
42 IEEE Communications Standards Magazine • June 20182471-2825/18/$25.00 © 2018 IEEE

Abstract
Many industries, including the automotive

industry and industrial automation, have a need
for reliable real-time communication. To satisfy
this need, industry-specific, often proprietary, solu-
tions have been developed in recent decades.
Time-sensitive networking (TSN) is addressing a
grand unification of these existing technologies to
leverage cross-industry cost efficiency as well as to
guarantee a stable growth path of communication
capabilities.

While the functionality of time-sensitive net-
working is exhaustively standardized in IEEE 802.1,
configuration standards for TSN are largely miss-
ing. Thus, in this article we review the IEEE TSN
standards, in particular 802.1Qbv, and continue
to illustrate a reference model for traffic planning
for time-sensitive communication. Furthermore,
the article references a detailed technical report
describing the complete model, which is ideally
suited as a starting point for standardization and
ensures the interoperability of future TSN traffic
planning tools.

Introduction
Many modern cyber-physical systems, such as
automobiles, airplanes, or industrial automation
systems, are distributed computer systems that
more and more rely on the capabilities of a real-
time communication network. A typical use case
of real-time communication networks are closed-
loop control systems in which a physical entity
and/or its environment is measured by a set of
sensors, which communicate their sensor readings
to one or many processors. The processors then
calculate correcting actions and communicate
these actions to a set of actuators for execution.
This triple [sensing, calculating, acting] is often
executed periodically with application-specific
frequencies that vary widely with the application
area. For example, motion control operates in
the kilohertz range and higher while some auto-
motive systems operate at a few tens of hertz or
lower. Timely delivery of messages in such control
systems is essential to ensure proper system oper-
ation. Sometimes timely message delivery is also
safety critical. In those cases, the network must
even give a guarantee for the quality of service
that it claims to provide. Often such a guaran-
tee is at the level of a mathematical correctness
proof, e.g., in fly-by-wire systems in airplanes.

Since the traffic in control systems is highly reg-
ular, it can be statically planned at system design

time. Furthermore, this plan may not only define
the communication paths and bandwidth reserva-
tions, but also particular points in a network-wide
reference time at which messages are to be sent
and forwarded. Such a plan including temporal
aspects is called a “communication schedule”
(or short, schedule) and the synchronized exe-
cution of the schedule by network participants is
often referred to as “time-triggered communica-
tion.” The IEEE 802.1 Time-Sensitive Networking
Task Group (TSN1) has standardized a specific
form of time-triggered communication in the
IEEE 802.1Qbv project that developed “Amend-
ment 25: Enhancements for Scheduled Traffic.”
The principle of operation is described in clause
8.6.8.4 of the amendment to the IEEE 802.1Q
standard [1] as well as later in this article. Thus,
TSN enables the use of standard Ethernet as a
real-time communication network. Furthermore,
TSN allows sharing an Ethernet network between
multiple time-critical applications as well as non-
time critical applications. This is a significant
advantage to the current state-of-the-art where
systems frequently install independent networks
for different applications. While there exists a
wide variety of real-time network solutions, many
of which are Ethernet-based, the standardization
within IEEE 802.1 promises broad market accep-
tance of TSN and a grand unification of propri-
etary protocols toward a set of open standards.

In this article we focus on the time-triggered
communication aspects of TSN, in particular on
the scheduling problem formulation. We are con-
cerned with configuring IEEE 802.1Qbv to min-
imize transmission latency. For this, we assume
that end stations and switches are able to execute
the time-triggered paradigm with a sufficient level
of quality. This may require hardware mechanisms
to be in place to ensure timely accuracy of the
execution of transmission and forwarding events
in end stations and switches. Although we do not
cover end stations/switches with relaxed timing
guarantees in this article, future work will address
how the formalism presented in this article can be
adopted to also cover less stringent timing guar-
antees.

We continue with a review of the IEEE 802.1
model of communication including time-triggered
communication. We define the scheduling prob-
lem in more detail and reference an in-depth tech-
nical article for the complete formal specification.
One approach to solving the scheduling prob-
lem is by means of general-purpose tools, like
SMT-solvers, which we discuss. We give a brief

Wilfried Steiner, Silviu S. Craciunas, and Ramon Serna Oliver

1 http://www.ieee802.
org/1/pages/tsn.html

TIME-SENSITIVE NETWORKING STANDARDS

The authors are with TTTech Computertechnik AG.

Traffic Planning for
Time-Sensitive Communication

Digital Object Identifier:
10.1109/MCOMSTD.2018.1700055

Authorized licensed use limited to: Linkoping University Library. Downloaded on November 22,2021 at 23:30:43 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 2018 43

overview of related work and then conclude the
article.

TSN Time-Triggered
Communication Principle

System Model
A network can be represented by a graph G = V,
E, where V is a set of nodes, E is a set of non-di-
rected edges as well as directed edges connecting
nodes to each other. Each undirected edge (vi,
vj)  E between two nodes vi, vj  V defines two
directed edges [vi, vj], [vj, vi]  E between the two
nodes, where the first node in the pair description
defines the source node and the second node
defines the destination node. In a TSN network
nodes will typically be switches and end stations.
The undirected edges, on the other hand, could
be the physical Ethernet links, while the directed
nodes represent the full-duplex communication
capablity of each Ethernet link. An example graph
G with eight nodes and seven undirected edges
resulting in 14 directed edges is depicted in Fig. 1.

Nodes communicate with each other by the
concepts of streams and frames. A stream (or
flow) is a periodic multicast data transmission
from one talker (the sender) to one or multiple
listeners (the receivers). Typically, the senders and
the receivers will be end stations, while switches
will just operate as forwarding nodes. We denote
the set of streams in the network with S. A stream
si  S from talker node v1 to listener node vn rout-
ed through the intermediary nodes (i.e. switches)
v2, v3 …, vn–1 is expressed as

si = [[v1, v2], …, [vn–1, vn]].

We assume that for each stream the sender and
receiver nodes v1, vn, as well as the routed commu-
nication path that connect the sender and receiver
nodes are known and given. A stream is defined by
the tuple si.e2e, si.jitter, si.size, si.period, denoting
the maximum allowed end-to-end latency, the max-
imum allowed jitter, the data size in bytes, and the
period of the stream, respectively.

While the stream defines the overall end-to-
end communication between sender and receiv-
ers, the concept of a frame (also called a frame
instance) identifies a particular message commu-
nicated between any two nodes. In particular,
each stream si  S defines a frame fi[va,vb] on each
edge [va, vb], where [va, vb] is part of the routed
communication path of stream si. The set of all
frames (from all streams) communicated on [va,
vb] is defined by F[va,vb]. Each such frame is char-
acterized by a frame length fi[va,vb].L and a frame
period fi[va,vb].T. The period of the frame is equal
to the period of the stream while the length of the
frame is calculated based on the data size of the
stream and the link speed.

Classical Time-Triggered Communication
In classical time-triggered communication, the
sender of a frame is configured to transmit
the frame at a specific point in time fi[va,vb].off-
set. This transmission point in time relates to a
network-wide reference time, which can be
established by an appropriate synchronization
protocol as, for example, IEEE 802.1AS or other
IEEE 1588 profiles. Such synchronization proto-

cols ensure that any two non-faulty nodes in the
network maintain synchronized local clocks Ca,
Cb which are synchronized to each other with a
known upper bound: |Ca – Cb|  .  is called
the “precision” and can be determined at system
design time. Key parameters for the calculation of
the precision are the hardware characteristics of
the nodes, in particular the quality of the oscilla-
tors, the network topology, the communication
medium, as well as the algorithmic properties of
the synchronization protocol in use.

In classical time-triggered protocols, the sched-
uling problem is to find the transmission points
in time fi[va,vb].offset, given the frame properties,
topology information, and precision as an input.
Figure 2 (left side) depicts an example commu-
nication scenario in the example network from
Fig. 1. In this example end stations v1 and v2 both
send messages 1 and 2 to end station v8. They
are doing so by transmitting their respective mes-
sages at the transmission points in time indicated
by black circles to switch v4. Switch v4 then for-
wards the messages to v5, which in turn delivers
the messages to end station v8. Thus, in this spe-
cific example the scheduling problem is to find
concrete values for the black circles.

Since classical time-triggered communication
has been invented for networks with physical
bus connections (later on for networks with
hubs) [2], rather than for switched networks, the
schedule of the transmission points in time has
been mandatory and sufficient. Adding time-trig-
gered forwarding capabilities in the switch-
es eases the integration of time-triggered (i.e.,
scheduled) traffic with event-triggered traffic (i.e.,
standard non-time-triggered traffic), and provides
more scheduling options to improve network
efficiency.

Figure 1. Example network.

v7

v8

v5v4

v1

v2

v3 v6

Figure 2. Communication scenarios in classical TT, TT switching, and TSN

Classical time-triggered
communication

Time-triggered
switching TSN IEEE 802.1Qbv

Close
(t10)

Close (t3)

Close (t8)

Close (t5)

Open (t1)

Open (t2)

Open (t4)

Close (t9)Open (t6)

Open
(t7)

w2
[v1,v4]w1

[v1,v4]

w1
[v2,v4]

w1
[v4,v5]

v1→v4

v2→v4

v4→v5

v5→v8

1 1 Gate

Gate

Gate

Gate

1 3

2 2 2

1 2 2 1 1 2

w1
[v5,v8]

2 11 2 1 2

Authorized licensed use limited to: Linkoping University Library. Downloaded on November 22,2021 at 23:30:43 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 201844

There are different options for time-trig-
gered forwarding in a switch. We briefly discuss
time-triggered switching as a direct extension of
classical time-triggered communication next, and
then focus on TSN IEEE 802.1Qbv in the remain-
der of the article.

Time-Triggered Switching
While in the classical time-triggered commu-
nication approach only the sender node has a
scheduled transmission point in time fi[va,vb].offset,
switch-based network architectures provide more
capabilities for scheduling [3]. In time-triggered
switching each switch can schedule the forward-
ing points in time per frame as well. An exam-
ple is depicted in the middle of Fig. 2. Again, end
stations v1 and v2 send messages 1 and 2 to end
station v8. The messages are dispatched at the
same points in time as in classical time-triggered
communication. However, in contrast to classi-
cal time-triggered communication, time-triggered
switching allows to schedule the points in time
when the messages are forwarded in the switches
v4 and v5.

Again, an example is presented in Fig. 2 (mid-
dle scenario). End stations v1 and v2 dispatch
frames to switch v4. Switch v4 now has the capa-
bility to schedule new forwarding points in time
for the frames. In particular, switch v4 reorders
the two messages and sends message 2 before
message 1.

Thus, the scheduling problem for time-trig-
gered switching extends classical time-triggered
communication from finding exactly one trans-
mission point fi[va,vb].offset for each message fi (va
being the sender of a stream) to finding a set of
points in time fi[vx,vy].offset (vx being any node in
the path of the stream except the last one).

TSN Variation of
Time-Triggered Communication

While time-triggered switching provides full con-
trol of the timing of each frame in a switch, it
needs hardware support that is typically not avail-
able in standard IEEE 802.1 switches. In particular,
frame memory management in a switch would
need a major re-design as the communication
schedule could require arbitrary frame reordering
when forwarding frames (i.e., a frame received

at a point in time t1 could be scheduled for for-
warding earlier than another frame that has been
received before t1). This is not the case in IEEE
802.1 switches that follow a queue-based model
of communication that handles frames according
a first-in first-out (FIFO) paradigm.

This queue-based model of communication is
depicted in Fig. 3. Here, an overview of a TSN
switch with four ports is shown. The three ingress
ports on the left-hand side receive frames that are
to be forwarded on the egress port on the right-
hand side. As depicted, a switching fabric iden-
tifies the frames on the ingress, typically based
on information in the Ethernet frame header, and
assigns them to the egress port. Furthermore,
the frames will be specifically assigned to one of
potentially many queues associated with the same
port. Usually, a defined priority field in the Ether-
net frame is used for queue selection, although
other possibilities are currently finalizing standard-
ization.

We assume that each node (i.e., end station
and switch) implements at least one queue q for
each directed edge that it sources. For example,
v4 implements a queue qi[v4,v5] for the edge [v4,
v5]. For simplicity, in this article we assume only a
single queue for scheduled traffic. Thus, all sched-
uled frames to be communicated from one node
to another one will traverse the same queue. The
generalization of the approach to multiple queues
is straightforward.

To realize time-triggered communication, TSN
defines a specific shaping mechanism on how
frames are selected for transmission from a queue
(also depicted in Fig. 3). In particular, each queue
is assigned to a gate and this gate is at any time
in one of the two states open or close. When the
gate of a respective queue is in the open state,
then frames can be selected for transmission on
the directed edge associated with the queue in
first-in first-out (FIFO) order. In case the gate of a
respective queue is in the close state, frames from
this queue are not selected. The state of a gate
may change from open to close and vice versa
from close to open. These state changes are stat-
ically scheduled with respect to a synchronized
time and defined at design time of the network
(or through proper re-configuration events in the
network). Thus, as synchronized time proceeds, a
node continually checks whether a state change
for one of its gates is scheduled. If yes, then the
state change is executed. An example commu-
nication scenario is depicted in Fig. 2 (right-most
scenario).

Altering states of a queue’s gate define an
ordered list of transmission windows on a time-
line, i.e., windows during which the gate is in the
open state. Each window wk

[vi,vj] is defined by a
left boundary wk

[vi,vj].open and a right boundary
wk

[vi,vj].close. As we will see later, the maximum
number of windows Wmax

[vi ,vj] per edge will be an
essential parameter in the performance of the
schedule synthesis.

The TSN IEEE 802.1Qbv also contains claus-
es that standardize end station behavior for TSN
time-triggered behavior. This behavior is analo-
gous to the window-based approach described
above for switches.

Figure 2 (right) depicts the communication
scenario as discussed before for classical time-trig-

Figure 3. Overview of a TSN switch.

Queue of
traffic class 0 Gate

Queue of
traffic class 1 Gate

Queue of
traffic class 7 Gate

Tr
an

sm
iss

io
n

se
le

cti
on

Time-aware shaping

Synchronized clock Schedule
T00: Oc...O
T01: cO...O

• • •

Switching
fabric

•••

Authorized licensed use limited to: Linkoping University Library. Downloaded on November 22,2021 at 23:30:43 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 2018 45

gered communication and time-triggered switch-
ing, but this time using window-based scheduling
as defined in TSN (plus an additional frame 3). As
depicted, end stations v1 and v2 define windows
during which messages 1 and 2 are selected for
transmission to switch v4. The switches v4 and v5,
then, do not assign forwarding points in time to
the individual messages, but rather define points
in time when to change the state of the gate of
a respective queue from open to close and from
close to open.

Thus, the scheduling problem in TSN time-trig-
gered communication is to find the points in time
for the open wk

[vx,vy].open and closing events wk
[vx-

,vy].close of the gates.

TSN Scheduling Problem
Formulation

Open wk
[vx,vy].open and closing events wk

[vx,vy].
close need to be in certain relations to each other.
These relations can be mathematically expressed
in the form of (mostly) linear inequalities that we
call “constraints.” Each constraint by itself has a
simple form, only relating a couple of parameters
to each other. However, the number of such con-
straints grows with the number of nodes in the
topology and quadratic with the number of mes-
sages. Thus, although each individual constraint is
trivial, the overall scheduling problem will grow in
complexity because of the high number of con-
straints. For example, industrial-sized case studies
can easily imply a million constraints and beyond.
In this section we only briefly illustrate the formal
specification approach by means of examples.
The full specification of the scheduling constraints
that formulate the scheduling problem of a TSN
network can be found in [4].

Figure 2 depicts the transmission of frames
1 and 2 from end stations v1 and v2 to end sta-
tion v8 by passing through the switches v4 and
v5. The frames are transmitted by the end stations
and switches only when the gate of the associat-
ed queue is in the open state. As depicted, the
phases when gates are in the open state form win-
dows wi and the traffic scenario in Fig. 2 defines
five such windows: two for the transmission from
v1 to v4 (w1

[v1,v4], w2
[v1,v4]) and one window for

each other link in the transmission paths of frames
1 and 2. Thus, each of the windows is defined
by an open and a close event of the respective
gate, and it is the purpose of the scheduling tool
to generate concrete values for these events.

In this example, we assume that we execut-
ed the scheduling tool and the tool returned the
concrete values t1 ... t10 which are given in the
brackets next to the open and close events. Of
course, in a real scenario, these values would
likely be integer numbers representing concrete
points in a synchronized time (e.g., as generated
by IEEE 802.1AS).

The values t1 ... t10 are generated by the
scheduling tool by searching for a solution that
satisfies constraints such as described in [4]. By
reference to Fig. 2 we can explain some of these
constraints. One rather simple constraint defines
that the point in time of the close event of a win-
dow is higher than the open event of the very
same window. Thus, when the tool returns two
integers t1, t3 and t1< t3, then this constraint is

said to be “satisfied” (i.e., it is true). Some more
complex constraints define how messages are
assigned to windows, constraints on the messag-
es’ end-to-end transmission latencies, as well as
constraints on the sizes of the windows. For exam-
ple, since window w1

[v4,v5] will transmit two mes-
sages, the difference between the open event and
the close event of this window needs to be suffi-
ciently large. Thus, the scheduler needs to return
values t4 and t8 such that (t8 – t4) is high enough.

Similar to the examples above, the remaining
constraints that formulate the overall TSN sched-
uling problem do not get much more complicat-
ed. However, since there will be quite a lot of
such constraints, the task of the scheduling tool
becomes very difficult. We will discuss some class-
es of scheduling tools in the next sections.

Scheduling Performance and
Results

The mathematical formulation of the TSN sched-
uling problem as discussed in the previous sec-
tion enables us to directly encode concrete
networks and communication needs as input to
general-purpose tools. For example, SMT-solvers
(satisfiability modulo theories) are such general
purpose tools. This encoding serves two main
purposes. First, schedules can be synthesized in
some configurations (as we will see later) mere-
ly by pushing a button. Second, in the case that
a TSN schedule has been calculated by other
means (e.g., by a heuristic), this solution together
with the constraints can both be used as input to
a tool, like an SMT-solver. In this second case the
SMT-solver will analyze whether the TSN sched-
ule is consistent with the constraints, or not. This
analysis is a perfect tool for standardization and
interoperability tests of TSN schedules. Once the
constraints are standardized, each vendor can
produce schedules by whatever means and tricks
available; a successful consistency check with the
standardized constraints guarantees interoperabil-
ity. The analysis time of such a consistency check
is typically in seconds even for large networks [3].

To also demonstrate the schedule synthesis
(and to discuss trade-offs) we have encoded some
example networks in SMT formulation and syn-
thesized schedules for small to medium sized
networks. The results of the schedule synthesis is
presented in Fig. 4 and Fig. 5.

The figures present the runtime of the window
scheduler when varying the number of streams
(10, 25, 50) and the number of windows per
queue (1, 2, 3, 5). The z-axis is logarithmic. The
period of all streams is set to 20 ms and the length
of the frames to 1 MTU size (13 microseconds on
a 1 Gbit/s link); the granularity of the timeline is 1
microsecond. The numbers were obtained on an
Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz with
8 Gb of RAM.

As expected, the figures demonstrate two
trade-offs in generating TSN schedules. The first
trade-off is between the scheduling time (i.e.,
the time duration it takes the tool to generate a
schedule) and the number of windows per queue.
As indicated in Fig. 4, the synthesis time of 50
streams considering a single window is about 10
milliseconds, while it grows up to about an hour
for five windows per queue. Thus, the tool does

Once the constraints are
standardized, each vendor

can produce schedules
by whatever means and

tricks available; a suc-
cessful consistency check

with the standardized
constraints guarantees

interoperability. The anal-
ysis time of such a con-

sistency check is typically
in seconds even for large

networks.

Authorized licensed use limited to: Linkoping University Library. Downloaded on November 22,2021 at 23:30:43 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 201846

find solutions for one window much faster than
for multiple windows. However, fewer windows
also cause higher transmission latencies and jitter
as indicated by the second trade-off depicted in
Fig. 5. While the jitter for the scenario with five
windows is around 10 microseconds, it grows
beyond 50 microseonds when only a single win-
dow is used. From the two trade-offs we can also
conclude that schedules with relaxed latency and
jitter requirements are synthesized faster than
those with stringent timing constraints.

While the number of streams is relatively low
in the examples, scheduling time-triggered sys-
tems is an active field of research and much larger
instances can be routinely solved today. We will
briefly discuss some of the approaches and their
relation to TSN scheduling in the following sec-
tion.

Related Work
In general, the time-triggered scheduling prob-
lem has been studied in various forms for many
decades. In an early incarnation the scheduling

problem was formulated as static cyclic sched-
uling of a task set by Baker et al. in the late
1980s [5]. More recently, the implementation
of time-triggered communication in Ethernet has
been addressed in scheduling research by Hanza-
lek et al. [6] and by Steiner [3].

This article continues the approach present-
ed in [3] which demonstrated that the core
time-triggered configuration problem is a satis-
fiability problem and that SMT-solvers (satisfiability
modulo theories) are, therefore, an effective tool
to develop solutions. Indeed, in [3] scheduling
instances in complex network topologies with up
to a thousand messages have been solved in min-
utes by means of an incremental scheduling strat-
egy. Following this strategy instead of solving the
complete schedule at once, the set of messages
is partitioned and solved in portions incremen-
tally. Furthermore, in recent years this solution
has been improved by orders of magnitude in
the number of messages [7] and can now solve
scheduling problems with hundreds of thousands
of messages in a reasonable time span.

Craciunas et al. [8] have demonstrated how
the scheduling results from time-triggered switch-
ing can be translated to the TSN time-triggered
communication principle. In contrast to the for-
malization presented in this article, Craciunas et
al. directly scheduled frame transmissions, like in
time-triggered switching, and generated a window
schedule for TSN in a post-synthesis step. While
this allows the immediate application of existing
time-triggered switching scheduling techniques,
it causes restrictions in the generated schedules.
In particular, the number of windows becomes
high in relation to the number of frames. The
direct encoding of the window-based constraints
removes these restrictions.

The typical use case of TSN will be converged
networks, which maintain time-triggered com-
munication side by side with regular and unsyn-
chronized real-time communication. There is also
an increasing body of research that addresses
scheduling and calculation of timing bounds for
unsynchronized traffic in such converged settings.
For example, Tamas-Selicean et al. [9] solve the
time-triggered scheduling problem by means of
meta-heuristics and include transmission latency
requirements for unsynchronized communication
in the schedule synthesis process. Thus, while the
schedule is generated it is guaranteed that timing
guarantees for the unsynchronized parts of traf-
fic are also met. Zhao et al. [10] extend network
calculus, a well known technique to determine
timing bounds on unsynchronized traffic, to con-
verged networks. Thiele et al. [11] provide a for-
mal analysis to analyze the worst-case timing of
TSN networks. Finally, Ashjaei et al. [12] address
the behavior of IEEE AVB traffic (IEEE 802.1Qav)
in the presence of scheduled traffic.

Conclusion
IEEE 802.1 TSN defines a set of open standards
for real-time communication and there are
well-developed adoption strategies in both the
automotive and industrial industries. While the
standards cover all functional aspects of TSN, the
configuration challenge has not been addressed
so far. Thus, in this article we have illustrated a for-
malization of the scheduling problem for the TSN

Figure 4. Schedule synthesis time.

Streams (frames)
Windows per port

Runtime

10 switches | 50 end-systems | cycle 5 ms | frame length 13 s

10(39)

10 ms

1 sec

1 min

10 min

100 min
100 min

20(75)
30(109)

40(136)
50(175)

1
2

3
4

5

10 min

1 min

1 sec

10 ms

Figure 5. Schedule quality.

Windows per port
Streams (frames)

Avg. jitter

10 switches | 50 end-systems | cycle 5 ms | frame length 13 s

1

0 s

10 s

20 s

30 s

40 s

50 s
50 s

2
3

4
5

10(39)
20(75)

30(109)
40(136)

50(175)

40 s

30 s

20 s

10 s

0 s

Authorized licensed use limited to: Linkoping University Library. Downloaded on November 22,2021 at 23:30:43 UTC from IEEE Xplore. Restrictions apply.

IEEE Communications Standards Magazine • June 2018 47

variation of time-triggered communication and
referenced a technical report with a full formal
reference model. We furthermore encoded small
and medium network instances as an input for an
SMT-solver and synthesized schedules by using
the SMT-solver as a black box. We also reviewed
the current body of research in time-triggered
communication scheduling and discussed a clear
growth path for performance improvements for
TSN scheduling.

As discussed, the formalization of the sched-
uling problem in the form of mathematical con-
straints, as presented in this article, furthermore
enables automated interoperabilty tests. Thus, this
formalization ideally serves as a first step toward
the standardization of TSN traffic planning, to
ensure the compatibility of upcoming planning
tools with each other.

References
[1] “IEEE Draft Standard for Local and Metropolitan Area Net-

works—Bridges and Bridged Networks,” IEEE P802.1Q-REV/
D2.0, July 2017, Jan. 2017, pp. 1–1946.

[2] F. Consortium et al., “Flexray Communications System-Proto-
col Specification,” Version, vol. 2, no. 1, 2005, pp. 198–207.

[3] W. Steiner, “An Evaluation of SMT-based Schedule Synthesis
for Time-Triggered Multi-Hop Networks,”Real-Time Systems
Symposium (RTSS), 2010 IEEE 31st, 2010, pp. 375–84.

[4] S. S. Craciunas, R. Serna Oliver, and W. Steiner, “Formal
Scheduling Constraints for Time-Sensitive Networks,” Sep.
2017, https://doi.org/10.5281/zenodo.997996 https://
arxiv.org/abs/1712.02246.

[5] T. P. Baker and A. Shaw, “The Cyclic Executive Model and
Ada,” The J. Real-Time Systems, vol. 1, 1989, pp. 120–29.

[6] Z. Hanzalek, P. Burget, and P. Sucha, “Profinet IO IRT Mes-
sage Scheduling with Temporal Constraints,” IEEE Trans.
Industrial Informatics, vol. 6, no. 3, 2010, pp. 369–80.

[7] F. Pozo et al., “Period-Aaware Segmented Synthesis of
Schedules for Multi-Hop Time-Triggered Networks,” 2016
IEEE 22nd Int’l. Conf. Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2016, pp. 170–75.

[8] S. S. Craciunas et al., “Scheduling Real-Time Communication
in IEEE 802.1 Qbv Time Sensitive Networks,” Proc. 24th
Int’l. Conf. Real-Time Networks and Systems. ACM, 2016,
pp. 183–92.

[9] D. Tămaş-Selicean, P. Pop, and W. Steiner, “Design Optimi-
zation of TTEthernet-based Distributed Real-Time Systems,”
Real-Time Systems, vol. 51, no. 1, 2015, pp. 1–35.

[10] L. Zhao et al., “Timing Analysis of Rate-Constrained Traffic
in TTEthernet Using Network Calculus,” Real-Time Systems,
vol. 53, no. 2, 2017, pp. 254–87.

[11] D. Thiele, R. Ernst, and J. Diemer, “Formal Worst-Case Tim-
ing Analysis of Ethernet TSN’s Time-Aware and Peristaltic
Shapers,” 2015 IEEE Vehic. Net. Conf. (VNC), 2015, pp.
251–58.

[12] M. Ashjaei et al., “Schedulability Analysis of Ethernet Audio
Video Bridging Networks with Scheduled Traffic Support,”
Real-Time Systems, vol. 53, no. 4, 2017, pp. 526–77.

Biographies
Wilfried Steiner (wilfried.steiner@tttech.com) is a corporate
scientist at TTTech Computertechnik AG and Leader of the
research team TTTech Labs. He holds a degree of Doctor of
Technical Sciences from the Vienna University of Technology,
Austria. His research is focused on the design of systems and
network protocols with real-time, dependability, and security
requirements. Target areas are automotive, space, aerospace,
and more recently the Industrial Internet of Things.

Silviu S. Craciunas is a core architect at TTTech Computertech-
nik AG, Vienna, working on scheduling algorithms for time-trig-
gered networks and real-time operating systems. He received his
Ph.D. in 2010 from the University of Salzburg, Austria, and his
Ing. Dipl. from the Politechnica University of Timisoara, Romania
in 2005. His research interests include real-time and safety-criti-
cal systems, real-time scheduling algorithms, power-aware com-
puting, and deterministic real-time networks.

Ramon Serna Oliver works as core architect in the Determinis-
tic Ethernet Core group in TTTech Computertechnik AG, Vien-
na, Austria. He received his Ph.D. (Dr.-Ing) in 2010 from the
Chair of Real-Time Systems in TU Kaiserslautern, Germany. He
also holds a computer engineer diploma from the University of
Balearic Islands, Spain. His research interests include scheduling
algorithms for time-triggered systems, deterministic wired and
wireless communications, and network synchronization aspects
and quality of service trade-offs.

The formalization of the
scheduling problem in

the form of mathematical
constraints, as presented

in this article, further-
more enables automated

interoperabilty tests.
Thus, this formalization
ideally serves as a first

step toward the stan-
dardization of TSN traffic

planning, to ensure the
compatibility of upcoming

planning tools with
each other.

Authorized licensed use limited to: Linkoping University Library. Downloaded on November 22,2021 at 23:30:43 UTC from IEEE Xplore. Restrictions apply.

