Adaptive Load Control Algorithms for 3rd Generation Mobile Networks

Simin Nadjm-Tehrani
Calin Curescu
Linköping University, Sweden

Kayvan Najarian
Teresa A. Dahlberg
University of North Carolina at Charlotte, USA

Tomas Lingvall
Ericsson Radio Systems, Linköping, Sweden

3G Wireless Networks

• Second Generation (2G) Wireless Networks
 • Circuit switched
 • 14 kbps bandwidth
 • Only voice

• Third Generation (3G) onwards
 • Packet switching support
 • 2 Mbps bandwidth
 • Many different multimedia communication and data services

Need for Adaptability

• Nature of the wireless channel
 – Limited spectrum available
 • Overload cannot be solved by over-provisioning
 – Fluctuating nature of the wireless channel
 • Due to fading and interference
 – User mobility
 • Resources available on a cell to cell basis might vary greatly

The Radio Access Network

• UE – user equipment
• Radio base station (RBS)
 • Responsible for communicating with the UE
 • Node B in 3G standard
• Radio Network Controller (RNC)
 • Responsible for managing resources in the radio network, incl. Connection management
 • Mobility management
 • Operations & Maintenance

Problem: Overloads!

• Control the load on a RNC CPU
• Lock of a RNC CPU brings down the respective part of the network
• Watchdog which resets the RNC if the CPU is at 100% utilisation

Goals

• To ensure that control CPUs in RNC nodes are not overloaded: load ≤ U_S
• And also to
 – Minimize the number of rejected tasks
 – Preserve a specified QoS depending on
 • User type
 • Task type
User & Task Priorities

- User types: "Golden" users, emergency calls
- Task types
 - "channel switches" usually more important than "new connections"
 - Direct load – \(U_d \) generated by tasks not under our control

Types of Uncertainty

- Direct tasks - \(U_d \), how much? how often?
- How long does every task take?
 - each task’s utilisation \(c_i \)
- Mix of requested user and task types
- We can measure only the actual utilisation on the processor

Our Approach

- Feedback control (P-controller) for adaptation
 - treat uncertainties in \(c_i \) and \(U_d \)
- Deterministic algorithms to implement the acceptance policies
 - treat uncertainties in mix of tasks and user types

Load Control Schematics

- \(U_{\text{avail}} \) – available load
- \(U_d \) – direct load
- \(U_s \) – set point
- \(U \) – measured load
- \(r_g \) – allocated shares
- \(p_g \) – allocated
- \(a_i \) – accepted

Pool Algorithm (LC-logic)

allocate a certain CPU quota to each type;
for each type loop:
 - if (requested load < allocated load) then requested load granted;
 - unused load is added to a pool;
 - if (requested load > allocated load) then allocated load granted;
the pool is divided among the requests which exceeded their quota
Simulations

- 3G traffic modelled based on Ericsson information from realistic settings
 - The scenarios were run against a simulated model of the machine together with the operating system
 - The traffic models have different mixes of task types for voice, SMS, e-mail, web-browsing

Baseline - Leaky Bucket

- Amount of water to put in the bucket depends on a weighted average of the measured load

Overload Protection

Cumulative overload: sum in time of the load on the processor, which exceeds the set value

Dealing with U_d

- Oscillations caused by an oscillative, large U_d (up to 40% of load)
- P controller reacts quicker than the leaky bucket setting

Differentiation between user types

- 2 user types
- 50 / 50 incoming requests
- 80 / 20 user allocated quota
- Channel switches more important than new connections

Summary

- Adaptive admission control algorithms for controlling the CPU load in a RNC
 - Overload protection
 - QoS enforcement mechanism
- Overload management a very common instance of problems dealt within Real-time systems
- Automatic control (feedback-based) techniques a very common way of dealing with adaptation