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Abstract—Time Sensitive Networks (TSN) emerge as the
set of sub-standards incorporating real-time support as an
extension of standard Ethernet. In particular, IEEE 802.1Qbv
defines a time-triggered communication paradigm with the
addition of a time-aware shaper governing the selection of
frames at the egress queues according to a predefined schedule,
encoded in so-called Gate Control Lists (GCL). Nonetheless,
the design of compositional systems with real-time demands
requires a proper configuration of these mechanisms to truly
achieve the temporal isolation of communication streams with
end-to-end timeliness guarantees. In this paper we address how
the synthesis of communication schedules for GCLs defined in
IEEE 802.1Qbv can be formalized as a system of constraints
expressed via first-order theory of arrays (TA). We formulate
the necessary constraints showing the suitability of the theory
of arrays and discuss optimization opportunities arising from
the underlying scheduling problem. Our evaluation using
general-purpose SMT/OMT solvers proves the validity of the
approach, scaling well for small- to medium-networks, and
exposing trade-offs for the time needed to synthesize a schedule.
Furthermore, we conduct a comparison against previous work
and conclude the appropriateness of the method as the basis
for future TSN scheduling tools.

I. INTRODUCTION

Deterministic real-time communication has long been a

requirement in the aerospace domain [1]. The strictness of

certification and industry practices are only satisfied if suffi-

cient proofs of evidence guarantee the deterministic behavior

of static configurations, which are often deployed in pro-

duction programs spanning over several decades. In recent

years, fast-moving markets like automotive and industrial

automation are increasingly joining the trend of deterministic

networking albeit being reluctant to accept a detriment

when it comes to generalized networking features, like high

communication speeds, near-to-full bandwidth utilization,

off-the-shelf component availability, or the capability of

dynamic reconfiguration.

The IEEE 802.1 Time Sensitive Networking (TSN) task
group [2] has been active standardizing time-sensitive capa-

bilities for Ethernet networks ranging from distributed clock

synchronization [3] and time-based ingress policing [4] to

frame preemption [5], redundancy management [6], and

scheduled traffic enhancements [7].

Two of these features, when combined, lay the foundation

for a standardized time-triggered communication paradigm

guaranteeing strict real-time communication and, at the same

time, introducing stream isolation mechanisms enabling

compositional system designs [8]. Namely,

• IEEE 802.1ASrev [3] defines a time-synchronization

protocol implementing a global clock reference with

basic fault-tolerance mechanisms.

• IEEE 802.1Qbv [7] specifies the time-aware shaper
functionality implementing the time-triggered

paradigm [9] at the egress ports of communicating

nodes.

The time-aware shaper defined in IEEE 802.1Qbv [7] is

essentially a gate mechanism dynamically enabling or dis-

abling the selection of frames from egress queues based on

a predefined cyclic schedule referred to as the Gate Control
List (GCL). More precisely, 802.1Qbv defines one timed-
gate on the egress side for each priority queue in a port,

which at a given time can be in one of two defined states:

open or close. When the gate is in the open state, frames

may be selected from the respective queue for transmission

to the physical link in first-in first-out (FIFO) order. If the

gate is in the close state, frames from the respective queue

are not selected. A priority-based arbitration or credit-based
shaper is then applied among all opened queues.

State changes are calculated offline and configured with

their predefined activation time via entries in the GCL. Later,

in a deployed network, each egress port is timely configured

at run-time following its own GCL, executed synchronously

based on the global notion of time.
Figure 1 depicts a simplified logical representation of an

802.1Qbv-capable switch. In the example, streams coming

from ports A and B (ingress) are routed to port C (egress).

Internally, a switching fabric determines to which output

port a frame is to be routed and assigns it to a queue (or

traffic class) in the respective egress port. This assignment

is based on criteria like the priority code point of the IEEE

802.1Q header or the priority table of the IEEE 802.1Qci

per stream filtering functionality. All ports in an 802.1Qbv-

enabled switch will have an equivalent logical composition

as the one depicted, including a number (typically 8) of

logical egress queues. In practice, a subset of the queues

may be reserved at design-time for scheduled streams and

the remainder used to isolate non-scheduled traffic [10].
We trace an equivalence between the problem of schedul-

ing timed-gates and scheduling gate windows by noting that

encoded in the GCL entries is an ordered list of transmission

windows on the time domain, i.e., intervals in which a
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Figure 1. Simplified view of an 802.1Qbv-capable switch.

gate remains in the open state. Each window is in itself

defined by a left boundary and a right boundary marking

the time instants where the gate state transitions to open
and, respectively, close.

The scheduling problem is approached via the formula-

tion of constraints to compute window intervals which are

directly mapped to entries in the GCL. These constraints

express dependencies between variables denoting among

others the open and close instants of time for scheduled

windows as well as the frame-to-queue and frame-to-window
assignments.

To the best of our knowledge, our work is the first to

directly address the scheduling problem of windows. In [10]

a transmission offset is computed for each individual frame

in the network deriving the events encoded in the GCL in

a post-processing step. While this is in principle a valid

approach it introduces several limitations. Namely, that the

schedule of individual frames leads in practice to a large

number of events as they are freely placed in the timeline.

Consequently, the post-processing step may easily exceed

the length of a GCL, expected to range from 8 to 1024
entries for typical nodes implementing IEEE 802.1Qbv.

In addition, the time granularity used by the scheduler

(so-called macrotick) generates unnecessary gaps between

scheduled frames, even when their offsets are computed to

be one after the other, causing a detriment in the available

bandwidth for non-scheduled traffic. Lastly, the strictly-

periodic communication model may significantly reduce the

solution space due to the global enforcement of 0-jitter

transmissions.

The goal of this work is particularly concentrated on the

suitability analysis of first-order theory of arrays for the for-

mal specification of scheduling constraints allowing a direct

encoding via the GCL of IEEE 802.1Qbv-capable nodes.

The formalization theory applied in the specification of a

system of constraints may enable the use of dedicated tools

like specialized solvers to search for a satisfiable solution.

In this paper, we particularly address the appropriateness of

first-order theory of arrays as a suitable means of specifying

the set of constraints for the gate operations (open and close)

incorporating the size of the GCL as an input bound to the

scheduler, hence showing how the satisfiability of the system

can be solved with the use of general-purpose SMT solvers.

The first-order theory of arrays (TA) is built around two

operations: select, used to return an element of an array from

a certain index, and store, used to write an element into an

array at a certain index. In addition to the usual operators

from linear integer arithmetic, we use the syntax presented

in [11] to introduce array theory and express the scheduler

constraints in the following sections. Usually, the signature

of TA is defined as
∑

A : {· [· ], · 〈·←· 〉,=}. In [11], the

sorts array , elem , and index are used for arrays, elements,

and indices, respectively. Furthermore, the syntax a[i] is used

for the select function of the element at index i from array

a and a〈i← e〉 is used for the store operation of element e
in array a at index i. The two main axioms of array theory

are [12], [11]:

∀a : array , ∀i, j : index , ∀x : elem

i = j → a〈i← x〉[j] = x

i �= j → a〈i← x〉[j] = a[j]

Together with axioms of linear integer arithmetic these

form the theory of integer-indexed arrays (T {Z}A ). Although

T {Z}A has been shown to be undecidable, the quantifier-free

fragment, which we use in this paper, is decidable (NP-

complete) [11].

The resulting system of constraints builds on top of a

relaxed timing model allowing communication with bounded

jitter, yet guaranteeing determinism. We define this model

based on reasonable assumptions over the distributed time

synchronization capabilities. In particular, we assume that

a global notion of time, provided by a protocol stack

like e.g. IEEE 802.1AS-rev, allows nodes to synchronize

their transmission events within a known bounded precision

(δ), denoting the maximum difference between any two

synchronized clocks in the network at any instant of time.

It is known from previous work (e.g. [13], [14], [15])

that approaches of similar complexity can be implemented

by incremental scheduling algorithms yielding a significant

decrease in the required runtime as well as improving

scalability in comparison to the solutions based on direct

SMT encoding. However, we explicitly opt to analyze the

problem without the consideration of advanced scheduling

algorithms and let the scalability concerns be addressed at

a future time.

In section II we introduce the network and traffic model

and formulate the scheduling constraints for IEEE 802.1Qbv

using first-order theory of arrays (TA) (section III). In

section IV we elaborate an SMT-based synthesis algorithm

implementing the previously defined constraints together

with a discussion and formalization of several optimization
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opportunities arising from our model. We evaluate the scal-

ability of our approach in section V and survey related work

in section VI. We conclude the paper in section VII.

II. SYSTEM MODEL

We model a network as a graph G = {V, E}, where V
is a set of vertices, E is a set of directed edges connecting

vertices to each other. If there exists a physical link between

vi and vj then (vi, vj), (vj , vi) ∈ E , where the first vertex in

the pair description defines the source node and the second

vertex defines the destination node. Nodes may be the source

or destination of messages (end systems) or may forward

messages to other nodes (switches).

Communication requirements are modeled through the

concept of streams. A stream (or flow) is a periodic multicast

data transmission (the message) from one talker (the sender

node) to one or multiple listeners (the receiver nodes).

Without loss of generality, we reduce the number of receivers

to one (unicast) and the message size to one Ethernet frame

in order to simplify the formalism, noting that extending the

model to the general case is a trivial step [15]. We denote

the set of streams in the network with S. Similar to [13], we

denote the route of a stream si ∈ S from talker v1 to listener

vn routed through the intermediary nodes (i.e. switches)

v2, v3 . . . , vn−1 as Ri = [(v1, v2), . . . , (vn−1, vn)].
We assume that the routing of a stream from source v1 to

destination vn is computed beforehand and therefore known.

A stream si ∈ S is defined by the tuple 〈Ci,Ti,Li, Ji〉,
denoting the message size in bytes, the period, the maximum

allowed end-to-end latency, and the maximum allowed jitter

of the stream, respectively.

The instance of a stream si ∈ S routed through link

(a, b) ∈ E is defined by the frames f
(a,b)
i,j ∈ F (a,b)

i , where

F (a,b)
i ⊂ F (a,b) is the set of all frames of stream si that

are to be scheduled on link (a, b). We denote the set of all

frames routed through link (a, b) with F (a,b). Since streams

may have different periods resulting in an overall schedule

cycle (hyperperiod) larger than any individual stream period,

when constructing the GCL we must consider all instances

of a specific stream repeating until the schedule cycle.

Hence, a set F (a,b)
i will have Ts/Ti frames, where Ts is

the schedule cycle of all scheduled streams in the network,

calculated as the least common multiple of the periods

of all streams si ∈ S . Additionally, each such periodic

frame is characterized by a frame transmission duration l
(a,b)
i

calculated based on the data size Ci of the stream si and

the speed of the egress port associated to the physical link

(a, b). For example, a maximum- sized Ethernet frame of

1542 bytes (including the IEEE 802.1Q tag) has a duration

of 12.336μsec on a 1Gbit/sec link.

We denote the maximum number of scheduled windows

per edge derived from the maximum length of the GCL with

W(a,b). In order to encode the scheduling problem in T {Z}A ,

we define for each link (a, b) two arrays, φ(a,b) and τ (a,b)

over the sort array , containing the integer variables for,

respectively, the open and close time instants of the windows

indexed by the position in both arrays for the egress port

associated to link (a, b). Furthermore, we define for each

frame instance f
(a,b)
i,j ∈ F (a,b)

i a window index ω
(a,b)
i,j over

the sort index representing the frame-to-window assignment

index in both aforementioned arrays.

We adopt the definition in [10], where the queue configu-

ration is expressed as a tuple G(Q) = 〈ℵ,ℵtt,ℵprio〉, where

ℵ is the total number of queues per egress port, of which

ℵtt is the number of queues for scheduled traffic and ℵprio
the remaining number of priority queues for non-scheduled

traffic. In order to connect windows to egress queues, we

define an additional array κ(a,b) over the sort index denoting

the assigned queue for each window.

III. FORMAL SCHEDULING CONSTRAINTS

We formalize the constraints for gate operations (i.e. open,

close) as well as for the frame-to-window and window-

to-queue assignment variables such that the resulting gate

control list correctly drives the deterministic time behaviour

of frames.

A. Technology Constraints

Technology constraints are those derived from the func-

tional specification of 802.1Qbv. They define a system of

constraints that shall be fully satisfied in a feasible solution.

Well-defined Windows Constraints: We first formalize

logical constraints for all windows of an egress port. Since

each physical link connects one egress port to one ingress

port, we assume an equivalence in the formalism between an

egress port and the connected directed edge (physical link)

for the remainder of the paper.

We constrain the open and close events of each window

defined on that link to be greater than or equal to 0 and

less than or equal to the schedule cycle of all streams in the

network. Hence, we have the constraint:

∀(a, b) ∈ E : ∀k ∈ {1, . . . ,W(a,b)} : (1)(
φ(a,b)[k] ≥ 0

)
∧
(
τ (a,b)[k] < Ts

)
,

where, as defined above, Ts is the schedule cycle (hyperpe-

riod) of all communication streams in the network.

Additionally, each window is assigned to an egress queue

scheduled in the range [0..ℵtt − 1], therefore we add the

bounds for the queue assignment array

∀(a, b) ∈ E : ∀k ∈ {1, . . . ,W(a,b)} : 0 ≤ κ(a,b)[k] < ℵtt.

Stream Instance Constraints: Communication in sys-

tem deployments rarely appear with a normalized period.

Instead, streams are sourced at multiple rates which result

in a hyperperiod defining the length of the schedule tables to

be at least the least common multiple of all periods involved.
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The assignment of frames, and as a consequence the

length of each window, is a result of the scheduler. Streams

routed through the same link having different periods will

contribute a number of frame instances, each to be scheduled

within each period instance occurring until the hyperperiod.

As a result, the open and close bounds for each window

is further constrained to set the window of a each frame

instance within the corresponding period instance. Hence,

for each stream si routed through (a, b) we construct the

following constraint:

∀si ∈ S : ∀(a, b) ∈ E : ∀j ∈
[
0,

Ts

Ti
− 1

]
: (2)

(
φ(a,b)[ω

(a,b)
i,j ] ≥ j × Ti

)
∧(

τ (a,b)[ω
(a,b)
i,j ] < (j + 1)× Ti

)
,

which for each frame instance scheduled at different period

instances until the hyperperiod sets a lower bound for the

window open event and upper bound to the window close

event to, respectively, the beginning and the end of the

respective period instance.

While we allow for greater flexibility resulting in an

increased solution space than in previous approaches [10],

we note that our model can also handle strictly periodic

systems, i.e., systems in which frames belonging to the

same stream have to arrive at exactly the same time in each

period instance. For that, we define an optional constraint

for the opening time of the assigned windows of each frame

instance to be exactly one period apart and allow only one

frame to be assigned to those windows, resulting in 0 jitter

for those streams:

∀si ∈ S : ∀(a, b) ∈ E : ∀j ∈
[
0,

Ts

Ti
− 2

]
: (3)

(
φ(a,b)[ω

(a,b)
i,j+1]− φ(a,b)[ω

(a,b)
i,j ] = Ti

)
.

∀si ∈ S : ∀(a, b) ∈ E : ∀j ∈
[
0,

Ts

Ti
− 1

]
:

(
τ (a,b)[ω

(a,b)
i,j ]− φ(a,b)[ω

(a,b)
i,j ] = l

(a,b)
i

)
.

Ordered Windows Constraint: An essential constraint

for determinism is that no two frames transmitted on the

same egress link overlap in the time domain. Moreover, we

explicitly forbid multiple windows to remain open at the

same time in order to avoid the non-determinism introduced

by contention. Note that guaranteeing determinism while

allowing multiple opened windows simultaneously would

require a complex step in addition to scheduling to ana-

lyze the resulting worst-case interference of different traffic

classes. Methods like network calculus (e.g. [16]) allow such

analysis at the cost of reducing the compositionality property

provided by offline scheduling.

Conceptually, the formulation of this constraint does not

allow any two windows on the same link to overlap, similar

to [10], which we define as

∀(a, b) ∈ E : ∀i, j ∈ {1, . . . ,W(a,b)}, i �= j : (4)(
τ (a,b)[i] ≤ φ(a,b)[j]

)
∨
(
τ (a,b)[j] ≤ φ(a,b)[i]

)
Note that this formulation results in a large number of

assertions with a disjunction operator, which has proved to

be computationally intensive. However, since the assignment

of frames to windows is not restricted beforehand and any

frame may be assigned to any window, we can simplify this

constraint if the order of windows on each link is predefined

offline, hence fixing their respective open and close events

to be sequential. We prefer the following alternative formu-

lation performing significantly better in terms of resources:

∀(a, b) ∈ E : ∀i ∈ {1, . . . ,W(a,b) − 1} : (5)

τ (a,b)[i] ≤ φ(a,b)[i+ 1],

which enforces an ordered sequence for the open event of

each window to be after the close event of its predecessor.

In addition, the latter formulation allows reducing the

number of assertions in (1) by reducing the required bounds

to the open event of the first window and, respectively, the

close event of the last window of each link. All other events

(open/close) will be bounded due to the imposed sequential

order. Hence, we reduce constraint (1) to the following:

∀(a, b) ∈ E : (6)(
φ(a,b)[1] ≥ 0

)
∧
(
τ (a,b)[W(a,b)] < Ts

)
.

Frame-to-Window Assignment Constraint: The frame-

to-window assignment variable defines the index in the 3
arrays (open, close, and queue assignment) of the respective

port. Thus, we restrict the variables to be no larger than

the configurable maximum number of windows per port

(W(a,b)):

∀(a, b) ∈ E : ∀f (a,b)
i,j ∈ F (a,b) : (7)(

ω
(a,b)
i,j ≥ 1

)
∧
(
ω
(a,b)
i,j ≤ W(a,b)

)
.

Window Size Constraints: Since frames are assigned

to windows by the scheduler, i.e., they are not known a-

priori, the size of a window results from the accrued sum

of the duration of all frames assigned to it. Hence, we must

ensure that the close event of each window allows sufficient

time to transmit the set of assigned frames. We note that

this constraint is the first and only one in our formalism

requiring the store operation of array theory.

We start by storing the uninterpreted term for each open

variable in the respective position of the close array:

∀(a, b) ∈ E : ∀k ∈ {1, . . . ,W(a,b)} : (8)

τ (a,b)〈k ← φ(a,b)[k]〉.

This is equivalent to setting all close events equal to the open

event at the same index, initializing the length of the window
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to 0. Note that, the close event of all windows without any

frame assigned will remain equal to the respective open

event.

We now construct at each position in the close array the

sum over the duration of all frames assigned to that window,

using the frame-to-window assignment index:

∀(a, b) ∈ E : ∀f (a,b)
i,j ∈ F (a,b) : (9)

τ (a,b)〈ω(a,b)
i,j ← τ (a,b)[ω

(a,b)
i,j ] + l

(a,b)
i 〉.

The construct iterates for all frames, adding the frame

duration to the previous uninterpreted value for the close

event of the window to which the frame is assigned and

storing the result at the same index as a new uninterpreted

expression.

Stream Constraint: The stream constraints describe the

sequential nature of communication from talkers to listeners.

The generic condition is that frames belonging to the same

stream must be scheduled sequentially with respect to time

along the routed communication path. Hence, we have

∀si ∈ S : ∀(vk, vk+1) ∈ Ri, k ∈ {1, . . . , n− 2} : (10)

∀f (vk,vk+1)
i,j ∈ F (vk,vk+1)

i : ∀f (vk+1,vk+2)
i,j ∈ F (vk+1,vk+2)

i :

τ (vk,vk+1)[ω
(vk,vk+1)
i,j ] + δ ≤ φ(vk+1,vk+2)[ω

(vk+1,vk+2)
i,j ],

where δ is the constant value representing the precision.

In other words, the propagation of frames of a stream

follow the sequential order along the path. Therefore, the

window open event of each frame has to be greater than

or equal to the close event of the window assigned to the

predecessor frame, plus the network precision constant to

compensate for clock differences between the two hops.

Stream Isolation Constraint: We only briefly present

here the isolation problem in TSN networks and refer

the reader to [10] for a more in-depth description of the

general problem. IEEE 802.1Qbv [7] specification controls

the opening and closing of the timed gates and not the

sending and receiving of individual frames, like TTEthernet.

It is plausible that at runtime, a network may experience

frame losses or streams showing differences in their periodic

payload size. Therefore, to ensure that the execution of the

schedule during runtime conforms to the offline planning

we need to compute a schedule providing guarantees on the

deterministic state of each queue at any given instant of time.

Consider the case in which two streams si and sj are

received from different links, (x, a) and (y, a), respectively,

on device a and both forwarded to the same egress port on

link (a, b). If their frames are put in the same queue, the

order of frames in that queue may differ during runtime

depending on minimal variations on the exact order of

arrival, or the processing mechanism for ingress ports in

the switch fabric. Moreover, frame losses in one or the

other stream may equally introduce differences in the queue

state at each period instance. Hence, the offline scheduled

opening and closing of the egress queue may effectively

cause a different behavior at runtime induced by the non-

deterministic state of the queue.

Guaranteeing determinism implies that all frames respect

their computed window assignment throughout the lifetime

of the system. Hence, we must either isolate them in the

time domain, similar to [10], restricting that a stream is not

received until the other stream has already been scheduled

for egress, or assign the respective frames of the two streams

to the same scheduled window, which was not possible

in [10]. Alternatively, if multiple queues are available for

scheduled traffic we can isolate the two frames in windows

of different queues, in which case they may as well be

received within overlapping intervals without altering the

run-time behavior.

Hence, we formulate the stream isolation condition for

streams si and sj sent on link (a, b) as:

∀k ∈
[
0,

Ts

Ti
− 1

]
: ∀l ∈

[
0,

Ts

Tj
− 1

]
: (11)

((
τ (a,b)[ω

(a,b)
i,k ] + δ ≤ φ(y,a)[ω

(y,a)
j,l ]

)
∨

(
τ (a,b)[ω

(a,b)
j,l ] + δ ≤ φ(x,a)[ω

(x,a)
i,k ]

))
∨(

κ(a,b)[ω
(a,b)
i,k ] �= κ(a,b)[ω

(a,b)
j,l ]

)
∨
(
ω
(a,b)
i,k = ω

(a,b)
j,l

)
,

where the three disjunctive conditions guarantee that either

one of the two frames is received when the other one has

already been forwarded (by comparing the sequence of the

respective open and close events of the windows assigned

to each frame), or each is assigned to a different queue (and

hence to a different window), or both frames are assigned

to the same window (and hence to the same queue).

B. User Constraints

User constraints are those denoting additional require-

ments on a particular property of the solution. They extend

the system of constraints and shall be equally satisfied

in a feasible solution but their exclusion does not imply

an invalid schedule from the technology point of view.

Following, we formalize two of the most industry relevant

user constraints.

Stream End-to-End Latency Constraint: The end-to-

end latency constraint states that the difference between

the receiving instant of a stream on the listener side and

the sending of the stream from the respective talker has to

be smaller than or equal to a given maximum end-to-end

latency.

As before, we construct the formula using the frame

assignment variables in combination with the open and close

events given that the frame-to-window assignment is not

known a-priori. Therefore, we define the end-to-end latency
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constraint for stream si as:

∀j ∈
{
0, · · · , Ts

Ti
− 1

}
: (12)

∀f (v1,v2)
i,j ∈ F (v1,v2)

i , f
(vn−1,vn)
i,j ∈ F (vn−1,vn)

i :

τ (vn−1,vn)[ω
(vn−1,vn)
i,j ]− φ(v1,v2)[ω

(v1,v2)
i,j ] ≤ Li − δ.

Note that we also include the precision δ in the constraint

to compensate the possible synchronization error between

the two nodes.

Stream Jitter Constraints: Real-time communication

are typically sensitive to jitter introduced between the rela-

tive transmission or arrival times of the periodic frames of

a stream. We base our jitter constraint on the observation

that within the network, the jitter of individual frames of a

stream is not relevant except for the sending and receiving

nodes. The jitter becomes relevant on the sending side since

the data may be produced by a periodic task requiring the

transmission of that data with a bounded jitter. Similarly,

on the receiver side the data has to be processed by a

listener task which also may have requirements on the jitter

for example in the case of control tasks [17]. Hence, we

constrain the jitter of a stream for the sender and receiver

nodes to be within a configurable maximum bound. Note,

however, that for receiving the jitter constrain is applied to

the scheduled window on the last hop before the listener.

In addition, we must also consider the relaxed periodicity

on different period instances, i.e., the jitter has to be main-

tained between frame of any period instance of the stream

until the hyperperiod.

We define the sender jitter constraint for stream si as:

∀j, k ∈
{
0, · · · , Ts

Ti
− 1

}
: (13)

∀f (v1,v2)
i,j , f

(v1,v2)
i,k ∈ F (v1,v2)

i :(
τ (v1,v2)[ω

(v1,v2)
i,j ]− j × Ti

)
−(

φ(v1,v2)[ω
(v1,v2)
i,k ]− k × Ti

)
− l

(v1,v2)
i ≤ Ji.

The constraint takes the relative offset of each variable

being compared (open/close) with respect of the period

instance to which it is bounded (see (2)). It then enforces

that the difference between the latest transmission of a

frame (i.e. the relative close instant of the window minus

the frame duration) and the earliest possible transmission

(i.e. the relative open instant of the window) of any two

frame instances of the same stream is at most equal to the

jitter. This also guarantees that the window duration for

any stream is at most equal to the defined jitter plus the

frame duration since, otherwise, the non-deterministic order

of transmission within a window could already introduce a

larger jitter than required. Moreover, it extends the condition

to all frame instances of the same stream regardless of the

period instance in which they are scheduled.

Similarly, we define the jitter constraint on the receiving

side for stream si as:

∀j, k ∈
{
0, · · · , Ts

Ti
− 1

}
: (14)

∀f (vn−1,vn)
i,j , f

(vn−1,vn)
i,k ∈ F (vn−1,vn)

i :(
τ (vn−1,vn)[ω

(vn−1,vn)
i,j ]− j × Ti

)
−(

φ(vn−1,vn)[ω
(vn−1,vn)
i,k ]− k × Ti

)
− l

(vn−1,vn)
i ≤ Ji

Note that the formulation of (14) and (13) can be

simplified in configurations with a single communication

period where the only open and close events would refer

to the same window.

If the jitter perception is globally relevant within the entire

network, i.e. between intermediate nodes along the route of

the stream, the constraint can be readily applied for all of

those nodes.

IV. SMT/OMT-BASED SCHEDULE SYNTHESIS

So far we have formalized a system of constraints de-

noting the scheduling requirements within the flexibility of

the defined model. We chose to compute a schedule based

on these constraints with the aid of Satisfiability Modulo
Theories (SMT).

SMT solvers are used to determine the satisfiability or un-
satisfiability of first-order logical formulas with respect to a

certain background theory or a combination of background

theories [18], [19]. A background theory may be for e.g.

linear integer arithmetic (LA(Z)), bit-vectors (BV), or, as

required in our case the theory of arrays (TA). If the set of

constraints is satisfiable with respect to the defined theory,

SMT solvers also provide a model which represents one

solution for the given variables and constraints. Further-

more, a new branch called Optimization Modulo Theories
(OMT) [20], [21] can provide optimal solutions with respect

to given minimization or maximization objectives. Solving

NP-complete scheduling problems with combinatorial char-

acteristic defined through linear arithmetic constraints, like

the one addressed in this paper, has proven to be suitable use-

cases for SMT/OMT solvers, especially in the case of small

and medium networks [22], [23]. In this paper we focus

primarily on the suitability of array theory for encoding

and solving the scheduling problem, leaving scalability

improvements for exploration in future work. Therefore we

do not claim the contribution of a new scheduling algorithm,

and particularly, it is not the aim of this evaluation to include

improvements to the constraint solver like, for example,

the incremental scheduler in [13], which have been found

beneficial to reduce the synthesis time for the average case.

Our primary goal is, therefore, to evaluate the suitability

of our approach, as well as to explore the trade-offs and

optimization opportunities emerging from our model.

The aim of our scheduling algorithm for IEEE 802.1Qbv

is to find solutions for the window open and close arrays on
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each port as well as for the frame-to-window and window-

to-queue index variables such that the constraints defined

in section III are fulfilled. As background theory we use

quantifier-free integer-indexed arrays (T {Z}A ) over integer

elements (QF ALIA).

A. Optimization

Recently, SMT solvers like z3 [21] also offer the possibil-

ity to express optimization objectives binding the solver to

provide an optimized solution with respect to given (single

or multiple) minimization or maximization objectives.

Optimization objectives differ based on particular system

requirement and deployment characteristics. Whereas a num-

ber of relevant objectives has been already discussed in [15],

we prefer to concentrate on optimization opportunities aris-

ing from the characteristics of our model which were not

possible in prior work. In particular, we address the trade-

off between the defined number of windows per egress port

and the resulting maximum jitter experienced by a stream.

We focus here on a particular optimization objective that

minimizes the receiving jitter for streams. This can be either

expressed as minimizing the accrued jitter over all streams

in the network or as a collection of objectives minimizing

the individual jitter of each stream, which may result in local

minima for some of the streams.

The jitter value for a stream si is defined in our model

as Ji, denoting the maximum allowed jitter for the stream

at the scheduled times of sending and receiving. Thus, we

introduce an additional variable ji ≤ Ji, ∀si ∈ S replacing

Ji in conditions (13) and (14). The optimization objective

is then either defined as minimizing each ji (using either

lexicographic or Pareto fronts combinations [21]) or the

sum over all ji. Moreover, the solver allows introducing

a weight jwi for each stream si representing the relative

importance of minimizing the jitter of that particular stream.

The optimization criteria is expressed as

minimize
∑
si∈S

jwi × ji,

subject to the constraints defined in section III.

Note that for strictly periodic streams or single period

configurations we can directly express the minimization

objective as the difference between the closing and opening

times of the respective windows eliminating the need for an

additionally variable per stream.

V. EVALUATION

We have implemented a prototype tool for synthesiz-

ing schedules based on the system model and constraint

definitions presented in the previous sections. We used

z3 [24] v.4.5.0 as the underlying SMT/OMT solver with

QF ALIA as the background theory for the version without

optimization and the built-in optimization solver of z3 for

the experiments requiring optimization objectives. All ex-

periments were run on an Intel(R) Core(TM) i7-2600 64bit

CPU @ 3.40GHz with 12 GB of RAM. For convenience we

have chosen a timeline granularity of 1μsec and a uniform

communication speed for all physical links of 1Gbit/s. The

message size for all experiments is fixed as one maximum-

size Ethernet frame, resulting in a frame duration of 13μsec
with the chosen time granularity.

A. Topology

As a baseline configuration for the evaluation we have

chosen a simple line topology for switches with the same

number of end systems connected to each of them. Only end

systems act as senders (talkers) and receivers (listeners) of

communication streams. An example is depicted in Figure 3.

Note that the simple example includes three streams already

illustrating scenarios which are relevant to the analysis.

Among others, streams converging from different sources

into one egress port (e.g. streams A and B at the first

hop), incoming streams from the same ingress port diverging

to different egress ports (e.g. streams A and B at the

second hop), as well as other potential sources for jitter like

unbalanced network load, cross traffic (e.g. stream C), etc.

We denote the configuration setting for each experiment

in terms of the number of switches (SW), the total number

of end systems (ES) equally distributed along the switches,

the set of periods for the streams (T), and the number of

queues for each egress port (ℵtt). Streams are routed through

the topology based on a random selection of a talker and a

listener end systems. The network size as well as the chosen

configurations are inspired by industrial use-cases.

B. Synthesis Time

Figure 2 plots the runtime of the scheduling synthesis

when varying the number of streams and the maximum

number of windows (W) per egress port (2, 4, 8, 16, 32).
The periods of the streams are (10, 20)ms resulting in a

hyperperiod of 20ms. The queue configuration is ℵtt = 4.

On the x-axis we also indicate the total number of frame

instances that are scheduled in the network as a result of a

the streams being routed. The timeout for the solver was set

to 40 hours. Note that both the y-axis (showing the number

of windows per port) and z-axis (representing the synthesis

time of the scheduler) are logarithmic.

Equivalent experiments were run with two alternative

network sizes, shown in Figures 2(a) and 2(b), namely,

a small-sized network consisting of 15 end-systems dis-

tributed through 5 switches (3 end-systems per switch),

and a medium-sized network consisting of 50 end-systems

distributed in a network of 10 switches (5 end-systems per

switch).

The synthesis method shows to scale well for a small

number of windows per egress port, even up to 50 streams

(resulting in 211 and 264 frame instances) being scheduled
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(a) 5 switches, 15 end-systems
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(b) 10 switches, 50 end-systems

Figure 2. Synthesis time when varying the number of streams (frames) and maximum number of windows per egress port.

Stream A

Stream B

Stream C

Switch
End System

Figure 3. Example topology depicting four switches connected in a line,
each switch with three end systems connected, and three streams (A, B,
and C).

in small- and medium-scale networks. However, when in-

creasing the number of windows, the synthesis time also

increases from a few minutes to several hours, eventually

timing out at 40 hours when scheduling 50 streams with 32
windows per port in the medium-sized topology.

While all cases were scheduled in under 1 minute with

2 or 4 windows per port, we note that the problem is NP-

complete [10] resulting in an exponential runtime complex-

ity with increasing input size. Several dimensions of the

input, like period choice, macrotick, topology size, number

of streams, etc., affect the runtime and have been studied for

e.g. in [15] and [10]. We observe, for instance, that compared

to related work (c.f. [10]) the number of windows per port

has a greater impact on the synthesis time than for example

the number of scheduled streams. Therefore we identify this

variable as a metric particular to our solution.

C. Jitter vs Window Trade-Off

We have identified a fundamental trade-off exposed by a

low bound on the number of windows. Indeed, the synthesis

time is directly affected by the window count, however

we observe in Figures 4(a) and 4(b), discussed below,

what intuitively seems plausible: the number of windows

has an impact on the effective jitter experienced by the

communication streams.

Constraining the jitter is straightforward (13) and (14),

however, in this experiment we want to show the effect of

the number of windows per port on the jitter (in contrast to

synthesis time) when jitter minimization objectives are intro-

duced. We chose a reference topology with 5 switches and

15 end-systems in which 25 streams are transmitted between

random talkers and listeners, all streams with a period of 20
ms. The queue configuration is set to ℵtt = 1 to increase the

confluence of frames on the same windows. We conduct the

schedule synthesis with three alternative implementations of

the algorithm. Namely, without optimization objective, with

multiple optimization objectives minimizing the jitter for the

sender and receiver of each stream, and, lastly, with multiple

optimization objectives minimizing the jitter of all scheduled

frames. The prioritization of the multiple optimization ob-

jectives is done using lexicographical ordering (c.f. [21]).

Figure 4(a) shows the average jitter when varying the

number of windows per port from 1 to 8 and Figure 4(b)

shows the synthesis time for the same configurations. The

x-axis in both figures describes the number of windows per

port and the y-axis shows the average jitter in the network

and the synthesis time, respectively.

As expected, the jitter decreases when increasing the

number of windows per port even in cases when no opti-

mization is performed. However, optimizing the jitter either

for senders/receivers or for all frames in the network reduces

the average jitter, down to the minimum possible of 0 for

cases with 7 and 8 windows per port. The trade-off becomes

obvious when observing the trend in the synthesis time for

the configurations, which scales rapidly in proportion to

the number of windows for the configurations with jitter

optimization. An observation worth noticing is the decrease
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Figure 4. Average jitter and synthesis time with and without optimization constraints.

100 ms

1 sec

1 min

10 min

25 50 75 10
0

15
0

20
0

25
0

50
0

75
0

ru
nt

im
e

streams

5 switches | 15 end-systems | T = 20ms | ℵtt = 2

frame scheduling
window scheduling (w=1)
window scheduling (w=2)
window scheduling (w=3)

Figure 5. Scalability comparison between the frame-based and window-
based synthesis algorithms.

in the runtime for the two experiments reaching 0 jitter.

While this may not hold for all cases, we hypothesize

that the effect is due to the inherent simplification of the

constraint solving problem when each frame is assigned to

an individual window. Even for the experiments optimizing

only send and receive jitter we observe a similar decrease

in the exponential trend, which could be equally explained

by a partial assignment of frames to individual windows.

D. Frame-based vs Window-based Synthesis

We are interested in the scalability of this method in con-

trast to a frame-based approach. For this we replicated the

synthesis constraints from [10] and compare the synthesis

time of the frame-based approach against our window-based

scheduler.

The reference configuration is based on 5 switches and

3 end-systems per switch, resulting in 15 end-systems in

total. For the window-based method we select the number of

windows from the set {1, 2, 3} and for both implementations

we set the queue configuration ℵtt = 2. A time-out aborts

the synthesis if no schedule is found within 10 minutes. We

try to schedule with each configuration 25, 50, 75, 100, 150,

200, 250, 500, and 750 streams within this time and evaluate

the success of each algorithm. The period of all streams is

set to 20 ms.

The results in Figure 5 show that the window-based

method scales significantly better for the configuration with

one window per port and even for two windows per port it

reflects a slight improvement. However, with three windows

per port it already shows a larger synthesis time, timing out

at 10 minutes for 100 streams. Nevertheless, we argue that

the relaxed jitter model and increased solution space provide

a considerable benefit for the window-based scheduling

method over the frame-based approach.

We demonstrate our claim of increased schedulability

using a simple experiment in which streams with a small

period of 150μs are scheduled in a topology of 5 switches

and 10 end-systems with ℵtt = 1. With the frame-based

method we can schedule up to 25 streams. When using

the window-based method with 2 windows per port we can

schedule 2 additional streams while with 3 windows per

port an additional 7 streams are schedulable, leading to a

significantly higher bandwidth utilization given the high rate

of the streams (T = 150μs).

VI. RELATED WORK

Traditionally, asynchronous networks are analyzed in

terms of worst-case end-to-end communication latencies

through methods like network calculus [25], [26]. One of

the major drawbacks of this approaches is that the worst-

case latency is analyzed based on the pre-assigned traffic
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priorities and the arrival patterns of competing periodic and

sporadic streams. This has the effect that compositional

system design and temporal isolation of communication

streams become very difficult. Time-triggered technologies

on the other hand enable compositional system design as

well as deterministic behavior and isolation of streams in

the time domain.

Time-triggered scheduling has been initially formulated

as a static cyclic task scheduling problem by Baker et

al. [27]. Creating time-triggered communication schedules

for deterministic networks (TTEthernet) using SMT solvers

was first proposed in [13] and extended in [14], [15]

to include the application layer on end-systems. Network

scheduling problems for other proprietary technologies (e.g.

PROFINET, FlexRay, TTP) have been studied in [28], [29],

[30], [31].

Different aspects of TSN networks has been treated in

existing literature. For example, in [32], Gutiérrez et al.

analyze the synchronization quality of IEEE 802.1AS in

large networks typically found in the industrial domain.

Our previous work [10] formally defined necessary con-

straints to compute deterministic schedules that could be

mapped to TSN-compliant multi-hop switched networks pro-

viding jitter-free transmission and deterministic end-to-end

latency guarantees for strictly-periodic scheduled frames.

However, such stringent requirements on jitter and latency

came at a high cost. On one hand, fully deterministic

communication constraints restrict the solution space for

valid schedules due to the isolation of streams in the time

domain. On the other hand, the focus was given to finding

exact timing for each transmitted frame, which was then

mapped on a second step into a GCL reproducing the

expected behavior. This made it difficult to optimize and

tailor the output to device-specific properties, like the length

of the GCL or the minimum distance between consecutive

open and close gate events.

In [33], the authors introduce a new asynchronous traffic

class to TSN and a mechanism for shaping that provides

low delay guarantees. While the strictness of the new traffic

class is lower than the time-triggered one, similar to our

model, the paper does not consider the scheduling problem

assuming that the timed-gates remain permanently in the

open state.

Meyer et al. [34] analyze the interference effects of

higher-priority time-triggered communication on AVB traf-

fic converging in the credit-based shaper of TSN devices.

Alderisi et al. [35] introduce a new traffic class, called

Scheduled Traffic (ST), which has real-time guarantees

and is strictly isolated from AVB streams via hardware

mechanisms and not via the schedule of the timed-gates.

Both papers assume that isolation of critical and non-critical

streams is done via non-standard mechanisms whereas we

enforce isolation and real-time behavior through the standard

timed-gate schedule on the egress ports. Additionally, none

of the papers address the underlying scheduling problem for

Time-Sensitive Networks.

Heuristic approaches to schedule frames in TSN networks

that are based on the constraints defined in [10] have been

discussed in [8] and [36]. In [37], the authors define the

TSN scheduling problem as a no-wait packet scheduling

problem (NWPSP) and use a Tabu search algorithm for find-

ing near-optimal solutions. Furthermore, the paper presents

an optimization heuristic for reducing the number of gate

open events by compressing the schedule such that multiple

frames are transmitted in the same window. The reduction

of the number of gate events is done after a schedule has

been found, thus not having any guarantee that the resulting

schedule will fit within the constraints of the hardware

implementation. In our work, the number of gate events is

an input and can be set to the respective hardware limit, thus

ensuring that the resulting schedule can also be executed in

hardware.

Array theory has been primarily used in software model

checking and verification for sequential and concurrent

programs [38], [39]. To the best of our knowledge, our

work is the first to use array theory for encoding scheduling

problems in distributed systems.

VII. CONCLUSION

We have presented a novel approach to synthesize the

communication schedules for TSN based on the require-

ments defined in IEEE 802.1Qbv. Our model is based on the

definition of constraints for gate windows defining the open

and close instants for the timed gates of the egress ports. We

have shown the suitability of the first-order theory of arrays

(TA) to express these constraints and we have conducted a

number of experiments to evaluate the performance as well

as the underlying trade-offs. We have additionally compared

our method to prior work and explored the scalability and

schedulability dimensions of the proposed solution.

The results allow us to argue that our model and the

formulation of constraints is suitable for the synthesis of

schedules, even exhibiting potential to solve large networks

with the aid of efficient scheduling algorithms. In particular,

we conclude that our work is a valuable reference for the

conception of synthesis tools for TSN with the application

of incremental scheduling techniques like those presented

in [13] and [14], where the incremental step is built around

the number of windows, which we identify as a metric

reflecting the most time-consuming factor in the system of

constraints.

For even larger networks exceeding the reasonable size

for offline configured systems, like some envisioned in the

context of smart cities and the Internet of Things (IoT), a

combination of heuristic algorithms and SMT-based meth-

ods implementing the presented constraints remain, in our

opinion, the most promising approach.
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