling problem in the form of mathematical con-
straints, as presented in this article, furthermore 
enables automated interoperabilty tests. Thus, this 
formalization ideally serves as a first step toward 
the standardization of TSN traffic planning, to 
ensure the compatibility of upcoming planning 
tools with each other. 

References
[1] “IEEE Draft Standard for Local and Metropolitan Area Net-

works—Bridges and Bridged Networks,” IEEE P802.1Q-REV/
D2.0, July 2017, Jan. 2017, pp. 1–1946.

[2] F. Consortium et al., “Flexray Communications System-Proto-
col Specification,” Version, vol. 2, no. 1, 2005, pp. 198–207.

[3] W. Steiner, “An Evaluation of SMT-based Schedule Synthesis 
for Time-Triggered Multi-Hop Networks,”Real-Time Systems 
Symposium (RTSS), 2010 IEEE 31st, 2010, pp. 375–84.

[4] S. S. Craciunas, R. Serna Oliver, and W. Steiner, “Formal 
Scheduling Constraints for Time-Sensitive Networks,” Sep. 
2017, https://doi.org/10.5281/zenodo.997996 https://
arxiv.org/abs/1712.02246.

[5] T. P. Baker and A. Shaw, “The Cyclic Executive Model and 
Ada,” The J. Real-Time Systems, vol. 1, 1989, pp. 120–29.

[6] Z. Hanzalek, P. Burget, and P. Sucha, “Profinet IO IRT Mes-
sage Scheduling with Temporal Constraints,” IEEE Trans. 
Industrial Informatics, vol. 6, no. 3, 2010, pp. 369–80.

[7] F. Pozo et al., “Period-Aaware Segmented Synthesis of 
Schedules for Multi-Hop Time-Triggered Networks,” 2016 
IEEE 22nd Int’l. Conf. Embedded and Real-Time Computing 
Systems and Applications (RTCSA), 2016, pp. 170–75.

[8] S. S. Craciunas et al., “Scheduling Real-Time Communication 
in IEEE 802.1 Qbv Time Sensitive Networks,” Proc. 24th 
Int’l. Conf. Real-Time Networks and Systems. ACM, 2016, 
pp. 183–92.
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