

Linköping Studies in Science and Technology

Thesis No. 1231

Adaptive Real-time Anomaly Detection
for Safeguarding Critical Networks

by

Kalle Burbeck

Submitted to Linköping Institute of Technology at Linköping University in partial
fulfilment of the requirements for the degree of Licentiate of Engineering

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Linköping 2006

Department of Computer and Information Science
Linköpings universitet

SE-581 83 Linköping, Sweden

Adaptive Real-time Anomaly Detection for Safeguarding
Critical Networks

by

Kalle Burbeck

February 2006
ISBN 91-85497-23-1

Linköping Studies in Science and Technology
Thesis No. 1231
ISSN 0280-7971

LiU-Tek-Lic-2006:12

ABSTRACT

Critical networks require defence in depth incorporating many different security technologies
including intrusion detection. One important intrusion detection approach is called anomaly
detection where normal (good) behaviour of users of the protected system is modelled, often
using machine learning or data mining techniques. During detection new data is matched
against the normality model, and deviations are marked as anomalies. Since no knowledge of
attacks is needed to train the normality model, anomaly detection may detect previously
unknown attacks.
 In this thesis we present ADWICE (Anomaly Detection With fast Incremental Clustering)
and evaluate it in IP networks. ADWICE has the following properties:
(i) Adaptation - Rather than making use of extensive periodic retraining sessions on stored
off-line data to handle changes, ADWICE is fully incremental making very flexible on-line
training of the model possible without destroying what is already learnt. When subsets of the
model are not useful anymore, those clusters can be forgotten.
(ii) Performance - ADWICE is linear in the number of input data thereby heavily reducing
training time compared to alternative clustering algorithms. Training time as well as detection
time is further reduced by the use of an integrated search-index.
(iii) Scalability - Rather than keeping all data in memory, only compact cluster summaries are
used. The linear time complexity also improves scalability of training.
 We have implemented ADWICE and integrated the algorithm in a software agent. The
agent is a part of the Safeguard agent architecture, developed to perform network monitoring,
intrusion detection and correlation as well as recovery. We have also applied ADWICE to
publicly available network data to compare our approach to related works with similar
approaches. The evaluation resulted in a high detection rate at reasonable false positives rate.

This work has been supported by the European project Safeguard IST-2001-32685 and
CENIIT (Center for Industrial Information Technology) at Linköping University.

Acknowledgement

First of all I would like to thank Simin Nadjm-Tehrani, my advisor. Without your
guidance and support, this work would not have been possible. I am also grateful
for all the fun we have had together during the Safeguard project. Too bad I did
not take a picture when we exited the subway in Barcelona. Or when the storm
forced us to sleep on the floor at a London airport and we experienced an overload
of a critical communication infrastructure first hand when everybody tried to call
home.

Thanks to all colleges at RTSLAB for discussions and support. Keep the
fika going or I will be forced to haunt you with my home made cakes. Special
thanks go to Anne Moe, for your support with administrative problems, travels and
organisation of events. Thanks also to Lillemor Wallgren, Britt-Inger Karlsson
and Inger Norén for administrative help. Thanks to TUS for help with technical
issues.

This work was financially supported by the European project Safeguard
IST-2001-32685 and CENIIT (Center for Industrial Information Technology) at
Linköping University. Taking part in a large international project has sometimes
been frustrating but most often instructive, challenging and fun. I am glad that I
got the opportunity to take part in Safeguard.

I would like to thank Tomas Lingvall, Thomas Dagonnier, Mikael Semling
and Stefan Burschka and their colleagues at Swisscom for fruitful discussions and
their many hours of work with the test network. Thanks also to Tomas for help
with the Preprocessor and data generation.

The Safeguard agent architecture has been developed with the input from all
the research nodes of the project, the cooperation of whom is gratefully acknowl-
edged. Special thanks to David Gamez and John Bigham from Queen Mary, Uni-
versity of London and Oleg Morajko at AIA in Spain. Thanks to Wes Carter, our
project coordinator.

Thanks to Daniel Garpe and Robert Jonasson for your work with the agent
platform evaluation. Thanks to Tobias Chyssler for your work with alert correla-
tion engines. Also thanks to Tobias and Daniel for your help with implementing
the correlation agent and for your company and many discussions during those
hectic months of implementation phase in the project. Thanks to Sara Garcia
Andrés for your first implementation of the simulation for our initial work on sur-
vivability modelling. I would like to thank Henrik Larsson and Karin Ring for
reading my thesis with fresh eyes.

Doing PhD-studies while being a father of two wonderful small girls is not
always easy. You have to learn to work very focused to get the maximum out of

those hours in your office, so that you also have time to spend with your family
at home. I would like to thank my dear wife and very best friend Malin for all
her help and support. Not the least for those weeks when conferences and project
meetings have taken me far away from home. I love you with all of my heart.

Thanks to Alva and Linnea for being such clever, cute and funny girls. Even
when life sometimes is harsh, you often manage to make me smile. Thanks to my
parents and Malin’s for your help with the girls and your support. Thanks also to
our cuddly black cats Mashlul and Korlash, for lying and purring in my lap while
I was writing those last hard chapters in the thesis.

In context of my family I also would like to give special thanks to my advisor
for her support not only with my licentiate studies, but also for supporting me in
my private situation. Thanks for helping me being home those months with my
girls in the middle of my studies.

In the end I would like to thank all my friends and my family for my years of
fun in Linköping. I will always remember those years as a very good time of my
life. I dedicate this work to you all.

Kalle Burbeck

CONTENTS ix

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research challenges . 3
1.3 Contribution . 5
1.4 List of publications . 6
1.5 Thesis outline . 7

2 Background 9
2.1 Dependability and computer security 9

2.1.1 Attack types . 11
2.2 Intrusion detection . 12

2.2.1 Components . 12
2.2.2 Taxonomy . 14
2.2.3 Evaluation metrics . 18

2.3 Software agents . 21
2.3.1 Agent platforms . 22

2.4 Data mining and machine learning 23
2.4.1 Classification . 24
2.4.2 Clustering . 25

3 The Safeguard context 31
3.1 Critical infrastructures . 31

3.1.1 Telecommunications vulnerabilities 33
3.1.2 Electricity vulnerabilities 33

3.2 Safeguard solutions . 34
3.2.1 Agents for increased dependability 35
3.2.2 The Safeguard agent platform 36
3.2.3 The Safeguard agent architecture 39

x CONTENTS

3.3 The Safeguard agents . 42
3.3.1 Wrapper agent . 42
3.3.2 Hybrid detector agent . 43
3.3.3 Topology agent . 44
3.3.4 Correlation agent . 44
3.3.5 Human-machine interface agent 49
3.3.6 Action agent . 52
3.3.7 Actuator agent . 53
3.3.8 Negotiation agent . 53

3.4 Safeguard test beds . 54

4 ADWICE 57
4.1 Basic concepts . 57
4.2 Training . 58

4.2.1 Using the original BIRCH index 60
4.3 Detection . 61
4.4 Evaluation . 61

4.4.1 Determining parameters 63
4.4.2 Detection rate versus false positives rate 66
4.4.3 Attack class results . 67
4.4.4 Aggregation for decreasing alert rate 68
4.4.5 Safeguard scenarios . 70

5 ADWICE with grid index 73
5.1 Problems of the original BIRCH index 73

5.1.1 Influence of index errors 73
5.2 The grid-index . 77
5.3 Adaptation of the normality model 82

5.3.1 Incremental training . 82
5.3.2 Forgetting . 82

5.4 Evaluation . 84
5.4.1 Detection rate versus false positives rate 84
5.4.2 Incremental training . 84
5.4.3 Forgetting . 86

6 Clustering hybrid detection agent 87
6.1 Design . 88

6.1.1 Preprocessor . 89
6.1.2 DataSource . 92

CONTENTS xi

6.1.3 DataBuffer . 93
6.1.4 Transformer . 93
6.1.5 AnomalyDetector . 94
6.1.6 SignatureDetector . 95
6.1.7 Module . 96

6.2 Life cycle . 96
6.2.1 Startup process . 97
6.2.2 The main loop . 97
6.2.3 Shut down process . 98

6.3 Performance and scalability . 99

7 Related work 101
7.1 Agents for intrusion detection 101
7.2 Learning-based anomaly detection 107

7.2.1 Clustering-based anomaly detection 108
7.2.2 Other selected techniques 114
7.2.3 Discussion of key properties 122

8 Conclusions and future work 129
8.1 Future work . 131
8.2 Final words . 133

xii CONTENTS

LIST OF FIGURES xiii

List of Figures

1.1 Number of hosts on the Internet advertised in domain name servers 2

2.1 Basic intrusion detection concepts 13
2.2 Terminology of IDMEF . 13
2.3 Intrusion detection taxonomy . 15
2.4 Categorisation of unknown events 16
2.5 Misuse detection versus anomaly detection 17
2.6 Evaluation metrics . 19
2.7 ROC-curve example . 21
2.8 Reference architecture of a FIPA agent platform 23
2.9 Clustering . 25
2.10 Pure anomaly detection using clustering 27
2.11 Unsupervised anomaly detection using clustering 28
2.12 Classification based detection using clustering 29

3.1 Electricity cyber infrastructure 34
3.2 Safeguard agent platform architecture 38
3.3 Performance of Safeguard agent platform 39
3.4 Scalability of Safeguard agent platform 40
3.5 Conceptual view of Safeguard 40
3.6 The Safeguard agent architecture 41
3.7 Functional overview of wrappers and related agents 43
3.8 Functional overview of correlation agents 45
3.9 Design of TACA (Topology Alert Correlation Agent) 47
3.10 Timeslot based alert correlation 48
3.11 Principle of global monitoring 49
3.12 Network overview as presented by the HMI agent. 50
3.13 Network health monitoring of the HMI agent 51

xiv LIST OF FIGURES

3.14 The Safeguard telecom test network 55

4.1 Models with different M of the same data 64
4.2 Example of index error . 65
4.3 Detection rate versus false positives 67
4.4 The accuracy for attack classes and the normal class 68
4.5 Aggregated alerts for different time windows 69
4.6 Distributed malicious scripts cause alerts 71

5.1 Influence of index errors for detection rate 80% 75
5.2 Influence of index errors for detection rate 90% 76
5.3 Alternative grid schemes . 78
5.4 Basic notions of the grid . 79
5.5 Performance of primitive index operations 79
5.6 Detection rate versus false positives using ADWICE-grid 84
5.7 Adapting using incremental training 85
5.8 Adapting using forgetting . 86

6.1 Data flow of CHDA . 88
6.2 CHDA design . 89
6.3 CHDA Preprocessor . 91
6.4 Remote data sources . 92

7.1 eBayes TCP model . 115
7.2 CDIS antibody life cycle . 118

LIST OF TABLES xv

List of Tables

5.1 Consequences of index errors for anomaly detection 74

7.1 Data sources . 122
7.2 Detection methods . 123
7.3 Training data . 123
7.4 Performance evaluations . 124
7.5 Usage frequency . 125
7.6 Use of real world data . 127

xvi LIST OF TABLES

INTRODUCTION 1

Chapter 1

Introduction

The number of computers on the Internet is steadily increasing. According to the
Internet Systems Consortium Inc. (ISC) the number of advertised hosts on the
Internet were approaching 320 000 000 in January 2005 [63]. Figure 1.1 shows
the general trend from 1998 to 2005.

The introduction of technologies such as 3G and pervasive computing make
even mobile phones and other devices connected to the net. Most organisations
and companies depend heavily on the use of networking for their internal organi-
zational processes as well as for providing their services. Important examples are
governments, banks and E-commerce businesses. Some service sectors, not tra-
ditionally dependent on Internet are also foreseen to become more dependent on
communication networks due to technology development. Examples are power
networks, health systems and disaster relief management. Of course this implies
that ordinary users are also increasingly dependent on Internet services. One study
shows that the number of Americans using some form of on-line banking system
has grown from 14 millions March 2000 to 53 millions as of September 2004 (44
percent of all U.S Internet users) [65].

1.1 Motivation

As the number of users and services on the Internet grows, the motivation for
misuse grows accordingly. Unfortunately the effort required for compromising a
computer system is decreasing by the use of automated attack tools. A common
set of events following the detection of a vulnerability is as follows.

• A vulnerability is detected.

2 1.1. MOTIVATION

0

50

100

150

200

250

300

350

1998 1999 2000 2001 2002 2003 2004 2005

Year

N
u

m
b

er
 o

f
h

o
st

s
(m

il
li

o
n

s)

Figure 1.1: Number of hosts on the Internet advertised in domain name servers

• A malicious (or just curious) person/organisation obtains information on
the vulnerability

• An attack tool is developed (requiring a considerable amount of technical
insight)

• The attack tool is released and used by many (requiring little actual knowl-
edge)

• The software vendor obtains information on the vulnerability

• A patch for the software is developed by the software vendor

• The patch is released and applied to a subset of systems removing the vul-
nerability from those systems.

The order of these events is very significant. The listed order is the most
unfortunate since the attack tool is released before the patch is applied to end user
systems resulting in a potentially very large number of compromised systems.
Unfortunately the time from public discovery of a new vulnerability to the release
of an attack tool is decreasing and is currently in the order of days. This means that
the time window for developing and applying patches is becoming very short. One
example is the Zotob-A worm [47] and its variants. On Tuesday 9th August 2005
Microsoft released a patch and less than three days [39] later exploit code was
publicly available on the Internet. In four days (Saturday 13th) worms exploiting
the vulnerability were spreading.

INTRODUCTION 3

Rapid patching is important [76] but not sufficient. For a production system
continuous patching may not be viable due to system complexity and diversity
as well as compatibility requirements. For important systems, defence in depth
is needed incorporating many different security technologies [112]. This may in-
clude firewalls at network boundaries and on individual hosts, removal of unused
software and services, virus scanners and so on. To further harden the defence,
intrusion detection systems may be applied.

Intrusion detection systems look for traces of computer misuse by examining
data sources such as program or user behaviour, network traffic or logs. When
traces of misuse are detected, alerts are produced and manual or automatic re-
sponse may be initiated. Specific attacks may not be visible in every type of data
source and diverse approaches may provide complementing information. It there-
fore makes sense to use multiple intrusion detection sensors either in isolation or
preferably also combining their output by correlating the alerts.

The main detection scheme of most commercial intrusion detection systems is
called misuse detection, where known bad behaviours (attacks) are encoded into
signatures. Misuse detection is only able to detect attacks that are well known and
for which signatures have been written.

An alternative approach is anomaly detection where good (normal) behaviour
of users or the protected system is modelled, often using machine learning or data
mining techniques. During detection new data is matched against the normality
model, and deviations are marked as anomalies. Since no knowledge of attacks
is needed to train the normality model, anomaly detection may detect previously
unknown attacks. If an attack tool is published before a patch is applied and before
attack signatures are developed or installed, the anomaly detection system may be
the only remaining defence. Some attack types, including a subset of denial of
service and scanning attacks, alter the statistical distribution of system data when
present. This implies that anomaly detection may be a general and perhaps the
most viable approach to detect such attacks.

1.2 Research challenges

A fundamental problem of intrusion detection research is the limited availability
of appropriate data to be used for evaluation. Producing intrusion detection data
is a labour intensive and complex task involving generation of normal system
data as well as attacks, and labelling the data to make evaluation possible. If a
real network is used, the problem of producing good normal data is reduced, but
then the data may be too sensitive to be released to other researchers publicly.

4 1.2. RESEARCH CHALLENGES

Learning-based methods require data not only for testing and comparison but also
for training, resulting in even higher data requirements. The data used for training
needs to be representative for the network to which the learning-based method
will be applied, possibly requiring generation of new data for each deployment.

Classification-based methods [40, 83] require training data that contains nor-
mal data as well as good representatives of those attacks that should be detected,
to be able to separate attacks from normality. Producing a good coverage of the
very large attack space (including unknown attacks) is not practical for any net-
work. Also the data needs to be labelled and attacks to be marked. One advantage
of clustering-based methods [57,84,90,101] is that they require no labelled train-
ing data set containing attacks, significantly reducing the data requirement. There
exist at least two approaches.

When doing unsupervised anomaly detection [57, 90, 101] a model based on
clusters of data is trained using unlabelled data, normal as well as attacks. If
the underlying assumption holds (i.e. attacks are sparse in data) attacks may be
detected based on cluster sizes, where small clusters correspond to attack data.
Unsupervised anomaly detection is a very attractive idea, but unfortunately the
experiences so far indicate that acceptable accuracy is very hard to obtain. Also,
the assumption of unsupervised anomaly detection is not always fulfilled making
the approach unsuitable for attacks such as denial of service (DoS) and scanning.

In the second approach, which we simply denote (pure) anomaly detection in
this thesis, training data is assumed to consist only of normal data. Munson and
Wimer [84] used a cluster-based model (Watcher) to protect a real web server,
proving anomaly detection based on clustering to be useful in real life. The anom-
aly detection algorithm presented here uses pure anomaly detection to reduce the
training data requirement of classification-based methods and to avoid the attack
volume assumption of unsupervised anomaly detection. By including only normal
data in the detection model the low accuracy of unsupervised anomaly detection
can be significantly improved.

In a real live network with connection to the Internet, data can never be as-
sumed to be free of attacks. Pure anomaly detection also works when some attacks
are included in the training data, but those attacks will be considered normal dur-
ing detection and therefore not detected. To increase detection coverage, attacks
should be removed from the training data to as large an extent as possible, with
a trade-off between coverage and data cleaning effort. Attack data can be filtered
away from training data using updated misuse detectors, or multiple anomaly de-
tection models may be combined by voting to reduce costly human effort.

An intrusion detection system in a real-time environment needs to be fast

INTRODUCTION 5

enough to cope with the information flow, to have explicit limits on resource us-
age, and adapt to changes in the protected network in real-time. Many proposed
clustering techniques require quadratic time for training [69], making real-time
adaptation of a cluster-based model hard. They may also not be scalable, requir-
ing all training data to be kept in main memory during training, limiting the size
of the trained model. We argue that it is important to consider scalability and
performance in parallel to detection quality when evaluating algorithms for intru-
sion detection. Most work on applications of data mining to intrusion detection
considers those issues to a very limited degree or not at all.

One fundamental problem of anomaly detection in general is the false posi-
tives rate. In most realistic settings normality is hard to capture and even worse,
is changing over time. This implies that in addition to facilitate modelling the
normality of a very complex system, an anomaly detection scheme needs to adapt
over time.

1.3 Contribution

Many different anomaly detection schemes have been evaluated by other authors,
but not all aspects of anomaly detection is getting the attention it deserves. Two
such aspects are adaptability and performance. The primary contribution of this
thesis is the design and implementation of the ADWICE (Anomaly Detection
With fast Incremental Clustering) algorithm with the following properties:

• Adaptation - Rather than making use of extensive periodical retraining ses-
sions on stored off-line data to handle changes, ADWICE is fully incre-
mental making very flexible on-line training of the model possible without
destroying what is already learnt. When subsets of the model are not useful
anymore, those clusters can be forgotten.

• Performance - ADWICE is linear in the number of input data thereby heav-
ily reducing training time compared to alternative clustering algorithms.
Training time as well as detection time is further reduced by the use of an
integrated search-index.

• Scalability - Rather than keeping all data in memory, only compact cluster
summaries are used. The linear time complexity also improves scalability
of training.

When performing anomaly detection and improving performance by using a
search-index, detection accuracy can be influenced by the index. In this thesis we

6 1.4. LIST OF PUBLICATIONS

discuss how, and to what extent, index errors influence anomaly detection results.
The application of ADWICE anomaly detection has been demonstrated in a

test network setup at a telecom company (Swisscom), and its performance found
to be satisfactory in the tested scenarios.

1.4 List of publications

The work that has resulted in this thesis has been presented in the following pub-
lications:

• K. Burbeck and S. Nadjm-Tehrani, ADWICE: Anomaly Detection with
Real-time Incremental Clustering, in Proceedings of 7th International
Conference in Information Security and Cryptology (ICISC 2004), Lecture
Notes in Computer Science, Volume 3506, pages 407–424. Springer, 2004.

• K. Burbeck and S. Nadjm-Tehrani, Adaptive Real-Time Anomaly De-
tection with Improved Index and Ability to Forget, in Proceedings of
the 25th IEEE International Conference on Distributed Computing Sys-
tems Workshops, Workshop on Security in Distributed Computing Systems,
pages 195–202. IEEE Computer Society, 2005.

• K. Burbeck, D. Garpe, and S. Nadjm-Tehrani, Scale-up and Performance
Studies of Three Agent Platforms, in Proceedings of International Perfor-
mance, Communication and Computing Conference, Middleware Perfor-
mance workshop, pages 857–863. IEEE Computer Society, 2004.

• T. Chyssler, S. Nadjm-Tehrani, S. Burschka, and K. Burbeck, Alarm Re-
duction and Correlation in Defence of IP Networks, in Proceedings of
the 13th International Workshops on Enabling Technologies: Infrastruc-
tures for Collaborative Enterprises (WETICE 2004), pages 229–234. IEEE
Computer Society, 2004.

• D. Gamez, S. Nadjm-Tehrani, J. Bigham, C. Balducelli, T. Chyssler, and
K. Burbeck, Safeguarding critical infrastructures, chapter 18 in the book
Dependable Computing Systems: Paradigms, Performance Issues and Ap-
plications edited by H. B. Diab and A. Y. Zomaya. John Wiley & Sons,
2005.

The following paper was peripheral to the work in the thesis, written in col-
laboration with a masters project.

INTRODUCTION 7

• K. Burbeck, S. G. Andres, S. Nadjm-Tehrani, M. Semling, and T. Dagonnier,
Time as a Metric for Defence in Survivable Networks, in Proceedings of
the Work in Progress session of 24th IEEE Real-Time Systems Symposium
(RTSS 2003), 2003.

1.5 Thesis outline

The thesis is divided into 8 chapters, as follows:

• Chapter 2 presents basic terminology. It introduces many concepts related
to intrusion detection, such as components of intrusion detection systems,
different types of detection schemes and metrics used for evaluation. The
chapter also introduces the notion of software agent and a number of basic
data mining concepts.

• Chapter 3 presents the context in which ADWICE was developed. The
Safeguard project as well as the Safeguard agent architecture is introduced.
A short overview of different types of Safeguard agents is given. The Safe-
guard agent platform is presented and communication performance is com-
pared with other platforms.

• Chapter 4 presents the first implementation of ADWICE using the original
search index. Training and detection are described and evaluated.

• Chapter 5 presents ADWICE augmented with the grid index. The workings
of the new index are described and evaluated. The notion of forgetting is
introduced and adaptation of the ADWICE model described and evaluated.

• Chapter 6 presents the implementation of ADWICE as part of a Safeguard
agent. The requirements and design of the agent are described together with
practical problems, such as remote data access.

• Chapter 7 presents related published work. Alternative approaches to anom-
aly detection and are summarised and compared to ADWICE. In addition,
a number of agent systems are discussed in the context of the Safeguard
architecture.

• Chapter 8 concludes the thesis and indicates possible future directions of
continued research.

8 1.5. THESIS OUTLINE

BACKGROUND 9

Chapter 2

Background

In this chapter we explain the basic notions related to the work in this thesis. Sec-
tions familiar to the reader may be skimmed. Note however, that other authors
may provide slightly different definitions due to the lack of consensus in security
and intrusion detection terminology. In most cases this will not prevent under-
standing of the rest of this work.

2.1 Dependability and computer security

Since we use computer based systems in our every day life and for many critical
applications, it is important that we can trust those systems to carry out their
services in a dependable way. No complex system is perfect and we can not
completely control the environment of a system. In other words, there will be
internal faults (e.g. bugs) and external faults (e.g. attacks, accidents). Faults may
lead to an error, a situation where the system state is no longer correct. Errors may
cause failures. A failure is the event that occurs when the delivered service of a
system, deviates from the correct service. Since we want the system to perform
satisfactorily even in presence of faults there is a need for methods that tolerate
faults or detect and recover from faults before they cause failures.

Dependability is “the ability (of a system) to deliver service that can be jus-
tifiably trusted” [8]. An alternative definition provided by Avizienis et al. [8] is
“the ability of a system to avoid service failures that are more frequent or severe
than is acceptable”. Dependability is an integrated concept that encompasses the
following attributes [8]:

• Availability - readiness for correct service.

10 2.1. DEPENDABILITY AND COMPUTER SECURITY

• Reliability - continuity of correct service.

• Safety - absence of catastrophic consequences on the users and the environ-
ment.

• Integrity - absence of improper system alternations.

• Confidentiality1 - absence of unauthorised disclosure of information.

• Maintainability - ability to undergo modifications and repairs.

Survivability is a concept very close to dependability and will be used inter-
changeably in this work. Ellison et al defines survivability as “the capability of a
system to fulfil its mission in a timely manner, in presence of attacks, failures and
accidents´´. [41] An alternative definition of survivability by Shirey [103] is “the
ability of a system to remain in operation or existence despite adverse conditions,
including both natural occurrences, accidental actions and attacks on the system”.

Computer security is often considered the composite of the attributes confi-
dentiality, availability and integrity (CIA) [53]. There are also a number of useful
secondary criteria related to security [8]:

• Accountability - availability and integrity of the identity of the person who
performed an operation.

• Authenticity - integrity of a message content and origin, and possibly some
other information such as the time of emission.

• nonrepudiability - availability and integrity of the identity of the sender of
a message or of the receiver.

When a user accesses a computer system, personal and sensitive information
may be logged which raises privacy issues. This is true for intrusion detection
systems [77] in particular, where data collection is necessary to detect intrusions.
Below we define the important notion of privacy.

• Privacy - confidentiality of personal information.

A security policy is a set of rules and practices that specify or regulate how a
system or organization provides security services to protect sensitive and critical

1In the context of dependability, confidentiality has not received as much attention as other
attributes [8].

BACKGROUND 11

system resources [103]. An attack is an attempt to violate the security policy of
a system. Depending on the location where the attack is initiated it is denoted
external or internal. Bace [11] defines an intrusion to be “intentional violation
of the security policy of a system”. This implies that the notion of attack, but
not intrusion, encompass failed as well as successful attempts. However, in the
area of intrusion detection the notions of attack and intrusion are sometimes used
interchangeably [12]. In this thesis we will use the term attack, and explicitly state
if the attack was successful or not if relevant.

2.1.1 Attack types

There are various types of attacks, and many taxonomies [109] of attacks have
been proposed. We adopt the classification used by the DARPA/Lincoln Labs
evaluation [75]. This classification does not cover all possible attack types but is
enough for our purposes.

• Scanning attacks are commonly performed by human attackers or malicious
code such as worms to gain information of network topology, what traffic
firewalls will let through, open ports on individual hosts and software types
and versions. A scanning attack is often the first step to gain enough infor-
mation to continue the real attack.

• System penetration attacks involves obtaining unauthorised access to a sys-
tem or network and possibly use this access to break the system (attack
against availability), obtain secret information (attack against confidential-
ity) or altering sensitive data (attack against integrity). Some common sys-
tem penetration attacks are:

– Remote to Local (R2L) when the attacker obtains unauthorised local
user access remotely on the network.

– User to root (U2R) that involves a normal user obtaining unauthorised
root access. For external attackers, gaining normal user access (e.g.
R2L attack) is often a first step towards root access.

• Denial of Service (DoS) is when the attacker attacks the availability of a
system, either by exploiting flaws to make software crash, or by flooding
the target system with enough traffic so that normal service is no longer
possible. When multiple hosts, possibly tens of thousands, are involved in
a DoS attack, it is called Distributed Denial of Service (DDoS). DoS and

12 2.2. INTRUSION DETECTION

certainly DDoS may be very hard to defend against, unless countered close
to the source (e.g. by the Internet Service Provider).

2.2 Intrusion detection

Amoroso [1] defines intrusion detection as “the process of identifying and re-
sponding to malicious activity targeted at computing and networking resources”.

The use of the word process emphasises the involvement of technology, peo-
ple and tools and the complex interaction between those entities. Identification
may be done before, during or after the malicious activity proceeds. Response
may be initiated by tools, people, or both. If the malicious activity is detected
on an early stage, the activity may be prevented and the consequences avoided.
If the activity is detected after it has completed, at least the amount of damage
may be estimated and the need for future preventive actions analysed. Including
computing and networking resources in the definition restricts the discussion to
protection of such systems, even though the general principles may also apply in
other settings, e.g. physical protection.

Note that failure potential is very high in the case of system security. A system
may be very reliable and have a very small risk of failing due to non-malicious
faults. However, when malicious intent is present, the attacker will make sure that
the very rare failure condition is established [1].

A very simple illustration [1] of the intrusion detection concept is presented in
figure 2.1. The attacker aims at breaking the security of a target system which is
monitored by an intrusion detection system. When the intrusion detection system
detects malicious activity the intrusion detection infrastructure is notified. The
infrastructure may include additional software systems that collect, store, share,
and use intrusion-related system information. Most often it also includes people
and organisations. The infrastructure may then choose to respond to the intrusion.
Response is a very complicated process, that needs to take into consideration a
large number of technical and non-technical issues [1].

2.2.1 Components

Different types of intrusion detection systems have different strengths and weak-
nesses. It may therefore be useful to deploy multiple detection systems, to in-
crease protection of the target system. Furthermore, intrusions often involve mul-
tiple organisations, people and systems increasing the need for a common infor-
mation format for intrusion detection [118].

BACKGROUND 13

Target System Intrusion Detection
System

Monitor

Intrusion Detection System Infrastructure

Respond Notify

Figure 2.1: Basic intrusion detection concepts

Data
Source

Sensor

Analyser

Manager

Administrator

Operator

Response

Notification

Security
Policy Activity

Event

Alert

Figure 2.2: Terminology of IDMEF

The Common Intrusion Detection Framework (CIDF) [26] was an attempt by
the US government’s Defence Advanced Research Projects Agency (DARPA) to
develop an intrusion detection system interchange language. Although its practi-
cal application has been limited to date, it has influenced later research and stan-
dardisation efforts.

The Intrusion Detection Exchange Format Working Group (IDWG) [66] has
developed a common standard for intrusion detection data formats and exchange
procedures known as the Intrusion Detection Message Exchange Format (IDMEF)
[34, 118]. We adopt the terminology used by IDMEF illustrated by figure 2.2.

• An administrator is responsible for setting the security policy of the or-
ganisation, including deployment and configuration of intrusion detection
systems.

14 2.2. INTRUSION DETECTION

• A data source is an access point in the target system where data is collected.

• A sensor collects data from data sources, detects events and forwards those
to an analyser.

• An analyser processes the events and possibly produces alerts according to
the security policy. The alerts may be formatted according to the IDMEF
format.

• A manager handles the various components of the intrusion detection sys-
tem. This may include configuration, data consolidation and notifications
of the operator when certain alerts have occurred.

• An operator is the primary user of the manager and responsible for initiat-
ing responses to notifications and alerts.

Notice that in many implementations a sensor and analyser may be part of the
same component. Furthermore, often there will be multiple sensors and analysers
possibly accessing different data sources.

2.2.2 Taxonomy

Unfortunately there is still no consensus on the terminology when it comes to
classification of various types of intrusion detection systems. Debar et al. [36]
have however provided one of the most cited intrusion detection taxonomies up
to date. We here adopt the revised version [35] [37] with some further exten-
sions. The added notion of modelling method is inspired by the use of the notions
self-learning and programmed in the taxonomy by Axelsson [10]. The order of
categories has been updated according to Arvidson and Carlbark [5]. Figure 2.3
presents the resulting taxonomy. In the following sections we explain the taxon-
omy.

Audit Source Location

An intrusion detection system may collect data from many different audit sources.
Often raw data is processed and specific features extracted, suitable for further
analysis. The kinds of attacks that may be detected depend on the data source as
well as the selection of features. Many audit sources contain significant quantities
of noise. Sometimes audit sources are used because they are already present in the
target system, rather than because they are very suitable for intrusion detection.

BACKGROUND 15

Intrusion
Detection
System

Audit source
location

Detection
method

Behaviour on
detection

Usage
frequency

Detection
paradigm

Modeling
method

Network-based

Host-based

Application -based

Alerts -based

Knowledge -based

Behaviour -based

Passive detection

Active detection

Periodic analysis

Continuous monitoring

State-based

Transition -based

Programming -based

Learning -based

Figure 2.3: Intrusion detection taxonomy

16 2.2. INTRUSION DETECTION

ModelUnknown events

Attack event

Normal event

Figure 2.4: Categorisation of unknown events

Most computers are connected to local networks and/or the Internet and many
applications are communication intensive. Whenever the attacker does not have
physical access to the target system, she will need to access the system remotely
using the network. This implies that attacks may be detected by analysing network
traffic, denoted network-based intrusion detection. Raw network traffic (packets)
may be captured by listening passively on all network traffic using a network card
configured into promiscuous mode.

Modern operating systems offer different capabilities to collect logs of system
and resource usage that may be analysed by a host-based intrusion detection sys-
tem. Host-based data sources are the only way of gathering information of user
activity on individual machines. A common source of host-based information is
C2 security audits in UNIX corresponding to detailed information on the system
calls of user processes.

An alternative to host-based detection is application-based intrusion detec-
tion. Application logs may provide more accurate and relevant information than
low-level operating system data.

When intrusion detection systems are applied on a larger scale with many
deployed systems, the resulting alerts may in turn be processed by alert-based
intrusion detection systems. By correlating alerts relating to the same event de-
tection accuracy can be improved by the combined information from multiple
detectors. Furthermore, the total number of alerts that needs to be analysed may
be decreased if alerts relating to the same event are grouped together.

Detection method

To successfully detect attacks, the intrusion detection system needs to be able to
differentiate attacks from normal data using an internal model of attacks and/or
normal data. Figure 2.4 illustrates how a model categorises unknown events into
attacks or normal data. Naturally the model may be more or less specific, pos-
sibly being able to categorise subtypes of attacks and normal data, e.g. correctly
separating a Blaster worm attack from a port scan.

BACKGROUND 17

Model

Model

Legend:

Normality

Attacks

Misuse detection

Anomaly detection

Figure 2.5: Misuse detection versus anomaly detection

Intrusion detection depends on the assumption that the data source has access
to data where attacks are different from normal data. Moreover, this difference
needs to be captured by the events produced by the sensor and by the model of
the analyser to correctly produce alerts when attacks are present in the data. Two
common approaches exist:

• Misuse detection, also known as Knowledge-based intrusion detection,
which uses an internal model of attacks (misuse) to detect intrusions.

• Anomaly detection, also known as Behaviour-based intrusion detection,
which uses an internal model of normal data to detect anomalies (i.e. devi-
ations from normality).

Figure 2.5 illustrates the relation between misuse detection and anomaly de-
tection. It is of course possible to include both normal and attack data in the
model. We refer to such systems as hybrid detectors.

Modelling method

A learning-based intrusion detection system learns by examples how to build
its internal model. For programming-based intrusion detection systems, the
users of the systems specify how to separate attacks from normal events. Most
learning-based systems perform anomaly detection, while misuse detection sys-
tems normally are programmed. We refer to programmed anomaly detection as
specification–based intrusion detection [100].

18 2.2. INTRUSION DETECTION

Behaviour on detection

Passive intrusion detection generates alerts but does not actively apply counter-
measures to thwart an attack upon detection. Active intrusion detection systems
on the other hand are able to initiate countermeasures. Countermeasures may
include cutting network connections that carry attacks, blocking traffic or recon-
figuring equipment and software such as firewalls or routers. Active intrusion
detection requires good detection accuracy, or else false alerts could cause the
countermeasures to decrease the availability of the system.

Usage frequency

Intrusion detection may perform analysis periodically or continuously. Intru-
sion detection systems performing continuous monitoring acquire information of
events immediately after they occur and process those events in real-time. We will
refer to such analysis as real-time intrusion detection. Periodic analysis implies
an additional time delay until the attack is detected but requires fewer resources
such as processing power.

Detection paradigm

State-based systems detect intrusions by analysing system states. Examples of
this could be a file integrity checker (e.g. Tripwire [64]) using checksums to con-
firm that no files have been changed and that files therefore are in their normal
state. An alternative approach is to detect transitions from a normal state to a fail-
ure state, for example detecting the actual attack by using signatures (e.g. Snort2).

2.2.3 Evaluation metrics

Intrusion detection systems are often evaluated on data containing attacks as well
as normal traffic. The data may be simulated or collected from real networks.

A number of commonly used metrics exist, and are described below.

• A true positive (TP) is a real attack correctly categorised as an attack by the
intrusion detection system.

• A false positive (FP) is a false alert, meaning that the intrusion detection
system erroneously raised an alert for normal data.

2Snort is an open source network intrusion prevention system, capable of performing real-time
traffic analysis and packet logging on IP networks. [105]

BACKGROUND 19

Actual
Intrusions

Detected
Intrusions

FPFN

TN

TP

Figure 2.6: Evaluation metrics

• A true negative (TN) is normal data that correctly does not generate an alert
from the intrusion detection system.

• A false negative (FN) is a missed attack, meaning that the attack was erro-
neously categorised as normal by the intrusion detection system.

Figure 2.6 shows the relation between true and false positives, and true and
false negatives.

Relative metrics are often more useful for comparison and a number of derived
metrics are therefore normally used for evaluation:

• Detection rate (DR) is the fraction of all attacks that are actually detected.

Detection rate =
TP

TP + FN
(2.1)

• False positives rate (FPR) is the fraction of all normal data that produces
(false) alerts.

False positive rate =
FP

FP + TN
(2.2)

• Overall accuracy is the fraction of all data that is correctly categorised.

Overall accuracy =
TP + TN

TP + FN + FP + TN
(2.3)

Often a combination of detection rate and false positives rate is presented
when evaluating an intrusion detection system. Accuracy or Detection rate in

20 2.2. INTRUSION DETECTION

isolation would be a useless metric. The straightforward method for producing
100 % detection rate would be to generate one alert for every encountered data.
The intrusion detection system then detects all attacks, but of course the real at-
tacks would be hidden in a huge number of false alerts.

Real computer or network data from normal usage is expected to contain only
a small fraction of attack data. This means that a low false positive rate is criti-
cal. Assume that an intrusion detection system located inside a firewall processes
1 000 000 network packets each day and only 10 of those data are real attacks.
Further assume that the false positive rate of the intrusion detection system is 1 %
and the detection rate 90 %. During one day 10 009 alerts would be produced,
10 000 false positive and 9 true positive. It would take a significant amount of
manual effort to find those 9 true alerts. This illustrates the difficulty of intrusion
detection [9].

There is a well known trade-off between false positives rate and detection rate.
Increasing the detection rate usually means also increasing the false positives rate.
Flexible intrusion detection systems provide the opportunity for the user to adapt
this trade-off (e.g. using a threshold) to obtain higher detection rate or lower false
positives rate (not both) depending on the present need. Producing a diagram
with detection rate on the Y-axis and false positives rate on the X-axis, known
as a ROC-curve, is an illustrative way of presenting this trade-off. Figure 2.7
presents an example ROC curve. The form of the curve is typical for intrusion
detection systems, where increasing false positives rates give diminishing returns
in increasing detection rates.

When performing intrusion detection, not only accuracy is important, but also
time. Detection latency measures the time from the attack to detection. For some
detection schemes there may be a trade-off between detection latency and detec-
tion accuracy. Detection of a port scan may aggregate network packets over a
specific time window. If this time window is large, this may increase detection la-
tency. If the time window is small, stealthy (slow) port scans may not be detected
because very little anomalous traffic is visible inside the time-window.

For use in practice, storing and processing efficiency is important. Memory
usage measures how much memory the intrusion detection system requires for a
specific model size. Throughput measures the amount of data analysed each time
unit. To be effective for real-time detection, the trough-put needs to be higher than
the input data-rate.

A sometimes neglected but important part of evaluation is usability. Various
aspects of usability are ease of training and adaptability of learning-based systems,
ease of deployment, configuration, and tuning as well as user support such as good

BACKGROUND 21

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

0 0,01 0,02 0,03 0,04 0,05 0,06

False positives rate

D
et

ec
tio

n
ra

te

Figure 2.7: ROC-curve example

interfaces and management tools. A low false positives rate increases the usability
of the intrusion detection system, since less effort is required to sort through the
false alerts.

2.3 Software agents

According to Russell and Norvig [95], an agent is “anything that can be viewed
as perceiving its environment through sensors and acting upon the environment
through effectors”. Human agents use eyes and other organs as sensors, and hands,
mouth and other body parts as effectors. Software agents exist only as encoded bit
strings inside computers. Even though they interact directly only with the digital
world, through their hardware they may also influence the real world (e.g. robots).
But what makes software agents different from other program components? Com-
paring agents to objects, two important differences in general are:

• Autonomy - The object has state and so does the agent but the agent also
incorporates the ability to initiate actions as what could be explained as
having behaviours.

• Independence - In addition to having behaviours the agent is also commu-
nicating by passing messages. When using objects the communication is
accomplished through method invocation with references. This means that

22 2.3. SOFTWARE AGENTS

the control lies with the invoker, which is totally opposite the agent case
where control lies with the receiver. The receiving agent decides whether
to respond to a message or not.

Many computer-based systems of today are by necessity distributed. Data
may be collected in one place, analysis of the data in a second, while the operator
of the system is located at a third. For intrusion detection systems, analysing
data from multiple hosts and even multiple networks, this is certainly true. To
reduce complexity in the overall systems, traditional design principles suggest
that each component should be realised as a reasonably independent subsystem
implementing related functionality, communicating with related subsystems when
necessary. In other words, the system should possess strong cohesion and loose
coupling [19]. If subsystems are implemented as software agents, the complete
system is denoted a multi agent system [119]. The autonomy and independence of
agents map very well to the basic design principles of strong cohesion and loose
coupling.

If a computer system is built using a set of agents, it makes sense to collect
crosscutting functionality of agents into a middleware supporting the agent, rather
than implementing this functionality as part of each agent. We call such agent
middleware agent platforms.

2.3.1 Agent platforms

Agents need to communicate if they are to contribute to the purpose of the overall
multi-agent system. They also need some other basic services like directory ser-
vices to locate other agents and life-cycle management to be able to start and stop
execution in a controlled way. Agent platforms are simply the basic middleware
used by software agents.

The Foundation for Physical Intelligent Agents (FIPA) is a non-profit organ-
isation setting up standards for agent applications and agent systems. The main
contribution and goal of the organization is to achieve interoperability between
agent platforms developed by different producers. Standards such as the Agent
Communication Language contribute towards this goal. Another standard, the
Agent Management specifications, introduces basic agent-platform concepts. The
standard agent platform model set up by FIPA is pictured in figure 2.8. The plat-
form can physically span multiple machines.

The Directory Facilitator (DF) is a place where agents can register their ser-
vices for other agents to search for. The facility is also often named ’yellow pages’
as in the phone book. Typical types of services advertised here are types of in-

BACKGROUND 23

Message Transport System

Agent Management
System (AMS)

Directory
Facilitator (DF)

AgentsAgents

Figure 2.8: Reference architecture of a FIPA agent platform

teraction protocols supported and the language used for conversations as well as
arbitrary user defined services. There is no restriction on the number of instanti-
ated DFs on a platform.

The Agent Management System (AMS) is responsible for agent activities such
as agent creation, life cycle and deletion as well as providing and keeping unique
agent addresses. The analogy with the phone book’s ’white pages’ comes as no
surprise. There can only be one logical AMS on an agent-platform even if it
physically spans over multiple machines. We denote the platform part with AMS
the main container.

The Message Transport System, also known as the Agent Communication
Channel is where the control of message passing lies. The message exchanging
parties could be agents living on the same platform but also on different platforms.

Many agent platform implementations are available on the Internet and it is no
coincidence that many are implemented in Java. The platform independence and
easy to use threads as well as dynamic loading of classes, make Java a suitable
choice of language for many agent applications.

2.4 Data mining and machine learning

Data mining concerns “extracting or mining knowledge from large amounts of
data” [69]. Data mining applies many basic learning techniques from the area of
“Machine learning” [82]. A large number of different data mining and machine
leaning techniques have been applied to the area of intrusion detection. Here
we describe two important types of data mining approaches, classification and
clustering, and how they have been used for intrusion detection.

24 2.4. DATA MINING AND MACHINE LEARNING

The data source of an intrusion detection system provides some traces of sys-
tem activity (see section 2.2.1). Not all system activity is relevant for intrusion
detection and if the analyser was presented with unfiltered system activity, the
intrusion detection task would be unnecessary hard. Therefore a number of mea-
sures or data features needs to be selected to represent system activity such that
those features can be used to detect attacks. This initial data filtering is part of
pre-processing in the domain of data mining. Pre-processing may in general in-
clude [69]:

• Cleaning - Data cleaning is the process of filling in missing values, smooth-
ing noisy data, identifying or removing outliers and resolving inconsisten-
cies.

• Integration and transformation - If data come from various sources, their
format may be inconsistent and need to be harmonised. For some classi-
fication algorithms, numeric data need to be normalised, i.e. scaled to a
specific range.

• Data deduction - Huge data sets may require a long time to analyse. By
removing irrelevant attributes, aggregation, compression or generalisation
of data reduction is possible.

In this thesis, we will denote the pre-processed data feature vector. Each
dimension of the feature vector corresponds to a measure derived from system
activity.

2.4.1 Classification

A classification algorithm is designed to learn (to approximate the behaviour of)
a function which maps a feature vector into one of several classes by looking at
several input-output examples of the function [82]. The resulting approximation
of the function is denoted classifier. We call the function that is learnt, the target
function and the resulting range of the function the target concept. The target
function could in principle be specified manually for simple examples, but for
large domains this will often be practically impossible.

There are many different approaches to classification, e.g. Artificial neural
networks, decision trees, genetic algorithms, Bayesian learning, case based rea-
soning, fuzzy sets and so on. For description of various algorithms the reader is
referred to text books on data mining [69] and machine learning [82].

BACKGROUND 25

Data item

Cluster

Legend :

Figure 2.9: Clustering

An intrusion detection system, regardless if it is programming-based with
rules or learning-based, can be considered a classifier. The classification prob-
lem of intrusion detection is to decide if data is normal or are symptoms of an
attack. This implies that the straightforward target function of a classifier used for
intrusion detection would have attacks classes and the notion of being normal as
the target concept. The downside of this is of course that all training examples
need to be labelled, involving a human expert.

An alternative approach is to use one attribute of the feature vector itself as
target concept. One approach that has been evaluated is to learn to discriminate
between different applications or network services during normal usage of the
computer system. During detection, unknown data will be presented to the clas-
sifier and mapped into the target concept of valid network services. The proposed
classification will be compared to the true service visible in the data. If the pro-
posed classification does not match the true service of data, this tells us that the
data is not similar to the training data of that service. If the training data corre-
sponds to normal usage of the computer system this is certainly suspicious and
may possibly imply that the data is part of an attack.

2.4.2 Clustering

A process of grouping a set of physical or abstract objects into classes of simi-
lar objects is called clustering. A cluster is a collection of data objects that are
similar to one another within the same cluster and are dissimilar to the objects in
other clusters [69]. Figure 2.9 illustrates clustering of points in a two-dimensional
space.

Given two objects, represented as normalised feature vectors with continu-
ous roughly linear variables, the similarities can be computed by considering the
geometrical distance between the two vectors. A common distance measure is
the well known Euclidian distance. Nominal and other types of variables can be
handled using other types of distance measures.

26 2.4. DATA MINING AND MACHINE LEARNING

In general, major clustering algorithms can be classified into the categories
described below [69].

• Partitioning methods classify data into k groups, where each group or clus-
ter contains at least one object and each object belongs to exactly one clus-
ter. An initial partitioning into k clusters is created, after which iterative
relocation is applied. The idea is to step by step improve the clusters by
maximizing intra–cluster similarity, while minimizing inter–cluster simi-
larity.

One classical example is the K-means [69] clustering algorithms which rep-
resent each cluster by its mean, or centroid. The initial partitioning is cre-
ated by randomly selecting k objects to represent the cluster means. All
other objects are then assigned to the most similar cluster after which all
cluster means are recomputed. This process iterates until a criterion func-
tion, such as the squared error criterion, converges.

• Hierarchical methods create a hierarchical decomposition of the given data
objects. Cure [58] and Chameleon [71] are example of hierarchical meth-
ods. BIRCH [122] uses hierarchical clustering in its first phase, after which
iterative relocation is applied to clusters rather than individual objects in
subsequent phases. Two hierarchical approaches exist:

– The agglomerative approach starts with each object forming a sepa-
rate cluster. It successively merges similar clusters together until all
clusters are merged into one at the top-most level of the hierarchy.

– The divisive approach starts with all objects in the same cluster. In
each successive iteration, a cluster is split up into smaller clusters until
every object is in a single cluster or until a termination criterion is
fulfilled.

• The general idea of density-based methods is to grow clusters as long as the
density, the number of objects, in the neighbourhood of the cluster exceed
some threshold. Contrast this to partitioning methods which are based on
distance measures. DBSCAN [43] is an example of a density-based clus-
tering method.

• Grid-based clustering methods quantise the object space into a finite num-
ber of cells that form a grid structure. Performing all clustering operations
on the grid structure improves processing time. STING [116] is a typical
example of a grid-based method.

BACKGROUND 27

Normal data

Normality cluster

Legend:

Unknown data

a
b

c

Figure 2.10: Pure anomaly detection using clustering

• Model-based clustering hypothesises a model for each cluster and finds the
best fit of the data to that model. One approach is conceptual clustering,
which given a set of unlabelled objects produces a classification of those
objects. The classifications are often represented by probabilities, one ex-
ample is the COBWEB [45] method. Another approach uses neural net-
works [82]. Self organizing maps (SOMs) [72] assume that there is some
topology or ordering among the input objects and the SOMs try to take on
this structure in space. SOMs have been used for intrusion detection and
can also be used to visualise high-dimensional data.

There are at least three basic approaches to intrusion detection using clusters.
In the first case, an example of pure anomaly detection, feature vectors represent-
ing normal system usage are clustered. The clusters then form a compact repre-
sentation of normal system usage. When new system data are to be categorised,
they are compared with the clusters. If unknown data is similar to a cluster in the
model, the data is assumed to be normal. If not similar, the data is not similar to
normality and therefore suspicious and may also be part of an attack. Figure 2.10
illustrates pure anomaly detection using clustering:

• Data point a and b will be considered normal because they are similar (i.e
close) to clusters that represent normality.

• Data point c will be considered as part of a possibly new attack because it
is not similar to any cluster in the model.

An alternative approach is unsupervised anomaly detection using clustering.
System data, attacks as well as normal system usage data are clustered. The data
points are assumed to be unlabelled, meaning that we do not know if one training
data is normal or part of an attack. By assuming that attacks are far less common

28 2.4. DATA MINING AND MACHINE LEARNING

a
b

c
Normal data

Normality cluster

Legend:

Attack data

Attack cluster

Unknown data

Figure 2.11: Unsupervised anomaly detection using clustering

than normal data, detection can be based on cluster size. Small clusters represent
uncommon data which are suspicious and possibly part of an attack. Figure 2.11
illustrates unsupervised anomaly detection using clustering:

• Data point a will be considered normal because it is similar to a large clus-
ter, which is assumed to be normal.

• Data point b will be considered as part of a possible attack because it is most
similar to a small cluster, assumed to be part of an attack.

• Data point c can be considered as part of a new attack because it is not
similar to any (large) cluster.

Clustering can also be used for straightforward classification. In contrast to
pure anomaly detection and unsupervised anomaly detection, labelled training
data is then clustered. Each cluster can be given the class of the majority of
the contained data objects for example. When unknown data are classified, the
class of the most similar cluster may be given to the unknown data. This method
is a mix of misuse and anomaly detection since both attacks and normality are
modelled. Figure 2.12 illustrates classification-based detection using clustering:

• Data point a will be considered normal because it is similar to a cluster
where the majority of the data points are normal.

• Data point b will be considered as part of an attack because it is similar to a
cluster where the majority of the data points are attacks.

• Data point c can be considered as part of a new attack because it is not
similar to any cluster.

BACKGROUND 29

a
b

c
Normal data

Normality cluster

Legend:

Attack data

Attack cluster

Unknown data

Figure 2.12: Classification based detection using clustering

30 2.4. DATA MINING AND MACHINE LEARNING

THE SAFEGUARD CONTEXT 31

Chapter 3

The Safeguard context

Most of the work in this thesis was done in the context of the European Safeguard
project [96]. Safeguard (2001-2004) was a European research project aiming to
enhance survivability of critical infrastructures by using agent technology. The
telecom and electricity distribution domains were used to evaluate the Safeguard
concepts.

This chapter gives a brief overview of the project and describes how the work
in this thesis fits in the larger picture of Safeguard. The telecom domain will dom-
inate this chapter, because ADWICE was demonstrated and successfully tested in
that domain.

3.1 Critical infrastructures

Our heavily industrialised society would not survive without a generous and re-
liable supply of energy and communications. The energy and communications
needs are supplied by what is known as large complex critical infrastructures
(LCCIs). They are large because they consist of networks interconnected at local,
regional, national and global levels. They are complex because they have to pro-
vide a range of services to a wide range of various costumers and there is rarely
one single supplier. They are critical because our society would collapse if any of
those infrastructures were unavailable an extended period of time.

However critical, those infrastructures are vulnerable to failures as well as de-
liberate attacks. Due to their complexity, the infrastructures depend heavily on
computers and communications networks for monitoring, protection and manage-
ment. The computer systems are in turn vulnerable.

32 3.1. CRITICAL INFRASTRUCTURES

In general, critical infrastructures can be divided into the following three lay-
ers:

1. Physical layer. This is the network of pipes, lines, cables, etc. that delivers
the essential services. In the telecommunications domain the physical layer
consists of the routers, switches and copper and fibre-optic lines that carry
the telecommunications data. In the electricity domain the physical layer
is the network of transmission lines, transformers, breakers and generators
that create and transport the electrical energy.

2. Cyber layer. This is the computers, networks and data gathering sensors
that are used to monitor and control the physical layer. In the telecommu-
nications domain, the cyber infrastructure is used to monitor and control
the many routers and switches within the system. In the electricity domain,
the cyber infrastructure gathers information about power flows and breaker
states and transmits the operators’ control signals to the breakers and trans-
formers. Although the cyber layer may share communications channels
with the physical layer - in telecommunications, for example - the data that
is transmitted within the cyber layer has a very different function from that
within the physical layer.

3. Human operations layer. All the information gathered by the cyber layer is
passed on to the human operators, who use it to manage the physical and cy-
ber layers. The organizational processes that are in place for management,
security enforcement, and recovery from failures are part of this layer.

In the past it has generally been the physical and human operations layers
that have been the most vulnerable to attacks, failures and accidents. Accidents
and failures in the physical layer have always been part of the daily running of
the network and this layer has occasionally been subject to physical attacks as
well. Within the human operations layer, operators inevitably make mistakes and
they also have the specialised tools and knowledge that are needed to carry out
malicious actions. It has also always been possible for attackers to gain physical
access to the control room or to manipulate operators by social engineering. None
of these problems have gone away in recent years, but a number of factors have
contributed to a dramatic rise in the vulnerability of the cyber-layer, which has
been the main area of focus for the Safeguard project.

THE SAFEGUARD CONTEXT 33

3.1.1 Telecommunications vulnerabilities

In most European countries traditional circuit-switched telecommunication net-
works are being replaced by packet-based IP networks. It is therefore the man-
ifestation of attacks, failures and accidents in IP networks that constitutes the
most significant threat to telecommunications infrastructures. In recent years
the dependability of IP infrastructures has decreased, due to the proliferation
of worms, denial of service attacks, buffer overflow vulnerabilities and viruses.
There are also the inevitable problems of hardware failures and software crashes.
All of these problems are being exacerbated by the rapid deployment of hard-
ware and software that have been designed primarily for other contexts (e.g. per-
sonal computing) within the patchwork that constitutes modern complex systems.
This spread of commercial off-the-shelf hardware and software can also lead to a
monoculture within which it is easy for malicious processes to spread.

In case of failures, accidents as well as attacks, it is important that problems
are detected and resolved as soon as possible to increase service availability, and
avoid further escalation of the problem. An important issue is to quickly and ac-
curately identify the cause to a problem. In the context of a management network
for telecom service providers we have identified the following needs:

• Reducing information overload on human operators (see sections 3.3.1 and
3.3.4). Many existing tools produce an abundance of alerts and logs.

• Increasing coverage by providing new sources of information such as anom-
aly detection with ADWICE (see chapter 4 and 5).

• Increasing information quality by reducing false positives (see section 3.3.4).

• Collating information, such as correlating alerts and combining with net-
work topology information (see section 3.3.4).

• Presenting a global view of a network (see section 3.3.4).

3.1.2 Electricity vulnerabilities

The electricity cyber layer contains a number of control centres running worksta-
tions, energy management software (EMS) and databases over a local area net-
work. These control centres interact with the Supervisory Control And Data Ac-
quisition (SCADA) system that consists of a software interface and specialised
hardware units (RTUs), which monitor sensors and interface with breakers and
transformers (see figure 3.1).

34 3.2. SAFEGUARD SOLUTIONS

Figure 3.1: Electricity cyber infrastructure

Traditionally this cyber infrastructure was protected by its relative isolation
and the non standard protocols that were used to communicate over it. How-
ever, with the deregulation of the electricity industry it no longer makes sense for
each company to develop its own hardware and design proprietary protocols, and
companies are increasingly looking to commercial products to solve their commu-
nication needs. A second consequence of this market orientation is the increased
interconnectedness between the electricity management networks and other net-
works, most problematically between the corporate network and the control centre
network. The dangers of this standardisation and interconnection became appar-
ent in the recent Ohio nuclear incident [91] when the Slammer worm copied itself
across from the corporate network into the plant network and disabled a safety
monitoring system for nearly five hours, forcing the operators to switch to an ana-
logue backup. In a separate incident the propagation of Slammer blocked SCADA
traffic and impeded the ability of operators to monitor and control the electricity
system [30].

3.2 Safeguard solutions

Within the Safeguard project we have aimed to produce a solution that can tackle
some of these challenges, using an open architecture that can be extended to cope

THE SAFEGUARD CONTEXT 35

with emerging threats. The core of this Safeguard solution is an agent system,
which facilitates the distributed gathering and filtering of information from a num-
ber of different sources and the execution of rapid responses to attacks, failures
and accidents.

3.2.1 Agents for increased dependability

Agents are semi-autonomous software entities that perceive their local environ-
ment, process this information in some way and carry out actions. By communi-
cating with one another they can develop collective solutions to problems. Agents
run on agent middleware (see section 3.2.2) that separates their generic services
(such as communication capability, service discovery, heart beat emissions) from
the specific "business" logic used for detection, correlation or action. This para-
digm offers a number of advantages over a single centralised intelligence:

• Scalability. With a centralised system, communication bottlenecks can
build up around the central controlling node as the network increases in
size. Within a decentralised system the communication overhead depends
upon the degree of coupling between the distributed components. How-
ever, since this overhead is distributed over the whole of the network, even
quite tightly coupled distributed systems can generally be scaled more eas-
ily. The processing of information is also distributed across many nodes in
agent systems.

• Local detection and response. The remoteness of centralised intelligence
systems makes them useless in the event of a partial or complete network
failure. On the other hand, a distributed agent system can carry out an
autonomous rapid response in isolated parts of the network, which can per-
form definitive repair actions or simply "buy time" before a more lasting
remedy is found. This is a substantial advantage in critical infrastructures,
which are generally managed using a central control room (with backup
control available at different locations).

• Robustness. Agent systems ideally do not have a single point of failure and
can continue to operate even if a number of them are attacked or fail. This
is a useful feature in dependability applications, where graceful degradation
rather than rapid collapse is the optimal behaviour.

• Emergent behaviour. A lot of work has been done on the way in which cer-
tain forms of intelligence can emerge through large numbers of local inter-
actions. A number of relatively simple agents can self-organise to perform

36 3.2. SAFEGUARD SOLUTIONS

tasks that would be very difficult to create and coordinate from a central
point.

• Modularisation. Whilst the object-oriented paradigm does facilitate a rea-
sonable amount of modularisation, agent systems take this even further
since each agent operates as an independent functioning system. Different
agents can be designed by different people to handle specific tasks and only
the messages between them need to be agreed. This makes it easy to set up
communications between agent systems made by different companies for
diverse critical infrastructures.

These advantages of agent-based systems make them a viable choice for the
monitoring and protection of large critical infrastructures. However, it is the in-
telligence inside the agents that enables them to identify problems and react to
them appropriately. The Safeguard approach to this will now be covered in the
following sections starting with a description of the Safeguard agent platform.

3.2.2 The Safeguard agent platform

As explained in section 2.3, software agents have a number of common require-
ments. Some of the most important include life cycle management and communi-
cation. Because this functionality is common to all agents in a multi-agent system
it can be provided by an agent platform.

Using an existing platform decreases the need of spending resources on devel-
oping basic agent functionality. Therefore a large number of existing agent plat-
forms were evaluated in a preliminary agent platform survey [16]. At this point
the specific requirements of the safeguard architecture were not known, rather a
number of general requirements were used, including:

• Maturity - How mature is the platform? Is the software well used in a real
world setting?

• Activity - How active is the project? Have new versions and bug-fixes been
released recently?

• Security - What techniques are used to secure the agents?

• Interoperability - Can external software be integrated?

• Scalability - Can the platform manage large applications with many agents?

THE SAFEGUARD CONTEXT 37

• Footprint - Are the memory and CPU usages reasonable? Can both light-
weight and heavyweight agents be implemented with the platform?

• Platform requirements - Does the platform depend on specific operating
systems and/or hardware?

• Open source - Is the platform implemented as open source? Can the plat-
form be extended by a third party?

• Documentation - Is the platform well documented?

• Support -What extent of support is available?

• Price - Is the platform free? Are there non-commercial licences?

• Availability - Can an evaluation copy easily be downloaded?

• Communication - How is agent communication implemented?

Besides some notable exceptions, many of the surveyed agent platforms were
deemed to be primarily research platforms, not mature enough to be used by the
Safeguard project. Others lacked important functionality such as secure commu-
nication or were too heavy-weight for the Safeguard setting. The initial survey
resulted in the selection of Jade [68] and Grasshopper 2 [55] for further evalua-
tion. Due to very specific license restrictions concerning performance evaluations
of Grasshopper, this platform was excluded from further evaluation and replaced
by Tryllian ADK [108].

During the initial phases of the project a number of more specific require-
ments were discovered. Some wrapper agents had very high requirements on per-
formance due to the high flow of network data in the telecommunication setting.
This implied the need for an efficient platform implementation of agent commu-
nication. Other low level agents could have limited resources in terms of memory
and processor speed. This led to the platform requirement that some low level
agents were to be implemented in C while most high level agents were to be im-
plemented in Java. Java was selected due to its platform independence reducing
problems when agents are to be executed on different operating systems and hard-
ware. Also it provides good support in terms of well documented libraries and
also facilitates more efficient development than alternative languages.

The specific requirements led to the decision to abandon the idea to use ex-
isting agent platforms and instead implementing the Safeguard Agent Platform

38 3.2. SAFEGUARD SOLUTIONS

Message Transport
System

DF
Locator

AgentsAgents

Message Transport
System

TCP/IP sockets

Lookup
Server AgentsAgentsDF

Locator

Figure 3.2: Safeguard agent platform architecture

(SAP). SAP was designed to be light-weight and also allow agents to be imple-
mented in both C and Java. The platform provides the most important functional-
ity needed by the agents including life cycle management, naming services, ser-
vice discovery and communications. Figure 3.2 shows the architecture of SAP.

Compared to the abstract FIPA architecture presented in section 2.3.1, one
difference is the lack of an explicit agent management system in the architecture.
This functionality is provided by the separate lookup-server. To obtain good per-
formance plain IP/TCP sockets are used for implementing the message transport
system. The choice of implementation is abstracted away by the platform. Each
agent finds other agents by searching for names and/or services. The local agent
container needs only to be configured with the location of the lookup-server to
facilitate this.

Performance evaluation

A final evaluation was performed to compare the implementation of communica-
tion, support for concurrency, security and performance of SAP with Tryllian and
Jade. Communications performance was compared by computing round-trip time,
that is, the time from Agent A sends a message to Agent B until Agent A have
received an answer. Round-trip time was chosen as metric to keep time relative to
a single agent. Figure 3.3 shows how the round-trip time increases for Tryllian,
Jade and SAP when an increasing number of agent pairs are communicating lo-
cated on separate hosts. The figure shows that SAP provides the best performance
in this setting followed by Jade.

THE SAFEGUARD CONTEXT 39

0

50

100

150

200

250

300

350

1 2 3 4 5 6 7 8 9 10

Nr of agent pairs

R
o

u
n

d
 t

ri
p

 t
im

e
(m

s)

Tryllian JADE SAP

Figure 3.3: Performance of Safeguard agent platform

Figure 3.4 shows how the round-trip time increases when a very large number
of agent pairs communicate. Also here SAP provides the best performance while
Tryllian was not able to handle the large number of agents in the final experiment.

Full results from the platform evaluation can be found in the original pa-
per [18] and reports [17, 51]. In general SAP provided the best performance,
sometimes closely followed by Jade.

3.2.3 The Safeguard agent architecture

The safeguarding agents executing on a common agent platform are added as a
fourth layer interacting primarily with the cyber and organizational levels of the
critical infrastructures. Figure 3.5 shows how this is done at a conceptual level.

The Safeguard agent architecture is presented in figure 3.6. The generic roles
can be described as follows:

• Wrapper agents wrap standard devices and existing diagnosis mechanisms
in the protected network, and provide their outputs after some filtering and
normalisation for use by other agents.

• Hybrid detector agents utilise domain knowledge for a given infrastructure,
but combine it with behavioural detection mechanisms (e.g. anomaly de-
tection with white lists) to detect known and unknown problems.

40 3.2. SAFEGUARD SOLUTIONS

0

200

400

600

800

1000

1200

1400

0 20 40 60 80 100 120

Nr of agent pairs

R
o

u
n

d
 t

ri
p

 t
im

e
(m

s)

Tryllian JADE SAP

Figure 3.4: Scalability of Safeguard agent platform

Layer 1: Physical infrastructure node of LCCI

Layer 2: Control and information flow infrastructure

Layer 3: Node of human organisation (management and supervision)

Layer 4: Safeguard agents: survivability supervision

Figure 3.5: Conceptual view of Safeguard

THE SAFEGUARD CONTEXT 41

IDS
Wrapper

Diagnosis
Wrapper

Hybrid Detector
Agent

Topology Agent

HMI Agent

Negotiation
Agent

Actuator
Agent

Correlation
Agent

Action Agent

Work in this
thesis

Concerned LCCI

Other LCCI:s

Figure 3.6: The Safeguard agent architecture

• Topology agents gather dynamic network topology information, e.g. host
types, operating system types, services provided, known vulnerabilities.

• Correlation agents identify problems that are difficult to diagnose with one
source of information in the network, by using several sources of informa-
tion from wrapper, topology, or hybrid detector agents. They use the data
sources to order, filter and focus on certain alerts, or predict reduced avail-
ability of network critical services. One type of correlation agent performs
adaptive filtering and aggregation to further reduce the alert rates.

• Action agents enable automatic and semi automatic responses when evalu-
ation of a problem is finished.

• Actuator agents are wrappers for interacting with lower layer software and
hardware (e.g. changing firewall rules).

• HMI (Human-Machine Interface) agents provide an appropriate interface,
including overview, for one or many system operators.

• Negotiation agents communicate with agents in other LCCIs to request ser-
vices and pass on information about major security alerts.

42 3.3. THE SAFEGUARD AGENTS

3.3 The Safeguard agents

In this section we give an overview of the agents in the Safeguard Architecture.
Some high level agents, including the topology agent, the HMI agent and the
negotiation agents are generic and used in both the telecommunication and power
domains. In other cases, where more specialised agent instances are needed for
the two domains, we present examples of the telecommunication instances. The
reader interested in specific agents of the power domain are referred to related
Safeguard publications [14, 48, 97, 98].

3.3.1 Wrapper agent

A number of diagnostic tools were already available and used in both the telecom
and power domains. To provide the agent system with access to those existing
systems, light weight wrapper agents were devised. Examples of wrapped systems
of telecom include:

• Snort - A well-known open source intrusion detection system

• Samhain - A file integrity checker

• Syslog - A very general logging tool in Unix.

• Firewalls

All those tools output large numbers of alerts. One important goal of the Safe-
guard agent system is to identify problems by providing a diagnosis to humans and
the action agents. However, the raw output from existing tools, millions of alerts,
would very quickly overload a human operator as well as higher level agents such
as the action agent. The low level agents therefore need to reduce the total number
of alerts as close as possible to the source, before forwarding the remaining alerts
to higher levels. In particular there were a lot of uninteresting messages coming
from untuned Syslog and Samhain. Practically in LCCIs, tuning requires a static
network, were changes almost never happen or it requires a non-affordable ef-
fort for the administration. The resulting amounts of uninteresting messages have
a low severity, though through their number of occurrence, they cannot be ne-
glected. Therefore static filters exclude data from Samhain and Syslog that does
not carry any valuable information, such as messages that Samhain checks a file
or that Syslog is doing a garbage collection.

Static filters are implemented either as an ignore filter or as a delete filter. The
ignore filters keep the alerts in the database to be used for forensic investigation if

THE SAFEGUARD CONTEXT 43

Single sensor correlation

Syslog
Samhain

TcpDump

Multi sensor correlation

Whitelist
Filtering

Anomaly
Detection

Model
Adaptation

Hybrid Detector

Single sensor correlation

Snort

Static filtering

Normalisation

Correlation Agent

Wrapper

Correlation Agent

Correlation Agent

Figure 3.7: Functional overview of wrappers and related agents

needed, but they are not forwarded to high level agents. The delete filters remove
alerts permanently from the database. All static filters have a limited duty cycle
defined by the operator and have to be reactivated afterwards.

Another severe practical problem is the disagreement in message format of
different tools. Before alerts from diverse tools can be analysed by higher level
agents, their format needs to be normalised. This is another task of the wrapper
agents. In the Safeguard prototype implementation a simple agent message for-
mat was devised to handle the many diverse messages handled by the agents (e.g.
alerts, commands, information). In a non-prototype implementation available
standards should be used where applicable, such as IDMEF (see section 2.2.1)
for intrusion detection alerts.

Figure 3.7 shows how the wrapper agents take output from existing tools,
perform normalisation and static filtering and forward the remaining alerts to the
correlation agents. In parallel the hybrid detector agent increases coverage by
providing additional types of alerts. The processing of the hybrid detection agents
and correlation agents are further described in the following sections.

3.3.2 Hybrid detector agent

The hybrid detector agent combines learning-based anomaly detection with
programming–based detection using signatures. Signatures can be used to quickly

44 3.3. THE SAFEGUARD AGENTS

detect and categorise known problems, while the anomaly detection engine can
detect new unknown attacks and problems.

In the telecom domain the data rate can be very high, compared to the electric-
ity domain. This puts hard requirements in terms of performance and scalability of
the hybrid detector agent. ADWICE, the anomaly detection scheme presented in
the next chapters of this thesis, as well as a separate instance of the hybrid detector
agent, was implemented to fulfil those needs. Due to the cluster-based engine the
agent instance was named Clustering Hybrid Detection Agent (CHDA). Further
details of the implementation of CHDA are provided in chapter 6.

In addition to CHDA, a number of alternative anomaly detection approaches
was evaluated by other nodes in the project in the power domain. Those include
an invariant-based detection scheme [14] and a case-based reasoning [48] scheme.

3.3.3 Topology agent

The topology agent (TA) stores information about the cyber infrastructure and
makes it available for the other agents running on the system. This information
is gathered from databases and human operators and includes the hardware and
software components, their interconnections, importance and vulnerabilities, the
services they are running and the people responsible for them. This agent also
provides a measure of health for the components that it is monitoring - a computer
with a high CPU load and high temperature is rated as healthier than one that has
a low load and is cool running. The component health measures can then be used
by the correlation agent to compute network health (i.e. overall service level).

3.3.4 Correlation agent

The correlation agent ties all other agents together and has a number of complex
tasks to perform. To avoid scalability problems in the telecom domain hierarchies
or distribution of correlation agents can be used. In our case the first level of cor-
relation agents (ARCA - Alert Reduction Correlation Agent) implements adaptive
filtering and aggregation (i.e. single sensor correlation). The higher level agent
(TACA - Topology Alert Correlation Agent) correlates the filtered alerts from dif-
ferent sensors as well as performs network health monitoring. Figure 3.8 shows
a functional overview of the correlation agents. We now go on to explain the
functions involved.

THE SAFEGUARD CONTEXT 45

Aggregation

TcpDump

Correlation Agent
(ARCA)

Correlation Agent (TACA)

Hybrid Detector

Multi sensor correlation

Topology Agent

Network health monitoring

Snort

Correlation Agent
(ARCA)

Wrapper

Aggregation
Adaptive
Filtering

Figure 3.8: Functional overview of correlation agents

Aggregation

Repeated, identical alerts do not provide any additional information. It would
reduce the information overload if all of these alerts were represented in only one
alert including the number of its frequency. The relevant fields for aggregation
have to be defined for each source of alerts individually. For Snort the source and
destination IP, as well as the server ports and the messages are relevant. Ephemeral
ports1 should be ignored because they will vary between connections. For Syslog,
the process identification number is unimportant but the program and the message
field is relevant. All data is aggregated within a given time window.

Adaptive filtering

Static filtering provided by wrapper agents deals with known problems. However,
since it is not possible to foresee all future misconfigurations, adaptive filtering
algorithms were implemented to suggest new filter rules to the operator. This
is based on Naïve Bayesian (NB) learning [61]. The idea is to train a NB text
classifier to classify messages by looking at word statistics of messages. The

1Ephemeral ports are temporary ports assigned by the client’s IP stack, and are assigned from a
designated range of ports for this purpose.

46 3.3. THE SAFEGUARD AGENTS

NB-classifier has to be trained first with a subset of messages labelled as inter-
esting or not. During training, a knowledge base is automatically acquired, en-
abling the NB-classifier to assess whether unknown messages are interesting [22].
The meaning of interesting in our approach is a message that can be useful when
analysing it for signs of an attack. For example, a message saying "telnetd: Suc-
cessful login as user root" or "File changed" is classified as interesting, but mes-
sages like "Syslog-ng: 54 Objects alive. Garbage collecting while idle" or "Could
not resolve host name" will be classified as uninteresting (the last message is an
example of a misconfiguration that should be detected and reported separated from
the intrusion detection process).

The adaptive filters are used in the following workflow:

1. For performance reasons, the algorithm for adaptive filtering is launched on
a periodic basis.

2. The algorithm suggests filter rules for top scoring events to a human expert
via HMI.

3. The reply is also used to optimise the training corpus, achieving on-line
retraining.

4. In order to avoid over learning effects, features that hardly ever occur in
time are reduced in their significance and are finally forgotten.

Multi-sensor correlation

Figure 3.9 shows the high level design of TACA. Aggregated alerts from low level
correlation agents are first correlated with topology information. For example:
Snort analyses a network packet targeting a host and finds out that it contains a
buffer overflow attack taking advantage of a Windows vulnerability. When the IP
of the target host is correlated with topology information of this host, the host is
found to run Unix rather than Windows. This implies that the attack failed and
the severity of the alert downgraded. The resulting alerts are stored in persistent
storage in the InAlert data base.

In the prototype implementation two types of correlation engines were used:

• A rule-based correlation engine was implemented to provide the agent with
expert knowledge.

• A learning-based correlation engine was implemented to help focus on rel-
evant alerts for cases when rules do not exist.

THE SAFEGUARD CONTEXT 47

InAlert OutAlert

Alert-
Topology

Correlation
Correlation
Engine 1

Configuration
Self

Adaptation
Health

Monitoring

Correlation
Engine N

Topology Alert Correlation Agent

HMI Agent

H
M

I a
nd

 A
ct

io
n

A
ge

nt

A
gg

re
ga

te
d

A
le

rt
s

Agent
Monitoring

M
et

a
A

ge
nt

A

le
rts

To
po

lo
gy

A
ge

nt

HMI Agent

Figure 3.9: Design of TACA (Topology Alert Correlation Agent)

The learning-based engine regards all alerts concerning one host during a
time-window. In other words, the selected correlation parameters are time and
IP address. Given a time window, a time slot of a three dimensional2 vector is
produced by taking the sum of severities from the three sensors. Based on the
input pattern, the correlator decides whether this is an interesting alert or not.
For further processing just one single alert is generated. The idea is illustrated in
Figure 3.10.

Three different engines were evaluated [22, 23] using time-slots:

1. A simple additive correlator with the parameter ’added severity threshold’

2. A neural network [104] with a variable set of neurons and hidden layers.
Training is achieved by back propagation.

3. K-Nearest Neighbour [38] with K as a variable parameter.

The additive correlator simply builds a weighted sum of the number of oc-
currences of the severities within a given timeslot. The sum is then compared to
a threshold generating an alert if the chosen limit is exceeded. By varying the
threshold different detection rates and false positive rates can be achieved. The

2During evaluation three alert sources were used including Snort, Syslog and Samhain.

48 3.3. THE SAFEGUARD AGENTS

Buffer overflow
Severity 7

FTP-server error
Severity 5

Ping
Severity 1

Port scan
Severity 2 /etc accessed

Severity 3

Snort: 1
Samhanin: 0

Syslog: 0

Snort: 9
Samhanin: 3

Syslog: 5

Snort Samhain Syslog Added Values

T
im

es
lo

t
n

T
im

es
lo

t
n

-1

Figure 3.10: Timeslot based alert correlation

other two correlation algorithms were first trained on a subset of data before it is
applied to the new real time dataflow. Further details on those correlation tech-
niques and their evaluation can be found in work by Chyssler et. al [22, 23].

Network health monitoring

The topology agent collects and stores a lot of information. Sometimes it is useful
for the operator to get a more condensed view of a host or network. This is the
purpose of the network health metric. Figure 3.11 shows an example of how a
condensed view of network health can be realised. The purpose of the network
is to provide a number of services. Individual hosts providing services contribute
to the overall service provided by the network. Network health is a condensed
measure on the availability of service or service level.

For individual hosts health is in this example computed out of:

• Online/Offline status. A host that is down is considered dead with health
equal to zero.

• Measures of load and memory usage. Memory consumption vary a lot dur-
ing a program’s life-time and therefore such measures are computed over
time to even out the spikes during normal operation.

THE SAFEGUARD CONTEXT 49

Function F

Service Y is
delivered by network

HMI

Service Y
TA: Port open on host B
TA: Port open on host CService XTA: Port open on host A

TA: Port open on host B

Host BHost A Host C

Hos
t A

 o
k Host C ok

H
ost B

 ok H
os

t B
 o

k

TA
: U

p/D
ow

n

TA: L
oad

 &
 M

em
ory

he
alt

h

TACA: A
tta

ck
 co

nfid
en

ce

TA: U
p/D

ow
n

TA: L
oa

d
& M

em
or

y h
ea

lth

TACA: A
tta

ck
 co

nfi
de

nce

TA: U
p/D

own

TA
: L

oa
d

& M
em

ory
hea

lth

TA
CA: A

tta
ck

 co
nfi

den
ce

Service X is
delivered by network

Figure 3.11: Principle of global monitoring

• Attack confidence. What is the probability that the host is currently com-
promised or attacked?

Individual service health is computed by taking into account if their desig-
nated ports are open or closed. A closed server port provides no service. In
addition to this, the health of the hosts providing the service contributes to the
overall service health. The network health is computed as a weighted sum of all
services provided by the network. The HMI agent described in the next section
can then show network health as well as status for individual hosts.

3.3.5 Human-machine interface agent

The Safeguard agents’ autonomous actions are carried out under the supervision
of a human operator. In some situations the agents will need to ask human op-
erators for permission to carry out actions. In other situations the agents will be

50 3.3. THE SAFEGUARD AGENTS

Figure 3.12: Network overview as presented by the HMI agent.

unable to take action and therefore alerts or requests for help need to be sent to the
human operators. The human-machine interface agent manages all these forms of
communication between Safeguard and the human operator. Figure 3.12 shows
the network overview presented by the human-machine interface agent using the
naglos network management tool.

HMI displays the ranking of the filtered alerts that were processed by the
correlation agent and enables the human operator to monitor and control the au-
tonomous actions of the agents. The human-machine interface agent also displays
the information gathered by the topology agent about the cyber infrastructure.
Figure 3.13 shows network health over time for a number of network zones.

THE SAFEGUARD CONTEXT 51

Figure 3.13: Network health monitoring of the HMI agent

52 3.3. THE SAFEGUARD AGENTS

3.3.6 Action agent

The primary task of the action agent is to obtain a problem description from the
correlation agent, and choose a suitable action that may resolve the problem. The
first implementation of the action agent consists of a two-dimensional action ma-
trix. The action agent provides a list of capabilities in terms of possible actions.
Specific known problems can then be mapped to suitable actions.

Especially in the IP domain, the actions are limited to passive defence due
to the possibility of IP spoofing. In severe cases immediate clearance of a hu-
man operator is required. In general three classes of passive defence actions are
possible [97]:

1. Perimeter defence: router, firewall configuration:

• In case of configuration error:

– Correct entry.

– Find the SNMP script that is responsible.

• Decrease traffic volume (graceful degradation).

• Block or drop traffic.

• Switch off routing protocols or static routes.

• Redirect traffic.

• In case of element failure:

– Reboot.

– Switch over to backup element.

2. Internal router and switch reconfiguration:

• Decrease traffic volume.

• Block or drop traffic.

• Switch off rotten services.

• Switch off troublesome interfaces.

• Reboot element.

3. Host based countermeasures:

• Reduce process priority.

• Kill process.

THE SAFEGUARD CONTEXT 53

• Redefine priorities of users and processes.

• Disrupt inbound or outbound traffic.

• Reboot machine.

• Switch off machine.

The action agent can be configured to perform automatic actions for situations
where the administrator decides this is viable. In other cases the action agent can
propose actions for the operator. Operators as well as agents sometimes make
mistakes. An important functionality of the action agent is therefore to provide
the opportunity to undo previous actions whenever possible.

3.3.7 Actuator agent

The actuators are low level agents which can be either controlled by the action
agent or the HMI when direct human control is necessary. The latter is an ultimate
requirement of operators, being in need of direct control, because the last instance
is the human if everything else fails.

Actuators were in the telecom domain prototype implemented for firewalls,
routers, switches, and individual hosts. Actions included are for example:

• Host shut down and reboot.

• Various file actions including removing and changing attributes.

• Various process actions including signalling and renicing3.

• Drop, block and rate limiting of traffic.

• Adding/Removing Cron-jobs4.

3.3.8 Negotiation agent

The negotiation agent handles the interactions with other critical infrastructures.
As was discussed in section 3.1, one of the emerging problems with critical in-
frastructures is their increasing interdependency and the negotiation agent’s main
task is to minimise the risk of cascading failures by keeping the operators and

3Renice is a Unix utility for changing system scheduling priorities for processes.
4Cron is a Unix tool that facilitates periodical running of processes (i.e. jobs).

54 3.4. SAFEGUARD TEST BEDS

agents in other critical infrastructures informed about attacks, failures and ac-
cidents. The negotiation agent also exchanges information that can help in the
day-to-day running of the networks.

In the event of a significant failure, the negotiation agent can also request ser-
vices from other critical infrastructures of a similar or different type. For exam-
ple, if a telecommunications network experiences a major failure, the negotiation
agent can arrange for its calls to be switched through the most suitable alterna-
tive network at an appropriate price. If the data communications in an electricity
network fail, more services can be requested from a telecommunications network.

3.4 Safeguard test beds

To be able to evaluate the project, two test environments were developed in paral-
lel with the safeguard system. In the electricity distribution setting the evaluation
was partially based on simulation with the safeguards running on real hosts in-
teracting with a simulator. For evaluation in the telecommunication setting, a
real test network consisting of multiple sub networks and about 50 machines was
constructed, mimicking a real telecommunication management network. In this
test-network real attacks and faults can be initiated.

Basically the test network consisted5 of four zones plus additional security lab
zones for the secure development and test of attacks:

• External zone: simulating the Internet in order to avoid contamination of
the Internet (e.g. worms) when external attacks are to be evaluated. The
external zone also provides the real Internet connection when attacks are
suspended implying external partners are able to use the Safeguard test net-
work for development and testing purposes. When the Internet connection
is enabled attacks may come from the Internet and data can be collected
according to the current security policy (e.g. router, firewall configuration).
The external zone is connected to the Safeguard Demilitarised Zone (Safe-
guard DMZ) by a state-full firewall, allowing only SSH (Secure Shell) pro-
tocols into the Safeguard DMZ.

• Safeguard DMZ: In this zone all the following sub networks come together.
All services relevant for inter to intra net connection are located here. All

5This thesis describes the test bed implementation at the end of the Safeguard project. After the
project ended, the test bed was developed further and more machines included

THE SAFEGUARD CONTEXT 55

S a fegu ar d S erv er z on e
192 . 168 . 201 .0/24 - V L A N 521

P OW E R F AUL T DAT A AL AR M

S a fegu ar d D M Z
192 .168 . 200 .0/25 - V L A N 520

D NS 1st
H T T P
Mail

A D S L
S a feg ua rd E x ter na l

10 . 0. 0 .0 /8 - V L A N 529

Internet

F W 3

R 4

S a feg ua rd W ork z o ne
192 .168 .20 2 .0 /24 - V L A N 522

D NS 2nd
DH C P

R 5

R 2

s tns 6

s tns77

s tns 78

S tn s 79
Alerts

. 79

S afegu ar d D evel opm ent
192. 168 . 203 . 0/24 - V L A N 52 2

S tn s 3
S yslog ,
samhain

.113

R 1

S tn s113
MMI

.114S tn s114
C HD A

S tn s[6,7 7,78]
S ens ors

.77

S tns 21
topology,
actuator

.77

Figure 3.14: The Safeguard telecom test network

56 3.4. SAFEGUARD TEST BEDS

traffic coming from via the Internet is routed into the DMZ via the fire-
wall to a specific jump machine. This hardened machine offers a SSH ser-
vice where partners are supposed to log in. After a successful login, being
contained in a jailed shell where only SSH to the test network is allowed,
partners are able to transport data from or into the test net in a safe way.

• Work zone: A subnet where employees of a company or administrative
personnel are working. This zone encompasses a vast variety of different
hardware (Sparc 5, 10,20; Ultra 10, PC) and computer systems, such as
Unix Solaris (2.6-2.10) all patch levels, NetBSD, Windows, (2000, NT, XP)
different patch levels, (VM ware).

• Server zone: In this zone servers of all kinds are located, utilizing Sparc
5, 10, 20, ULTRA10 hardware) for e-mail, web, file, applications, admin-
istration and control. Deployed operating systems are Solaris (2.6-2.10) all
patch levels, Linux, Windows server (VMware) and OpenBSD. This zone
represents a realistic operating system distribution and structure for Swiss-
com’s FX and Mobile administrative server environment.

• Safeguard development zone: This is a more protected sub network. If
the 203 router is disconnected, this zone is sealed and impenetrable. All
data from the other zones are gathered by a hardened machine - Unix Sol9
STNS3 having two separate network cards. In this zone, all network ad-
ministrative related services are resident such as Emergency Jumpstart and
management services and the actual Safeguard agent system, being distrib-
uted on eight machines. Those machines have been hardened LINUX 9.0,
Solaris 2.8+ machines.

All zones are protected and monitored by Safeguard utilizing various sensors
delivering their pre–processed data via wrappers and distributed small helper pro-
grams, residing on the hosts themselves. These helper programs are running as
Cron–jobs or periodic or triggered demons with high priority and protection.

All zones are synchronised via the NTP protocol thus assuring that the final
correlation of alerts in the different IDS alert channels is timely synchronised and
actions can be synchronised. If synchronization is lost in one part of the network
the machines synchronise themselves on their next gateway, thus ensuring that
over a day’s period proper synchronization is in the seconds regime.

To describe the full evaluation of Safeguard is outside the scope of this the-
sis. The interested reader is referred to the report on validation and testing of
Safeguard [98].

ADWICE 57

Chapter 4

ADWICE

The basic idea of ADWICE, is to represent normality by the compact cluster sum-
maries of the BIRCH clustering algorithm [122]. As explained in the introduction
we perform pure anomaly detection, assuming the model is trained only on normal
data.

BIRCH builds a tree structure used to guide the search for similar clusters
while clustering a set of data points. We take this idea and apply it to the cluster-
based normality model. An index tree can speed up training as well as detec-
tion. This chapter describes and evaluates the initial version of ADWICE using a
search-index similar to the original BIRCH clustering algorithm.

4.1 Basic concepts

The full BIRCH algorithm is presented in the original paper [122] and only the
parts relevant in the context of ADWICE are summarised here. The BIRCH clus-
tering algorithm requires data to be numeric. Non-numeric data is therefore as-
sumed to be transformed into a numeric format by pre-processing. How this is
done will be explained in the context of evaluation later.

Given n d-dimensional data vectors vi in a cluster CFj = {vi|i = 1 . . . n}
the centroid v0 and radius R(CFj) are defined as:

v0 =
∑n

i=1 vi

n
R (CFj) =

√∑n
i=1 (vi − v0)2

n
(4.1)

R is the average distance from member points in the cluster to the centroid
and is a measure of the tightness of the cluster around the centroid.

58 4.2. TRAINING

A fundamental idea of BIRCH is to store only condensed information, denoted
cluster feature, instead of all data points of a cluster. A cluster feature is a triple
CF = (n, S, SS) where n is the number of data points in the cluster, S is the lin-
ear sum of the n data points and SS is the square sum of all data points. Given the
CF for one cluster, the centroid v0 and radius R may be computed. The distance
between a data point vi and a cluster CFj is the Euclidian distance between vi and
the centroid, denoted D(vi, CFj) while the distance between two clusters CFi

and CFj is the Euclidian distance between their centroids, denoted D(CFi, CFj).
If two clusters CFi = (ni, Si, SSi) and CFj = (nj , Sj, SSj) are merged, the CF
of the resulting cluster may be computed as (ni + nj , Si + Sj, SSi + SSj). This
also holds if one of the CFs is only one data point making incremental updates of
CFs possible.

An index tree is a tree with three parameters, leaf size (LS), threshold (T), and
maximum number of clusters (M). The purpose of the index tree is to guide the
search for similar clusters in the normality model. A leaf node contains at most
LS entries, each of the form (CFi) where i ∈ {1, . . . , LS}. Each CFi of the leaf
node must satisfy a threshold requirement (TR) with respect to the threshold value
T . Two different threshold requirements have been evaluated with ADWICE. The
first threshold requirement R(CFi) < T corresponds to a threshold requirement
that was suggested in the original paper and is therefore used as base line in this
work (ADWICE–TRR). With this threshold requirement, a large cluster may ab-
sorb a small group of data points located relatively far from the cluster centre. This
small group of data points may be better represented by their own cluster because
detection is based on distances. A second threshold requirement was therefore
evaluated where D(vi, CFi) < T was used as decision criteria (vi is the new data
point to be incorporated into the cluster). This version of the algorithm will be
referred to as ADWICE–TRD.

Each non-leaf node contains a number of entries of the form (X , childi) where
childi is a pointer to the node’s i-th child. X provides information to guide a top-
down search of the tree to find the closest cluster (i.e. centroid) given a data
vector v. The following section will explain what information X that is used
for in the first implementation of ADWICE. Chapter 5 describes an alternative
implementation of the index-tree, with other information used to guide the search.

4.2 Training

During training the model is presented with new training data one item at a time.
Given a model and a new data vector v, a top-down search of the index tree for

ADWICE 59

the closest cluster is performed. If the threshold requirement is fulfilled, the new
data point may be merged with the closest cluster, otherwise a new cluster needs
to be inserted into the index tree. If the size (number of clusters) of the model
has reached the maximum M , the threshold T is increased, the model rebuilt,
and then v is inserted in the new model. When the number of clusters in the
model increases, new leaf nodes may need to be created, and the index updated
accordingly.

Below is an algorithmic description of the training phase of ADWICE, in
which only the main points of the algorithm are presented and some simplifi-
cations made to facilitate presentation. Note that we have abstracted away the use
of the search index that will be presented in more detail in the next section.

Algorithm 1 ADWICE Training
1: procedure TRAIN(v, model)
2: closestCF = findClosestCF(v, model)
3: if thresholdRequirementOK(v,closestCF) then
4: merge(v,closestCF)
5: else
6: if size(model) ≥ M then
7: increaseThreshold()
8: model = rebuild(model)
9: train(v, model)

10: else
11: leaf = getLeaf(v,model)
12: if spaceInLeaf(leaf) then
13: insert(newCF(v), leaf)
14: else
15: splitLeaf(leaf , newCF(v))
16: end if
17: end if
18: end if
19: end procedure

Rebuilding means that existing clusters are removed from the model and rein-
serted. Because the threshold is increased, some of the clusters may now be
merged, thereby reducing the size below the limit M . Rebuilding the model re-
quires much less effort than the initial insertion of data because the number of
clusters is significantly less than the number of data points.

If the increase of T is too small, a new rebuild of the tree may be needed

60 4.2. TRAINING

to reduce the size below M again. A heuristic described in the original BIRCH
paper [122] may be used for increasing the threshold to minimize the number of
rebuilds, but in this work we use a simple constant to increase T conservatively to
avoid influencing the result by the heuristic.

If it is possible to add clusters to the model (the size is still below M), we find
the leaf where the new cluster should be included and insert the cluster if there
is still space in the leaf. Otherwise we need to split the leaf, and insert the new
cluster in the most suitable of the new leaves.

4.2.1 Using the original BIRCH index

The original BIRCH index consists of a CF tree, which is a height balanced tree
with four parameters: branching factor (B), threshold (T), maximum number of
clusters (M), and leaf size (LS). Each non-leaf node contains at most B entries
of the form (CFi, childi), where i ∈ 1, . . . , B and childi is a pointer to the node’s
i-th child. Each CF at non-leaf level summarises all child CFs in the level below.

• Finding the closest cluster is done by recursively descending from the root
to the closest leaf, and in each step choosing child i such that D(v, CFi) <
D(v, CFj) for every other child j.

• When inserting new data into the tree all nodes along the path to the root
need to be updated. In absence of a split, the CFs along the path to the
updated leaf need to be recomputed to include v by incrementally updating
the CFs. If a split occurred, we need to insert a new non-leaf entry in the
parent node of the two new leafs and re-compute the CF summary for the
new leafs. If there is free space in the parent node (i.e. the number of
children is below B) the new non-leaf CF is inserted. Otherwise the parent
is split in turn. Splitting may proceed all the way up to the root in which
case the depth of the tree increases when a new root is inserted.

• When splitting a leaf, the two farthest CFs of the leaf are selected as seeds
and all other CFj from the old leaf are distributed between the two new
leafs. Each CFj is merged with the leaf with the closest seed.

The setting of the different parameters of the algorithm is further discussed in
the context of evaluation in section 4.4.1.

ADWICE 61

4.3 Detection

When a normality model has been trained, it may be used to detect anomalies
in unknown data. When a new data point v arrives detection starts with a top
down search from the root to find the closest cluster feature CFi. This search
is performed in the same way as during training. When the search is done, the
distance D(v, CFi) from the centroid of the cluster to the new data point v is
computed. Informally, if D is small, i.e. lower than a limit, v is similar to data
included in the normality model and v should therefore be considered normal. If
D is large, v is an anomaly.

Let the threshold T be the limit (L) used for detection. Using two parameters
E1 and E2 where E1 ≥ E2, we can compute MaxL = E1 ∗ L and MinL =
E2 ∗L. Then we compute the belief that v is anomalous using the formula below:

anomaly belief =

⎧⎨
⎩

0 if D ≤ MinL
1 if D ≥ MaxL

D−MinL
MaxL−MinL if MinL < D < MaxL

(4.2)

A belief threshold (BT) is then used to make the final decision. If we consider
v anomalous we raise an alert. The belief threshold may be used by the operator
to change the sensitivity of the anomaly detection. For the rest of the thesis to
simplify the evaluation we set E1 = E2 = E so that v is anomalous if and only
if D > MaxL = MinL. Note that clusters are spherical but the area used for
detection of multiple clusters may overlap, implying that the clusters may be used
to represent also non-spherical regions of normality.

4.4 Evaluation

Performing attacks in real networks to evaluate on-line anomaly detection is not
realistic and our work therefore shares the weaknesses of evaluation in somewhat
“unrealistic” settings with other published research work in the area. Our ap-
proach for dealing with this somewhat synthetic situation is as follows. We use
the KDDCUP99 data set [78, 80] to test the real-time properties of the algorithm.
Having a large number of attack types and a large number of features to consider
can thus work as a proof of concept for the distinguishing attributes of the algo-
rithm (unknown attacks, fast on-line, incremental model building). We then go
on to evaluate the algorithm in the Safeguard test network built with the aim of
emulating a realistic telecom management network (see section 3.4).

62 4.4. EVALUATION

Despite the shortcomings of the DARPA/Lincoln Labs related datasets [78]
they have been used in at least twenty research papers and were unfortunately
at the time of this work the only openly available data sets commonly used for
comparison purposes.

The original KDD training data set consists of almost five million session
records, where each session record consists of 41 fields (e.g. IP flags set, service,
content based features, traffic statistics) summarising a TCP session or UDP con-
nection. Since ADWICE assumes all training data is normal, attack data are re-
moved from the KDD training data set and only the resulting normal data (972 781
records) are used for training. All 41 fields1 of the normal data are considered by
ADWICE to build the model.

The testing data set consists of 311 029 session records of which 60 593 are
normal and the other 250 436 records belong to 37 different attack types ranging
from IP sweeps to buffer overflow attacks. The use of the almost one million
data records for training and more than 300 000 data for testing in the evaluation
presented below illustrates the scalability of ADWICE. Other cluster-based work
uses only small subsets of data [57].

Numeric features are normalised to the interval [0,1]. Some features of KDD
data are not numeric (e.g. service). Non-numeric features ranging over n values
are made numeric by distributing the distinct values over the interval [0, 1]. How-
ever, two distinct values of the service feature (e.g. http, ftp) for example, should
be considered equally close, regardless of where in the [0, 1] interval they are
placed. This intuition cannot be captured without extending the present ADWICE
algorithm. Instead the non-numeric values with n > 2 distinct values are scaled
with a weight w. In the KDD dataset nprotocol = 3, nflag = 11 and nservice = 70.
If w/n >= 1 this forces the algorithm to place two sessions that differ in such
non-numeric multi-valued attributes in different clusters. That is, assuming the
threshold condition requiring distance between two vectors to be less than 1 to
insert merge them. This should be enforced because numerical values are scaled
to [0, 1]. Otherwise a large difference in numerical attributes will anyway cause
data to end up in the same cluster, making the model too general. If multi-valued
attributes are equal, naturally the difference in the numerical attributes decides
whether two data items end up in the same cluster.

We illustrate the transformation of categorical values with an example, in this
case the service attribute of the KDD data set. Let L be an arbitrary ordered list of
all nservice = 70 different values of the service attribute. Assume L[0] = http and

1The complete KDD dataset as well as documentation of all features are available for download
from the UCI KDD Archive [110].

ADWICE 63

L[1] = ftp to exemplify this. We select a weight such that wservice/nservice >=
1, in other words wservice >= nservice = 70. Let wservice = 70 which fulfils this
condition. Now map the values of L into the interval [0,wservice] by for each value
L[i] computing the numeric value xi = (i/nservice) ∗ wservice = i/70 ∗ 70 = i.
This imply that for every pair of value xi and xj |xi − xj | >= 1. In our example
xhttp = 0 and xftp = 1 and of course |xhttp−xftp| = |0−1| >= 1. The distance
based threshold state that D(v, CF) < T must be fulfilled to allow a data point to
be absorbed by a cluster. We remind the reader that D is the Euclidian distance in
the current implementation and T is the threshold. Because we make sure T << 1
to avoid a too general model the threshold condition will never be fulfilled when
two service values differ, because the Euclidian distance between such vectors
will always be at least 1. In our example, assume two different vectors v and
u. Assume the extreme case when all dimensions except the service dimension
are equal and v[service] = xhttp and u[service] = xftp. Then the Euclidian
distance will be D(v, u) =

√
(02 + ... + (xhttp − xftp)2 + 02 + ...) = |xhttp −

xftp| = 1. This does not fulfil the threshold condition and therefore merging of
two such vectors will be avoided. If other dimensions differ too, this will only
increase the Euclidian distance between the vectors.

4.4.1 Determining parameters

Of the three parameters T , B and M the threshold T is the simplest to set, as it
may be initialised to zero. The other parameters are discussed below.

The M parameter needs to be decided using experiments. Because it is only
an upper bound of the number of clusters produced by the algorithm it is easier
to set than an exact number of clusters as required by other clustering algorithms.
As M limits the size of the CF-tree it is also an upper bound on the memory usage
of ADWICE.

In one extreme case we could set M to the total number of training data re-
sulting in one cluster for each unique training data. We would then have a model
that marks all data that are not included into training data as attacks. Of course we
need the model to be much more general than that, or every new normal data not
included in the training set would result in a false positive. This situation is called
over-fitting, when the model is too specific and producing very good accuracy for
training data without being able to handle anything else. The conclusion is that in
general M needs to be set much lower than the number of data represented by the
normality model to avoid over-fitting.

The algorithms strive for covering all training data by the available number of
clusters, growing the clusters by increasing the threshold whenever required. If

64 4.4. EVALUATION

Normal data
Normality cluster

Legend :

Attack data

Figure 4.1: Models with different M of the same data

the clusters are too large, they will cover not only normal data, but also possibly
attack data. In the other extreme case, when M is set to one, there will be one
cluster basically covering all space where there are training data. This imply that
M also needs to be set high enough to avoid too general (large) clusters. How high
depends on the distribution and number of training data although some general
guidelines could be produced given more experience with the algorithm in the
context of real networks.

Figure 4.1 shows three different cluster models of the same data using two,
four or six clusters. Representing normality by only two clusters makes the model
too general because also the distant attack data are covered and much of the empty
space around the normal data. However, both four and six clusters provide good
representations of the normal data. In general, the exact number of clusters is not
important.

The above reasoning was confirmed in experiments where M was increased
from 2 000 to 25 000 in steps of 1 000. When setting M above 10 000 clusters the
accuracy reaches a stable level meaning that setting M at least in this range should
be large enough to represent the one million normal data points in the training set.
In the forthcoming experiment M is therefore set to 12 000.

Naturally increasing the branching factor also increases the training and test-
ing time. The extreme setting B = M would flatten out the tree completely, mak-
ing the algorithm linear as opposed to logarithmic in time. Experiments where
the branching factor was changed from 20 to 10 improved testing time by roughly
16 %.

Experiments where the branching factor was increased from 2 to 2 048 in
small steps showed that not only time but also accuracy is influenced by the

ADWICE 65

c

d

1

2

Legend :

1

a b

2

c d

a

b

Data item
Cluster, depth j

Cluster, depth j+1

selected path correct path

Clusters in data space Index tree

Figure 4.2: Example of index error

branching factor. More specifically, accuracy improves when the branching factor
increases. Why is this the case?

The index tree is used for searching the model. Intuitively the algorithm tries
to group clusters that are close (or similar) in the same branch of the tree. This
is true for each level of the index tree. The cluster features at higher levels are
only summaries of all clusters in the branches below. Therefore, the search may
sometimes choose the wrong path and select a branch which does not contain the
closest cluster. We call this an index error. If the branching factor is very small,
the number of choices increases. At the same time, the probability that two close
clusters are located in different branches at low levels in the tree increases. This
increases the risk of ending up in the wrong branch.

Figure 4.2 illustrate a situation where the closest cluster is not found due to
an index error. To the left in the figure we see clusters in data space and to the
right the corresponding index tree. Consider the clusters to be a subset of a larger
model. We now consider the new data point. To classify the data point, we search
the model for the closest cluster. At some level j in the tree, the distance between
the data and the centre of clusters 1 and 2 are computed. As visible in the figure
the distance to cluster 1 is shorter than to cluster 2, and therefore the branch sum-
marised by cluster 1 will be chosen when we descend the tree. Unfortunately this
will lead the wrong part of the model and we will have an index error.

The experiments showed that the false positives rate stabilised when the branch-
ing factor is increased above 16. In the forthcoming experiments the branching
factor is therefore set to 20, a reasonable trade-off between accuracy and training

66 4.4. EVALUATION

time.
A situation where the index may influence detection accuracy is not ideal.

In chapter 5 we further discuss the implications of index errors and introduce
an algorithm without this property, thereby improving accuracy. But before that,
evaluation of the initial index is described in the following sections.

4.4.2 Detection rate versus false positives rate

Figure 4.3 shows the trade-off between detection rate and false positive rate on
an ROC diagram (see section 2.2.3). To highlight the result we also compare our
algorithm ADWICE–TRD with ADWICE–TRR which is closer to the original
BIRCH algorithm. The trade-off in this experiment is realised by changing the
E-parameter from 5 (left-most part of the diagram) to 1 (right-most part of the
diagram) increasing the detection space of the clusters, and therefore obtaining a
better detection rate while the false positives rate also increases.

The result confirms that ADWICE is useful for anomaly detection. With a
false positives rate of 2.8 % the detection rate is 95 % when E = 2. While not
conclusive evidence, due to short-comings of KDD data, this false positives rate
is comparable to alternative approaches using unsupervised anomaly detection
[57, 90]. On some subsets of KDD data Portnoy et al [90] report 1–2 % false
positives rate at 50–55 % detection rate, but other subsets produce considerably
inferior results. The significantly better detection rate of ADWICE is expected
due to the fact that unsupervised anomaly detection is a harder problem than pure
anomaly detection.

Since the KDDCUP data initially was created to compare classification
schemes, many different classification schemes have been applied to the KDD-
CUP data set. Classification implies that the algorithms were trained using both
normal and attack data contrasted to ADWICE which is only trained on the normal
training data. The attack knowledge makes differentiating of attack and normal
classes an easier problem, and it was expected that the results [40] of the win-
ning entry (C5 decision trees) should be superior to ADWICE. This was also the
case2 regarding false positives (0,54 %), however detection rate was slightly lower,
91,8 %. Due to the importance of low false positives rate we indeed consider this
result superior to that of ADWICE. We think the other advantages of ADWICE

2In the original KDDCUP performance was measured using a confusion matrix where the result
for each class is visible. Since ADWICE does not discern different attack classes, we could not
compute our own matrix. Therefore overall false positives rates and detection rates of the classifi-
cation scheme were computed out of the result for the individual classes.

ADWICE 67

0,75

0,8

0,85

0,9

0,95

1

0,015 0,02 0,025 0,03 0,035
False positives rate

D
et

ec
tio

n
ra

te
ADWICE-TRR ADWICE-TRD

Figure 4.3: Detection rate versus false positives

make up for this. Also, we recall that ADWICE is one element in a larger scheme
of other Safeguard agents for enhancing survivability.

The result shows that for values of E above 4.0 and values of E below 1.75
the false positives rate and detection rate respectively improve very slowly for
ADWICE-TRD. The comparison with the base-line shows that using R in the
threshold requirement (ADWICE–TRR) implies higher false positives rate. Sec-
tion 4.4.4 describes further reduction of false positives in ADWICE–TRD by ag-
gregation.

4.4.3 Attack class results

The attacks in the test data can be divided into four categories (see section 2.1.1):

• Probe - 6 distinct attack types (e.g. IP sweep, vulnerability scanning) with
4 166 number of session records in total.

• Denial of Service (DOS) - 10 distinct attack types (e.g. mail bomb, UDP
storm) with 229 853 number of session records in total.

• User-to-root (U2R) - 8 distinct attack types (e.g. buffer overflow attacks,
root kits) with 228 number of session records in total.

• Remote-to-local (R2L) - 14 distinct attack types (e.g. password guessing,
worm attack) with 16 189 number of session records in total.

Since the number of data in the DOS class is much larger than other classes, a
detection strategy may produce very good overall detection quality without han-
dling other classes that well. Therefore it is interesting to study the attack classes

68 4.4. EVALUATION

0,
97

0,
99

0,
99

0,
92

0,
31

0

0,25

0,5

0,75

1

A
cc

ur
ac

y

Normal

Probe

DOS

U2R

R2L

Figure 4.4: The accuracy for attack classes and the normal class

separately. Note that since ADWICE is an anomaly detector and has no knowl-
edge of attack types, it will give the same classification for every attack type unlike
a classification scheme.

Figure 4.4 shows the four attack classes Probe, DOS, U2R and R2L as well as
the normal class (leftmost column) for completeness.

The results for Probe, DOS and U2R are very good, with accuracy from 92 %
(U2R) to 99 % (DOS). However, the fourth attack class R2L produces in com-
parison a very bad result with an accuracy of only 31 %. It should be noted that
the U2R and R2L classes are in general less visible in data and a lower accuracy
should therefore be expected. The best entries of the original KDD-cup com-
petition had a low detection rate for U2R and R2L attacks, therefore also a low
accuracy for those classes.

4.4.4 Aggregation for decreasing alert rate

While the 2–3 percent false positives rate produced by ADWICE may appear to
be a low false positive rate in other applications, in practice this is not acceptable
for network security as explained in section 2.2.3. Most realistic network data is
normal, and if a detection scheme with a small percent of false positives is applied
to millions of data records a day, the number of false alerts will be overwhelming.
In this section we show how the total number of alerts can be further reduced
through aggregation.

An anomaly detector often produces many similar alerts. This is true for new
normal data that is not yet part of the normality model as well as for attack types

ADWICE 69

239 204

28 950
16 345 9 754 7 474 6 271 5 561

0

50000

100000

150000

200000

250000

1 10 20 40 60 80 100
Size of time window

N
um

be
r

of
 a

gg
re

ga
te

d
al

ar
m

s

Figure 4.5: Aggregated alerts for different time windows

like DOS and network scans. Many similar alerts may be aggregated to one alert,
where the number of alerts is represented by a counter. In the Safeguard agent
architecture aggregation is one important task of the alert reduction correlation
agent, see section 3.3.4. By aggregating similar alerts the information passed on to
higher-level agents or human operators becomes more compact and manageable.
Here we evaluate how aggregation would affect the alert rate produced from the
KDD data set.

The KDD test data does not contain any notion of time. To illustrate the effect
of aggregation we make the simplifying assumption that one test data is presented
to the anomaly detector each time unit. All alerts in which service, flag and pro-
tocol features are equal are aggregated during a time window of size 0 to 100. Of
course aggregation of a subset of features also implies information loss. However,
an aggregated alert, referring to a certain service at a certain time facilitates the
decision for narrowing down to individual alerts for further details (IP-address
should have been included if present among KDD features). The result is shown
in figure 4.5.

When a new alert arrives, it is sent at once, to avoid increasing time to detec-
tion. When new alerts with the same signature arrive within the same time win-
dow, the first alert is updated with a counter to represent the number of aggregated

70 4.4. EVALUATION

alerts. Without aggregation ADWICE produces 239 104 alerts during the 311 029
time units. Using a short time window of 10 time units, the number of aggregated
alerts becomes 28 950. Increasing the time window to 100 will reduce the original
number of alerts to 5 561, an impressive reduction of 97,7 %. The explanation is
that many attacks (probes, DOS) lead to a large amount of similar alerts close in
time. Note that aggregation also reduces false positives, since normal sessions
belonging to a certain subclass of normality may be very similar. While it might
seem that aggregation only makes the alerts less visible (does not remove them)
it is in fact a pragmatic solution that was appreciated by our industrial partners,
since it significantly reduces the time/effort at higher (human-intensive) levels of
investigation. The simple time slot based aggregation provides a flexible system
in which time slots can be adaptively chosen in response to different requirements.

4.4.5 Safeguard scenarios

One of the main efforts of the Safeguard project is the construction of the Safe-
guard telecom management test network, presented in section 3.4, used for data
generation for off-line use as well as full-scale on-line tests with the Safeguard
agent architecture. Development of the Safeguard test network and further gen-
eration of intrusion detection data is ongoing work. Here we present some initial
results from tests performed over a total time period of 36 hours. The ADWICE
model was trained using data from a period known to contain only normal data.
To keep parsing and feature computation time low to facilitate real-time detection,
features were only based on IP-packet headers, not on packet content (e.g. source
and destination IP and ports, time, session length). This means of course that we
at this stage can not detect events that are only visible by analysing packet content.
The purpose of this instance of the hybrid detection agent is to detect anomalies,
outputting alerts that can be analysed by high level agents to identify time and
place of attacks as well as failures or misconfigurations.

In Scenario 1 an attacker with physical access to the test network plugged
in a new computer at time 15:33 and uploaded new scripts. In Scenario 2 those
scripts are activated a few minutes later by the malicious user. The scripts are
in this case harmless. They use HTTP on port 80 to browse Internet, but could
just as well have been used for a distributed attack (e.g. Denial of Service) on an
arbitrary port. The scripts are then active until midnight the first day, producing
traffic considered anomalous for their respective hosts. During the night they stay
passive. The following morning the scripts become active and execute until the
test ends at 12:00 the second day.

Figure 4.6 illustrates the usefulness of the output of the clustering hybrid de-

ADWICE 71

0
200
400
600
800

1000
1200

0 500 1000 1500 2000 2500
Period number (1 minute per period)

N
um

be
r

of

al
ar

m
s Scripts

Malicous
user

Figure 4.6: Distributed malicious scripts cause alerts

tection agent. The 36 hours of testing were divided in periods of one minute and
the number of alerts for each time period is counted.

For Scenario 1, all alerts relating to the new host (IP x.x.202.234) are shown.
For Scenario 2 all alerts with source or destination port 80 are shown. The fig-
ure shows clearly how the malicious user connects at interval number 902 (cor-
responding to 15:34), when the scripts execute, wait during the night, and then
execute again. Some false alerts can also be noted, by the port 80 alerts occurring
before the connection by the malicious user. This is possible since HTTP traffic
was already present in the network before the malicious user connected.

72 4.4. EVALUATION

ADWICE WITH GRID INDEX 73

Chapter 5

ADWICE with grid index

This chapter describes the extended version of ADWICE, using a new grid-index.
The basic algorithm is the same, as presented in the previous chapter, and rather
then reiterating that we focus on the index itself. Adaptation of the normality
model using incremental training as well as forgetting is also discussed.

5.1 Problems of the original BIRCH index

The original BIRCH index is not perfect. That is, the search for the closest cluster
sometimes selects the wrong path, and we do not find the relevant cluster if it
exists. This notion of index error is explained in the previous chapter in section
4.4.1.

5.1.1 Influence of index errors

Index errors may influence the detection quality (and evaluation) of an algorithm.
Table 5.1 shows how index errors influence anomaly detection results in general
when a testing data vector is compared to the model.

If the type of data is not included in the trained normality model an anomaly
detection algorithm with index errors returns the correct result, since there is no
close cluster to find anyway. However, there are two cases where index errors
may produce erroneous results. If the new data point is normal, and the model
includes a close cluster, an index error results in a false positive instead of a true
negative, thereby decreasing detection quality. On the other hand, if the new
data is anomalous and such data has previously been (erroneously) included into
the model, or if the attack data is very similar to normal data, the index error

74 5.1. PROBLEMS OF THE ORIGINAL BIRCH INDEX

Data Model covers Expected Evaluation with
is data evaluation index error

normal yes true negative false positive
normal no false positive false positive
attack yes false negative true positive
attack no true positive true positive

Table 5.1: Consequences of index errors for anomaly detection

may result in a true positive, improving detection quality. In other words, index
errors make the behaviour of the detection scheme unpredictable, since quality
may both improve and degrade. The index errors do not completely invalidate
evaluation, since if training data is to a large extent normal and attacks are not
normally included in the model, the second case of error (causing improvement)
is less likely. The first type of error, when the testing data is normal and the model
subsumes this data, is most common. This reasoning seems to imply that detection
accuracy may be improved using an index that does not cause index errors. But
how much will the detection accuracy be influenced?

As shown in section 2.2.3 the false positives rate (FPR) is the number of false
positives (FP) divided by the number of normal data (FP +TN). Detection rate
(DR) is the number of detected attacks (TP) divided by the total number of attack
data (TP + FN).

Assume that IE is the rate of index errors and we use the index to find the
closest cluster of X data items. Then IE ∗ X data items will result in failure to
find the closest cluster.

The index errors then contribute to errors in detection result, in those cases
where the data is included in the model. As explained previously this is the case
for true negatives, where index errors for normal data included in the model in
case of index errors will result in additional false positives. In the case of false
negatives, the index error will contribute with additional true positives.

The final detection rate and false positives rate in presence of index errors can
be computed as shown below:

DR(IE) =
TP

TP + FN
+

FN ∗ IE

TP + FN

= DR + (1 − TP

TP + FN
) ∗ IE

= DR + (1 − DR) ∗ IE

(5.1)

ADWICE WITH GRID INDEX 75

0,796

0,8

0,804

0,808

0,812

0 0,05 0,1 0,15 0,2

FPR(IE)

D
R

(I
E

) FPR=0.1, DR=0.80

FPR=0.01, DR=0.80

FPR=0.001, DR=0.80

Figure 5.1: Influence of index errors for detection rate 80%

FPR(IE) =
FP

FP + TN
+

TN ∗ IE

FP + TN

= FPR + (1 − FP

FP + TN
) ∗ IE

= FPR + (1 − FPR) ∗ IE

(5.2)

We conclude that we can compute DR(IE) and FPR(IE) using only knowl-
edge of DR, FPR and IE. Figure 5.1 shows DR(IE) and FPR(IE) for three
different values of FPR where DR equals 80% and IE ranges from 0 to 0.5%.
At IE = 0% detection rate are exactly 80%. When IE increases, detection rate
as well as false positives rate increases too. Figure 5.2 shows the same range of
FPR and IE, but with detection rate 90%.

The general conclusion is that as long as detection rate is much higher than the
false positives rate, index errors will significantly increase the false positives rate,
while the improvement in detection rate is less visible. Removing index errors
will therefore typically improve overall detection results significantly due to the
importance of a low false positives rate.

The implications of index errors during training, is that clusters trained early
into the model can be ‘lost’. If we assume that the model is trained only on normal
data, as in the case of ADWICE, clusters getting lost in the model potentially
imply the following:

• If the model later is trained on similar data, the new data will result in
creation of new clusters rather than being merged with the old lost clusters.

76 5.1. PROBLEMS OF THE ORIGINAL BIRCH INDEX

0,896

0,9

0,904

0,908

0 0,05 0,1 0,15 0,2

FPR(IE)

D
R

(I
E

) FPR=0.1, DR=0.90

FPR=0.01, DR=0.90

FPR=0.001, DR=0.90

Figure 5.2: Influence of index errors for detection rate 90%

This implies that those clusters contain less data points than expected. If the
lost data are not evenly distributed around the cluster, the incomplete clus-
ter may have smaller area and/or possibly have the cluster centre slightly
relocated. This means that the cluster possibly does not cover a part of the
model that should be normal, leading to additional false positives during
detection. In principle a slightly relocated cluster could also influence de-
tection accuracy by covering new normal data, not previously included in
the training data. This would actually decrease the false positives. But this
case is less probable.

• If the model is not later trained on similar data, this will lead to additional
false positives if testing data contains such normal data.

The above reasoning shows that it is reasonable to expect that removing index
errors should improve accuracy. When selecting a search index for use with a
model for anomaly detection, inexact indexes should in most cases be avoided
due to the potential increase of false positives. If inexact indexes are anyway
preferred, it is useful to evaluate how much the index influences accuracy.

The theoretical reasoning cannot easily be used to compute the index error of
a specific algorithm. A sometimes more practical solution is to remove the index
temporarily and use the model without the index and compare the accuracy with
and without the index. In the case of ADWICE, changing the branching factor
of the index to the maximum number of clusters would result in linear search
removing the influence of the index. Depending on the algorithm and available

ADWICE WITH GRID INDEX 77

processing power, this may limit the size of the data set that can be used for
evaluation.

5.2 The grid-index

Because index errors may potentially decrease detection accuracy, we designed an
alternative algorithm using a new search index, ADWICE-grid. The requirements
for the new index are:

• There should be no index errors.

• Adaptation of the BIRCH-index should be preserved (incremental training).

• Performance should be similar to that of the BIRCH-index.

There are two possibilities for handling the adaptation requirement. The index
may be updated together with the clusters for each change to the model or the
index may be more independent of changes to the model. Since BIRCH follows
the first principle we wanted to explore the second type of index. Minimizing
the need for continuously updating the index, may potentially further improve
training performance. Rather than guiding the search using cluster summaries,
ADWICE-grid divides space into a hierarchy of smaller regions (i.e. subspaces),
called a grid.

A subspace of d-dimensional space is defined by two vectors, Max and
Min for each dimension, specifying for each dimension an interval or slice. A
grid is a division of space into subspaces. In two dimensions this results in a space
divided into rectangles. The idea of the new grid index is to use a grid-tree where
each node specifies a subspace. The subspaces decrease in size along the path
from root to leaf, thereby guiding the search. Leaves contain the clusters as in the
case of the original BIRCH index.

The division into subspaces can be done using different schemes:

1. At each level in the tree all dimensions could be divided into smaller slices.
The left example of figure 5.3 shows an abstract example of this for a two-
dimensional space. Empty (white) subspaces do not need to be represented
by leaves in the tree.

2. Alternatively only one dimension is used for slicing at each level of the tree.
The right example of figure 5.3 illustrates this.

78 5.2. THE GRID-INDEX

A B C D
E F

K L

O P

G H

I J

M N

A B
E F

C D
G H

K L
O P

K L PDF

A B C D
E F

K L

O P

G H

I J

M N

B

F

J

N

C

K

O

G

D

L

P

H

K L PDF

Figure 5.3: Alternative grid schemes

At each node in the tree, some computing needs to be done in order to find
a path to the closest cluster. Because performance is very important in real-time
intrusion detection, we want the search to proceed as quickly as possible. Slicing
using only one dimension at each level requires less computing than the alterna-
tive, and the second grid scheme was therefore selected for evaluation.

Figure 5.4 shows a 2-dimensional grid divided into subspaces together with
the corresponding grid tree using grid-scheme 2 (the tree is further explained be-
low). Note that:

• Not all leaf subspaces need to be at the same level.

• Empty subspaces have no corresponding leaf.

Our intuition and experience tells us that such a grid is sparsely populated.
This means that suitable programming primitives such as hash tables (rather than
vectors) should be used to avoid empty subspaces taking up space in the index
tree.

Before starting with the implementation we tested the performance of the
primitive operations used in an index tree. In case of the BIRCH-index, the prim-
itive operation is the distance function computing the Euclidian distance in multi
dimensional space. A performance evaluation shown in figure 5.5 revealed that a
hash function call is 6-15 times faster than one call to the distance function de-
pending on the number of dimensions (60-20). Because at each node of the CF
tree of BIRCH, up to B (normally set to 10-20) branches may exist, using a hash
table could be 100 times faster when the distance function is applied multiple
times during linear search of a non-leaf node to find the correct child. This means
that there is room for additional processing with the new index.

ADWICE WITH GRID INDEX 79

0.33 0.67 10
0

1

0.25

0.5

0.75

Dimension x slices

D
im

en
si

on
 y

 s
lic

es

1

2

3

4

S
lic

e
n

um
be

r

2 31
Slice number

0, 0.33 0.67, 1

0.25, 0.5 0.75, 1

x

y

2 4

31

Leaf subspaces Corresponding grid tree

Figure 5.4: Basic notions of the grid

Performance of primitive index operations

0

2000

4000

6000

8000

10000

12000

14000

16000

HashMap D dim60 D dim40 D dim20

Type of operation

O
pe

ra
tio

n
s/

m
s

Figure 5.5: Performance of primitive index operations

80 5.2. THE GRID-INDEX

Our grid index consists of a grid-tree, which is a sparse, possibly unbalanced
tree with three parameters, threshold (T), leaf size (LS) and maximum number of
clusters (M). Each dimension i of the d-dimensional space is assumed to have a
maximum (Maxi) and a minimum (Mini). These are in practice realised during
feature extraction for unbounded domains, and lead to the division of the cur-
rent dimension i in a certain number of intervals (NumSlicesi) with a certain
width (SliceWidthi). A slice is one such interval in some dimension. A function
getSliceDimension(depth) is devised which maps a node depth to one
dimension. Each non-leaf node of depth j contains at most NumSlicesi children
where each child of a non-leaf node is an entry in a hash table. The hash table is
a mapping from an interval number to a child node.

To find the closest cluster of a new data v in a node with depth j (starting with
the root), we first compute the slice dimension
i =getSliceDimension(j). In the current node we then only consider di-
mension i of v. Given the value of v in dimension i (v[i]) the number of the
interval into which v fits is computed. This interval number is mapped to a child
using the hash table. In this way we find our way down to a leaf, where the data
is located. In this leaf we may then do linear search among the clusters to find the
closest.

Unfortunately there is a complication that makes the index more complex.
There is no guarantee that the closest cluster actually is located in the same leaf as
the data point itself. Merging of a data point with the closest cluster CFi may be
performed if D(vi, CFi) < T . This means that the closest CFi may be located
inside any of the subspaces reachable within a distance T of the data point v.
Accordingly we possibly need to search multiple paths at each node in the tree,
depending on the value of T . At each non-leaf node at depth j we compute a
neighbour space [v[i] − T, v[i] + T]. T is the radius (Rns) of this space and the
vector v the center. All slices that overlap the neighbour space are searched to find
the closest cluster. Because space is sparse, many slices are not occupied. Since
only children for occupied intervals exist as hash table entries, empty intervals do
not need to be searched.

One should notice that the number of neighbour subspaces will increase ex-
ponentially with the number of dimensions. In practice only a small fraction of
neighbour subspaces is populated with clusters and because multiple clusters are
contained by each leaf in the index tree, many subspaces are not represented by
the index tree. As proved by the evaluation, this makes the search feasible also
for the case of KDD data where the number of dimensions is as high as 40. How-
ever, one may construct data sets where an increasing number of neighbours will

ADWICE WITH GRID INDEX 81

cause performance of search to degrade. The full implications of this remain to
be evaluated and is left as future work.

There exist two cases when the nodes of the grid tree need to be updated:

• If no cluster is close enough to absorb the data point, v is inserted into the
model as a new cluster. If there does not exist a leaf subspace where the
new cluster fits, a new leaf is created. However, there is no need for any
additional updates of the tree, since nodes higher up do not contain any
summery of data below.

• When the closest cluster absorbs v, its centroid is updated accordingly. This
may cause the cluster to move in space. A cluster may potentially move
outside its current subspace. In this case, the cluster is removed from its
current leaf and inserted anew in the tree from the root, since the path all
the way up to the root may have changed. If the cluster was the only one in
the original leaf, the leaf itself is removed to keep unused subspaces without
leaf representations.

Compared to the continuously updated original BIRCH index, the need for
grid index updates are very limited, because the first case above requires only
insertion of one new leaf, and the second case occurs infrequently.

In case of a split of a leaf, the original leaf is transformed to a non leaf node.
The new node computes its split dimension according to its depth in the tree, and
the clusters of the original leaf are inserted in the new node resulting in creation
of leaves as children to the node.

The getSliceDimension(depth) should be defined manually or auto-
matically according to properties of the input data to avoid a tree with a large
depth. For example, if all data have the same or almost the same value in a certain
dimension, this dimension is not useful for slicing, since the depth of the tree will
increase without distributing the clusters into multiple children.

In most cases not all dimensions need to be used for slicing (thus limiting the
height of the tree), assuming that the function getSliceDimension(depth)
is selected appropriately. However, if the situation arises that all dimensions have
been used for slicing, and still the number of clusters to be inserted does not
fit in one leaf due to the limited leaf size (LS), then the LS parameter for that
leaf can be increased, affecting only that leaf locally. This is the approach that
our current implementation adopts. An alternative or complementary approach to
handle this situation is to rebuild the tree using a smaller width of the intervals for
each dimension.

82 5.3. ADAPTATION OF THE NORMALITY MODEL

5.3 Adaptation of the normality model

5.3.1 Incremental training

As described earlier, agents need to adapt in order to cope with varying LCCI con-
ditions including changing normality. Here we describe two scenarios in which
it is very useful to have an incremental algorithm in order to adapt to changing
normality.

In some settings, it may be useful to let the normality model relearn au-
tonomously. If normality drifts slowly, an incremental clustering algorithm may
handle this in real-time during detection by incorporating every test data classi-
fied as normal with a certain confidence into the normality model. If a slower
drift of normality is required, a random subset of encountered normal data based
on sampling could be incorporated into the normality model.

Even if autonomous relearning is not allowed in a specific network setting
there is need for model adaptation. Imagine that the ADWICE normality model
has been trained, and is producing good results for a specific network during de-
tection. At this point in time the operator recognises that normality has changed
and a new class of data needs to be included as normal. Otherwise this new nor-
mality class produces false positives. Due to the incremental property, the opera-
tor can incorporate this new class without the need to relearn the existing working
normality model.

In neither case there is need for retraining the complete model or to take the
model off-line. The operator or agent may even interleave incremental training of
individual or small sets of new training data with detection. This means on-line
training requires additional processing power, but does not require that detection
is stopped.

5.3.2 Forgetting

Incremental training of ADWICE corresponds to extending the model with addi-
tional training examples as discussed above. Old clusters will obtain more data
members and this may cause the clusters to move or grow if the threshold is in-
creased and new training data is similar to existing clusters. The size of the model,
corresponding to the number of clusters, will remain the same as no new clusters
are created, due to the representation in form of cluster summaries.

In cases where new training data differ more significantly from the old model,
new clusters will be created. If this continues over time, the threshold will be
increased until the model is too general. If M is increased when needed to avoid a

ADWICE WITH GRID INDEX 83

too general model, the model may at least in theory grow very large after extended
periods of time which may also become a problem. Additionally, normality does
not only change by the appearance of new types of data. Old services will stop
being used, users may no longer have access to the system and old hosts may be
removed from the network. Such events cause normality to decrease. Some types
of data will simply not be present any more.

Should data that once where present in the system, but that is not present
anymore still be part of the normality model? In most cases no. For example,
a user is getting a new working position in another company. Some time passes
and then data corresponding to that user is again present in the system. This may
correspond to the user herself misusing old credentials, or another person using an
inactive account. Or maybe less probable, the user has returned to her old working
position. If the normality model still incorporates the data corresponding to the
user, misuse of her previously inactive account will not be detected.

To adjust the model for such changes and to prevent the model to become
too general or from growing indefinitely in case of incremental training, there is
need for a removal of subsets of the model. We use the term forgetting because
the process resembles to the forgetting in the human brain. Unless memory is
reinforced, it often fades over time until it is forgotten completely or becomes
very hard to recall. Reinforcing in the case of ADWICE, corresponds to using a
certain cluster. Using in this setting correspond to one of the following events.

• During training, new training data was inserted into the cluster.

• During detection, encountered data was close enough to the cluster to be
classified as normal.

Based on the notion of cluster usage, rules can be defined when to forget
or fade out subsets of the model. In our initial implementation of forgetting each
time a cluster is used it receives a tag with the current time. Periodically the model
will be checked for unused clusters. If the time since last usage is longer than a
threshold, the cluster will be removed from the model. Two parameters are used
in the current implementation. CheckPeriod specifies how often forgetting will
take place. RememberPeriod specifies for how long unused clusters will remain
in the model. Those parameters need to be set by the operator.

In the final chapter of this thesis we will discuss alternative approaches to
forgetting.

84 5.4. EVALUATION

0,75

0,8

0,85

0,9

0,95

1

0,015 0,02 0,025 0,03 0,035
False positives rate

D
et

ec
tio

n
ra

te
ADWICE-TRR ADWICE-TRD ADWICE-Grid

Figure 5.6: Detection rate versus false positives using ADWICE-grid

5.4 Evaluation

5.4.1 Detection rate versus false positives rate

The grid index is expected to reduce the number of false positives, as implied by
the analysis in section 5.1.1. Figure 5.6 confirms this, as ADWICE-grid improves
the false positives rate from 2,5% to 2,2% at 92% detection rate.

5.4.2 Incremental training

To evaluate the incremental training of ADWICE we treat an arbitrary abnormal
class as normal and pretend that the normality model for the KDD data should be
updated with this class. Without loss of generality we choose the IP sweep attack
type and call it ‘normal-new’; thus, considering it a new normal class detected
by the operator. The model only trained on the original normal data will detect
the normal-new class as attack, since it is not included in the model. This pro-
duces ‘false positives’. The old incomplete normality model is then incrementally
trained with the normal-new training data producing a new normality model that
incorporates the normal-new class. Our evaluation showed that (without aggrega-
tion) the old model produced 300 false positives, whereas the new retrained model
produced only three.

An important point of this work is that the original model, known to truly
reflect recent normality, does not need to be retrained as soon as new cases of
normality are encountered. We evaluate this on data generated in the Safeguard
test network. The three days of training data is used to train an initial model which
is then used for detection on the seven days of testing data. When certain types

ADWICE WITH GRID INDEX 85

Alarms for host x.x.202.183

0

2

4

6

8

10

12

0 20 40 60 80 100 120

Number of 2 hour pe riods from start of testing

N
u

m
b

er
 o

f
al

ar
m

s

original model

incremental 1

incremental 2

Figure 5.7: Adapting using incremental training

of traffic (new cases of normality) start producing false alerts the operator may
tell ADWICE to incrementally learn the data causing those alerts to avoid similar
false alerts in the future. Figure 5.7 shows alerts for host x.x.202.183 in three
scenarios. Period number 1 starts at time 2004-03-11 00:00 (start of testing data)
and each two-hour period presents the sum of alerts related to host x.x.202.183
during the corresponding time interval. At 2004-03-14 12:00, corresponding to
period number 43, the host is connected to the network.

In the first scenario, no incremental training is used, and the testing is per-
formed on the original model. This corresponds to the first curve of figure 5.7.
We see that when the host connects, ADWICE starts to produce alerts and this
continues until the testing ends at period 102.

In the second scenario the operator recognises the new class of alerts as false
positives. She tells ADWICE to learn the data resulting in those false alerts at
time 2004-03-14 17:55 (end of period 45). The second curve shows that many
of the original false alerts are no longer produced. However, at regular intervals
there are still many alerts. Those intervals correspond to non-working hours.

In the third scenario incremental training is done in two steps. After the first
incremental training 2004-03-14 a second incremental training is initiated at 2004-
03-15 07:55 (end of period 52) when the operator notices that false alerts related
to host x.x.202.183 are still produced. Figure 5.7 shows how almost all alerts now
disappear when the model is updated for the second time.

The need for the two-step incremental learning arouse since the model differs
between working hours and non-working hours. The alerts the operator used for
initial incremental training were all produced during working hours (2004-03-14
12:00 -2004-03-14 17:55).

86 5.4. EVALUATION

Alarms for host x.x.202.73 port 137

0
1
2
3
4
5

0 20 40 60 80 100 120

Number of 2 hour periods from start of testing

N
u

m
b

er
 o

f a
la

rm
s

forgetting

no forgetting

Figure 5.8: Adapting using forgetting

5.4.3 Forgetting

In this section we illustrate the use of forgetting. A model is trained on tree days
of data and is then used for detection with and without forgetting on the follow-
ing seven days of data. Figure 5.8 shows alerts for one instance of traffic (host
x.x.202.73, port 137) that ceases to be present in the (normal) testing data, making
that kind of traffic anomalous. With forgetting this fact is reflected in the normal-
ity model. In this experiment a CheckPeriod of 12 hours and RememberPeriod of
3 days (72 hours) are used.

When traffic from host x.x.202.73 on port 137 is again visible in data (periods
55-66) the traffic is detected as anomalous. Without forgetting these anomalies
would go undetected.

CLUSTERING HYBRID DETECTION AGENT 87

Chapter 6

Clustering hybrid detection agent

This chapter describes the design and implementation of the Clustering Hybrid
Detection Agent (CHDA), an instance of the hybrid detection agent, introduced
in the Safeguard architecture in section 3.2.3. The primary purpose of CHDA is
to perform anomaly detection and send alerts concerning suspicious activity to a
correlation agent for aggregation and further processing.

Figure 6.1 shows an overview of the main components related to the CHDA.
Tcpdump1 is sniffing the network. Tcpdump filters are applied so that Tcpdump
only outputs UDP and TCP binary data. The Tcpdump output is processed by the
Preprocessor into feature vectors, where each feature vector contains basic data on
a single TCP connection or UDP packet. The feature vector file is then processed
by the CHDA which reports anomalies to a correlator agent.

Files are used to move data between Tcpdump, the Preprocessor and the
CHDA because it is fast and simple. Also since data is stored on disk, it is easy to
save data for later and to do off-line experimenting on old data.

As long as the agent works on the level of sessions rather than individual
packets the agent needs to wait until a session is ended before doing detection.
The hardest performance requirements will then be on Tcpdump itself and the
Preprocessor handling Tcpdump data. If data flow increases, the time to detection
may increase due to the processing of the Preprocessor and Tcpdump may start to
lose packets. This resides outside the agent itself.

1Tcpdump is a program that prints network packets that match a boolean expression.

88 6.1. DESIGN

Clustering HDA

TCPdump

File
Binary IP -packets
(TCP and UDP)

Feature vectors

Parsing,
Cleaning , Feature

computation

File

Preprocessor

Network sniffing
Filtering

Correlator Agent

Normalisation
Anomaly Detection

Figure 6.1: Data flow of CHDA

6.1 Design

The main modules of the CHDA agent are presented here. Figure 6.2 illustrates
the main data flows between the modules. The picture shows the use of SAP
(Safeguard Agent Platform) for communication, but alerts can also be written to
a data base or file. In the following sections each module will be described in
further detail.

• DataSource is the interface between the agent and the output of the Pre-
processor.

• DataBuffer is buffer where DataSource thread writes data. The buffer is
needed to avoid delays caused by the data source.

• Transformer is responsible for normalisation and feature selection. The
Transformer is also responsible for creating alerts.

• AnomalyDetector performs anomaly detection.

• SignatureDetector performs signature-based detection.

CLUSTERING HYBRID DETECTION AGENT 89

Clustering
HDA

AnomalyDetector

Alerts to Correlator

Config

Config from Correlator

DataSource

DataBuffer

Connection records

Transformer

SignatureDetector

SAP Interface

Transformer

Logger

Figure 6.2: CHDA design

• Config handles configuration of the agent. Configuration was not im-
plemented as a separate module, but rather cross-cutting the other mod-
ules. The introduction of the Module interface presented in section 6.1.7
improved the design.

• Logger handles logging.

6.1.1 Preprocessor

The Preprocessor is responsible for taking Tcpdump output and producing a for-
mat suitable for the CHDA. In the Safeguard prototype the Preprocessor is imple-
mented as a number of Perl-scripts due to Perl’s flexible text-processing features.

The output of the CHDA Preprocessor is a basic feature vector file which
contains features computed out of a single TCP connection or one UDP packet.

90 6.1. DESIGN

A discussion with security personnel led to the selection of the following basic
features to be computed by the Preprocessor:

• The start-time of the connection.

• The end-time of the connection.

• The connection length in milliseconds.

• The protocol type (UDP or TCP).

• The source IP address.

• The destination address.

• The source port.

• The destination port.

• The number of bytes transferred to the destination.

• The number of bytes transferred to the source.

• A flag, indicating if the connection was ended legally using a FIN flag or
not.

All features are based on information available in the IP header. This deci-
sion was made to minimize processing time, and avoid the non-trivial problem of
feature computation for the non-structured information of packet content.

For certain attacks, such as denial of service and scanning attacks, it is inter-
esting also to compute statistics over time, related to many different TCP connec-
tions or UDP packets. Such high level features could be computed periodically
out of the basic feature vectors. The KDD data set described in section 4.4 in-
cluded a number of high level features computed over two seconds for example.
To minimize the time to compute basic feature vectors, high level feature vec-
tors could be processed by a separate Preprocessor as well as a separate agent.
In the prototype no high-level feature vector was included. Figure 6.3 gives an
overview of the CHDA Preprocessor and the possible extension with high level
feature computation.

To increase performance, data is to be filtered as close to the source as pos-
sible. The Tcpdump filters are used to filter away duplicate traffic from different
subnets and other data not to be included in the CHDA model.

CLUSTERING HYBRID DETECTION AGENT 91

Clustering
HDA

Preprocessor

Basic Feature Vector File

Parser

TCPDump binary file

Cleaning

Basic Feature Computation

HL Feature Computation

HL Feature Vector File Clustering HDA 2

Clustering HDA 1

Future Work

Figure 6.3: CHDA Preprocessor

92 6.1. DESIGN

Host 65
TcpDump

Parser

subnet

Host 77
TcpDump

Parser

subnet

Host 78
TcpDump

Parser

subnet

Host 114
Hybrid

Detector Agent
Alert Reduction

Correlation Agent

SSHSSH SSH

Figure 6.4: Remote data sources

6.1.2 DataSource

DataSource is used for retrieving data from the Preprocessor. The motivation to
have a separate Java interface is to simplify future changes to data retrieval. The
implementation used in the Safeguard context is RemoteHostsDataSource which
uses SSH to read session files from an arbitrary number of hosts, merging sessions
based on time stamps. Remote access is needed, since data is produced in multiple
subnets and the agent is located in the special Safeguard zone subnet. Figure 6.4
illustrates remote data access.

When the agent is started, the DataSource class starts looking for one or more
feature vector files. Feature vectors represented as strings are input into the Data-
Buffer.

During agent initialisation, a separate DataAquirer thread is started. Internally
it accesses a DataSource interface to acquire data, which is then put into the Data-
Buffer. When there is no data available, the DataAquirer will sleep. If there is no
data available for a long time, the thread will notify the main agent thread.

The DataSource interface has only one method:

• String getData() - Returns one data item from the data source.

CLUSTERING HYBRID DETECTION AGENT 93

6.1.3 DataBuffer

The DataBuffer is a passive synchronised first in first out buffer used by the
DataAquirer thread and the main thread of the agent. The interface has the fol-
lowing methods:

• putData(String data) - Add one data item to the end of the buffer.

• int getNumberOfData() - Return the number of data items currently
in the buffer.

• String[] getData() - Return and remove the first data item in the
buffer.

• String[] peekData() - Return a copy of the first data item in the
buffer.

• removeData() - Remove the first data item from the buffer.

6.1.4 Transformer

The Transformer transforms string arrays available in the DataBuffer to Instance-
objects suitable for feeding the detector modules. It performs feature selection and
normalisation. What features to select as well as maximum and minimum values
for the features need to be supplied in the CHDA configuration file. In addition
the Transformer will construct an Alert object upon request. The Transformer is
a passive entity used only by the main thread of the agent providing the following
methods:

• Instance transform(String[] data) - Transforms one data
string into the internal representation object called Instance.

• Alert constructAlert(String[] data, int belief) -
Construct an Alert object including belief, which is a measure of anomaly
for the data item. The data should be understandable by human operators
and possible to correlate with alerts from other agents. The alert must
therefore be constructed using the original data, such as IP addresses and
ports, rather than the internal representation (i.e. the Instance object).

• Alert constructAlert(String[] data, ADResult r)
- Constructs an alert using an ADResult object. ADResult objects is
produced by the AnomalyDetection module during detection and includes

94 6.1. DESIGN

a message for the operator as well as the anomaly belief. The message to
the operator can for example state what features contributed most when the
data was rated as anomalous.

There are multiple implementations of the interface including Transformers
for:

• The KDD data set.

• The Safeguard prototype.

• 2 dimensional numerical data for testing and illustrating clustering.

Using the CHDA agent to process other types of data (e.g. host-based data
rather than network connections) is very simple. Only a corresponding implemen-
tation of the Transformer is required. Of course this assumes that the alternative
data has already been pre–processed into feature vectors which may be more or
less complex.

6.1.5 AnomalyDetector

This is the main module of the agent, performing anomaly detection. The module
works in either training or testing mode. It takes Instance-objects as input. In
training mode it only updates the internal model without giving any output. In
testing mode it returns the anomaly belief which is a measure on how anomalous
the data is. It may also return a message for the operator further describing the
anomaly. The AnomalyDetector is a passive entity used only by the main thread
of the agent and provides the following methods:

• void setTrainingMode(boolean trainingMode) - Set train-
ing mode on/off. This method provides the anomaly detection engine a
possibility to perform processing to prepare the model to work in a new
mode. For ADWICE such a mode change is transparant and requires no
extra processing except for non-mandatory logging.

• boolean isTrainingMode() - Return true if training mode is set.

• void setSensitivity(double sensitivity) - Set the sensi-
tivity of the model. Decreasing sensitivity will decrease false positives rate
at the cost of decreasing detection rate and vice versa.

• double getSensitivity() - Return the sensitivity of the model.

CLUSTERING HYBRID DETECTION AGENT 95

• void train(Instances data) - Train the model on all Instance ob-
jects included in the Instances collection.

• void train(Instance data) - Train the model using one Instance
object.

• ADResult detect(Instance data) - Use the current model to de-
cide how anomalous the Instance object is. Returns an ADResult object
containing anomaly belief and a message for the operator.

• void loadModel(File f) - Load a new model from file.

• void saveModel(File f) - Store the current model to file.

Currently there are two implementations of the AnomalyDetector interface,
ADWICE-birch and ADWICE-grid. It is straightforward to replace one anomaly
detector engine with a new one, without any changes/recompilation of the agent
itself due to dynamic loading of the detector modules.

6.1.6 SignatureDetector

The SignatureDetector performs signature-based detection. Currently the signa-
ture detector is only used as a white-list filter, filtering data that are known to be
normal. Adding a programmed signature-based misuse engine is straightforward,
except for creating the rule-base which may be more or less complex depending
on the extent and purpose. The SignatureDetector is a passive entity used only by
the main thread of the agent providing the following methods:

• void addSignature(Signature rule) - Adds a signature to the
rule-base.

• void deleteSignature(Signature rule)- Removes a signature
from the rule-base.

• ArrayList getSignatures() - Returns all signatures.

• Signature getSignature(int signatureID) - Returns one sig-
nature.

• double detect(String[] data) - Checks if one data item matches
any signature.

• void loadModel(File f) - Load a set of signatures from a file.

• void saveModel(File f) - Save all current signatures to a file.

96 6.2. LIFE CYCLE

6.1.7 Module

All modules of the CHDA agent need to be initialised, reconfigured and logged.
Rather than handling each module individually, we abstract away their primary
functionality and consider them as generic modules whenever possible. The Mod-
ule interface provides the following methods, implemented by all major modules
of the agent:

• void init(Properties props, Logger log) - Handles initial-
isation of the module. The method is called by the owning object before the
executing thread is started.

• void start() - Prepares the module for use, called by the executing
thread before calling other methods of the module.

• void reconfigure(Properties props, Logger log) - Re-
configures one or many properties of the module and may reset the Logger.

• void stop() - Cleans up the module and closes resources.

• void logStatistics(Logger log) - Logs current statistics of the
module to the given Logger.

• void logProgress(Logger log, long prev, long now) -
Logs module progress. Called periodically.

• void collectStats(Vector statNames, Vector stats) -
Returns all statistics collected by the module.

• String getName() - Returns the name of the module.

6.2 Life cycle

The CHDA is implemented in Java and should be able to run on any platform sup-
porting Java 1.4. Offline testing of the agent using stored data files may therefore
be performed on any computer with as least Java version 1.4.

For online training or testing the system running the agent needs also to sup-
port Tcpdump and the CHDA Preprocessor. Therefore the primary target plat-
forms are Unix and Linux.

CLUSTERING HYBRID DETECTION AGENT 97

6.2.1 Startup process

The CHDA agent and related processes are executed through a start-up script:

• Initial configuration is read from a file. Some parameters are possible to
change later via messages from other agents to the running CHDA, others
will need to be fixed during execution.

• The Preprocessor is started, reading from the latest available Tcpdump data
unless otherwise specified.

• A new Tcpdump process is started with suitable flags set sniffing data ac-
cordingly.

When the agent is instantiated the following events take place:

• Initial configuration is read from file

• Modules such as DataBuffer, AnomalyDetector and DataSource are dynam-
ically instantiated based on the initial configuration read from file.

• Initial detector models are loaded from files, if such model files exist.

• The DataAcquirer thread is instantiated.

It would be easy to start up multiple instances of the CHDA agent, even on the
same host, due to the agent paradigm. Different instances could process different
types of data, or be used to share the load executing on multiple hosts if the data
flow is too large to be handled by one agent and host.

6.2.2 The main loop

The main loop of the agent consists of:

• If there are messages waiting (e.g. reconfiguration), those are handled.

• If there are data available in the DataBuffer, detection/training (depending
on mode) is performed on one data instance.

• If there are alerts ready, those are sent to the configured receiver, normally a
correlation agent. If a receiver is not available, the alerts are stored locally.

98 6.2. LIFE CYCLE

• If forgetting is enabled, the detector modules are told using a reconfigu-
ration method call, to look for unused subsets of their models and forget
those.

• If there are no messages or data instances available, the main agent thread
will sleep for a few milliseconds.

In parallel the DataAquirer thread will try to access data from its data sources
and store them in the DataBuffer.

The agent could have had a more parallel structure with for example a third
thread handling communication. This was considered unnecessary since the agent
only provides two basic services, detection and reconfiguration. Reconfiguration
may not be done on the anomaly engine during detection even if using separate
threads for this. The DataSource module is executed by the separate DataAquirer
thread to decouple the agent from delays related to the data source. Data will not
always arrive at a constant rate.

Note that it is possible to quickly switch to training mode while performing
detection, adapt the model by training on one or a few additionally known data
items, and switch back to detection mode without significantly delaying detection.
This is possible since the anomaly detection model using ADWICE is completely
incremental.

6.2.3 Shut down process

When the agent is shut down the following events take place:

• Ongoing work is finished with the last message or data instance currently
processed.

• All remaining alerts are sent. If the receiver is not available, the alerts are
stored locally.

• The DataAcquirer thread is stopped.

• All Detector models are saved.

• The main thread returns.

CLUSTERING HYBRID DETECTION AGENT 99

6.3 Performance and scalability

The theoretical training and detection time of ADWICE using the index of BIRCH
is n ∗ log c where n is the number of input data and c is the number of clusters.
Because c << n this time is close to linear. In practice, the overhead of data
access and agent processing need to be taken into account.

During our experiments we concluded that the agent was able to process 1 400
to 1 900 session records per second. This was the case when data were read from a
single local file and using a model size of 12 000 clusters. During the experiments
the agent was executing on a host with a Pentium 4 1,8 GHz processor with 512
MB memory.

In the Safeguard network multiple network sniffers where used as illustrated
by figure 6.4 in section 6.1.2. Because one agent needs information from multiple
hosts, remote data access have to be used. If the hosts at which the sniffers exe-
cuted would be overloaded, the sniffers would start dropping packets and attacks
could pass by without detection. Executing the agent on its own host, avoids the
danger of having the agent sharing processing resources with a sniffer. The down-
side of this setup is the additional time required to process data. When accessing
multiple files remotely encrypting traffic using SSH, the performance decreased,
resulting in about 500 session records processed each second.

Considering this is a first prototype implementation and that the parallel re-
mote data access of multiple files is quite intricate, the obtained performance is
good. In addition it was enough for keeping up with the data rate in the safe-
guard test network, with hundreds of session records produced per second during
evaluation.

The current implementation is not optimised in any way to increase perfor-
mance. Some possibilities for improving performance include:

• Reduce the amount of logging currently used for evaluation purposes.

• Redesign the agent and algorithm implementation now when the implemen-
tation has stabilised somewhat.

• Keep the connection between the agent and the data source open, rather
than setting up new SSH connections periodically.

• Split the agent into multiple instances sharing the load.

• Add more processing power and memory.

100 6.3. PERFORMANCE AND SCALABILITY

• Consider alternative methods of data access. Splitting the agent into mul-
tiple instances would for example remove the need for accessing multiple
remote files in parallel.

• Improve the performance of the algorithm used, for example by splitting
the model in smaller subsets, thereby reducing the time used to search the
model. We will discuss this further in the final chapter of the thesis.

The linear time for training the model and the use of compact cluster sum-
maries make the algorithm very scalable. We have trained models on millions of
sessions, resulting in model sizes ranging from 5 000 to 60 000 clusters without
scalability problems.

RELATED WORK 101

Chapter 7

Related work

This chapter discusses how Safeguard and ADWICE relate to other research in the
area of intrusion detection. We start by describing a number of interesting agent
architectures and compare those to the Safeguard architecture in section 7.1. In
section 7.2 we change the focus to learning-based intrusion detection.

7.1 Agents for intrusion detection

This section briefly presents architectures and systems utilising agents for intru-
sion detection. The benefits of using agents in this setting have been briefly pre-
sented in section 3.2.1. Unlike the approaches presented below, Safeguard takes
a much wider view. In addition to attacks, Safeguard aims to defend also against
failures. Also, not only traditional communication networks are considered, but
also the power domain, aiming to apply similar techniques across the different
domains.

AAFID

AAFID [106](Autonomous Agents For Intrusion Detection) is a distributed intru-
sion detection system and architecture developed at Purdue University. AAFID
was the first architecture to propose the use of autonomous agents for intrusion
detection. Similar to the Safeguard architecture, there is a hierarchy of entities.
Filters give agents access to various data sources providing a subscription based
service of data selection and data abstraction. Agents receive data from local fil-
ters searching for intrusions and generating reports to the transceiver on the local
host. Agents may be simple and specialised or large and complex, but they do not

102 7.1. AGENTS FOR INTRUSION DETECTION

have the authority to generate alerts, that is the task of higher level entities like the
transceivers or monitors. One transceiver is executing on each host, collecting and
processing reports from agents and redistributing them to other agents or moni-
tors. Transceivers also control the local agents. Monitors are the highest-level
entities in the architecture. Unlike transceivers they can control entities executing
on many different hosts. They receive information from transceivers and lower
level monitors and detect events that involve multiple hosts. Monitors may also
communicate with one or more user interfaces.

Most agent architectures today are developed in Java, but AAFID was imple-
mented using the programming language Perl [89]. During the project some of the
disadvantages of Perl at that time were discovered, including big resource usage,
lack of strict type checking and security problems.

Micael

Micael [33] is an intrusion detection architecture implemented using IBM Aglets
[107] and Java. The architecture is developed at Universidade Federal do Rio de
Janeiro in Brazil and makes use of mobility, unlike the AAFID and the Safeguard
architecture.

The head quarter agent centralises the system’s control functions, maintains
copies of other agent’s executable code and is responsible for agent creation. The
head quarter agent does not normally move, but may do so if the load of the local
host is very high or if the host is compromised.

Sentinels are agents that remain residents in each of the protected hosts, col-
lecting information. If an arbitrary level of anomaly is detected, the agent requests
that the head quarter creates a detachment agent that travels to the anomalous host.
Depending on the type of anomaly, a specific detachment agent will be selected
to verify with greater detail the anomaly and if appropriate perform counter mea-
sures.

Periodically the head quarter may create an auditor agent that will travel be-
tween hosts and check the integrity of other agents in the system. The auditor
agent uses precompiled internal checksum tables, and may request that missing
sentinels are restarted by the head quarter.

SANTA

SANTA (Security Agents for Network Traffic Analysis) presented by Dasgupta
and Brian [32] is another project using the IBM Aglets platform [107]. Santa is

RELATED WORK 103

developed by ISSRL (Intelligent Security Systems Research Laboratory) at Mem-
phis University. Four types of low-level monitoring agents are presented. They
detect deviations at packet, process, system and user level by learning a model of
normal behaviour using neural networks. The monitor agents send their reports to
the communicator agents, a builtin agent type in the Aglets agent platform, that
will in turn inform the decision/action agents. Each decision/action agents has a
fuzzy controller, representing five severity levels using five corresponding fuzzy
sets. The threat level reported by the monitor agents will be used to decide upon
the fuzzy membership of those sets. If the threat level are medium-high or high, a
killer agent will be dispatched, killing the responsible process. If the threat level
is lower, a helper agent will provide status information to the graphical interface.
The killer agent will also dispatch a helper agent to provide information about the
handled threat.

CIDS

CIDS [31, 67] (Cougaar-based Intrusion Detection System), is an agent-based in-
trusion detection system also presented by ISSRL, using the Cougaar [29] agent
platform and Java. In CIDS a security node consists of four different agents. The
manager agent is responsible for giving commands and providing feedback to
agents. The monitor agent detects anomalies on the packet, process, system and
user level. The anomalies are reported to a decision agent that uses three decision
engines, including one based on known attacks and one based on fuzzy inference.
Each engine generates a bid with a corresponding action, and the action with the
largest bid is selected and forwarded to the action/response agent. One can con-
clude that the functionality of the four monitor agents in the SANTA system has
been merged into one and that the combined decision/action agent has been split
into separate agents while adding additional functionality like the three decision
engines. The action agent will build an IDMEF (see section 2.2.1) object, describ-
ing the current anomaly, the probable cause and the proposed action. The IDMEF
object will then be presented to the operator through a separate user interface.

Experiments using an Nmap1 port scan and a user to root (see section 2.1.1)
attack are presented, and detected utilizing the agents. Multiple security nodes
may exist in a network, each consisting of the above four agents and communi-
cating through the manager agent. This level of the architecture is not evaluated.

Unlike the Safeguard architecture there is only one monitor agent responsible
for collecting information from various data sources. Some data sources may pro-

1Nmap (Network mapper) [86] is a free open source utility for network exploration or security
auditing.

104 7.1. AGENTS FOR INTRUSION DETECTION

duce a large amount of information in a short time, especially network traffic. In
the Safeguard implementation a separate agent is normally responsible for each
data source. In this way data from each data source can be reduced before correla-
tion between separate data sources. The Safeguard solution will reduce the risk of
information overload and performance problems at low levels in the architecture.

Compared to the agent hierarchies of AAFID and Safeguard, it is unclear how
multiple security nodes of CIDS should be organised when large numbers are
needed to protect many hosts in larger networks. It is also not discussed how and
what information the manager agents should share.

PAID

Gowadia et al [54] from University of South Carolina present PAID, a probabilis-
tic agent-based intrusion detection system. The idea is that agents should share
their knowledge. This is implemented using Bayesian Networks [61], where each
agent has three sets of variables. The input set are those variables of which other
agents have better knowledge and the local set are used only internally. Finally the
output set are those variables of which the agent has the best knowledge, which
may in turn be shared with other agents by exchanging messages. The Bayesian
networks in the current implementation are built by a domain expert, and the
probabilities are assessed manually. It is assumed that the graph of agent commu-
nication corresponds to a tree, implying equilibrium will be reached and global
consistency is assured. How this tree of agents should be organised for large net-
works is not specified.

PAID supports three types of agents. The system-monitoring agents perform
online or offline processing of log data, communicate with the operating sys-
tem and monitor system resources. Each intrusion-monitoring agent computes
the probability for one specific intrusion type. Those agents subscribe to vari-
ables and/or beliefs published by system monitoring agents or other intrusion-
monitoring agents. As an agent receives new information, its beliefs are updated
accordingly. The main IDS agent is a singleton agent that supervises the working
of the entire system and provides results to the user.

The agent system is now being implemented using the JADE [68] agent plat-
form and Java. The directory facilitator (see section 2.3.1) of JADE is responsible
for maintaining information about the published variables and monitored intru-
sions.

Multi-agent systems require agents to share information to reach a common
goal. In Safeguard and many other approaches, this information often consists of
human readable messages, like intrusion detection alerts. In the case of PAID,

RELATED WORK 105

messages are more closely related to the internal model of the agents which re-
duces the need for each agent to process the message before using the information.
On the other hand, this type of message representation builds on the assumption
that all agents use the same type of model which is not the case of Safeguard and
many other agent systems with heterogeneous agents.

A denial of service resistant architecture

Mell et al [81] at NIST (National Institute of Standards and Technology) propose
an agent-based intrusion detection architecture that is resistant to flooding denial
of service attacks. In their model an enterprise network is built using multiple do-
mains connected by the enterprise bus. Each domain consists of a number of re-
gions, connected by a backbone. The backbone is assumed to consist of machines
secured from penetration including firewalls, routers, switches and hardened se-
curity devices like IDSs. Critical hosts in the backbone house agents performing
intrusion aggregation, analysis and control. One central idea is to limit the infor-
mation the attacker may gain by attacking the individual regions. The IDS sensors
located in the vulnerable regions are not allowed to connect directly to the agents
in critical hosts. Rather a proxy agent is used. By allowing agents to move inside
a set of critical hosts, and inside a set of proxy hosts, the IDS will be a moving
target for the attacker. Also, the critical hosts will ignore network traffic if not
coming from specific IDS sensors, limiting the information that can be gained by
scanning the network. Because there is no communication directly from the vul-
nerable region to the critical hosts, the attacker can not target an attack directly
towards critical hosts, and will only have knowledge of a subset of proxy hosts.

Each domain should function as a standalone IDS. Even if the enterprise bus is
attacked, in many cases corresponding to the Internet, each domain will continue
functioning and a DoS attack will be stopped at the domain fire wall. If a critical
agent is attacked even though it is not visible, backup agents should be present to
take up its responsibility. Agents can also move away from an attacked host.

Safeguard handles the threat of denial of service attacks against the IDS by let-
ting higher level Safeguard agents execute in a separate hardened network. Simi-
lar to the work by Mell et al, it is necessary that host-based sensors reside in the
more vulnerable regions to access local data. However, disabling local sensors
will only reduce the information available to higher level agents. A missing agent
will soon cause an alert to be raised, due to missing heartbeat messages in the case
of Safeguard.

106 7.1. AGENTS FOR INTRUSION DETECTION

IDA

IDA (Intrusion Detection Agent System) [6, 7] is an intrusion detection system
developed at the Information-technology Promotion Agency (IPA) in Japan using
the D’Agents platform [56]. It is a host-based IDS, primarily intended to detect
intrusions that deprive root privileges in Unix.

At every protected host, sensors are monitoring system logs in search of
Marks Left by Suspected Intruder (MLSI). The MLSIs used in the presented work
are root shell start-up and modification of critical files for local attacks, and start-
up of shells and specific critical commands for signs of remote attacks. The sensor
reports the discovered MLSIs and their types to the manager. The manager is re-
sponsible for the mobile agents, analysing the gathered information and providing
an interface to the operator. The manager will launch a tracing agent to the host
where the MLSI was found. The tracing agent will move from host to host tracing
the intrusion independently of the manager. At each host the tracer agent dis-
patches an information-gathering agent that will collect further information on
the local host concerning the MLSI and returns to the manager to report.

At each host there is a message board that agents use to communicate, to
avoid that multiple tracing agents follow the same track. The manager provides a
bulletin board, where all information gathering agents report their findings.

Of course only attacks giving rise to the presented MLSIs can be detected.
On the other hand, concentrating only on those MLSIs implies that only a subset
of data needs to be processed. Safeguard, rather than concentrating on specific
subsets of attacks, filters irrelevant data as early as possible to avoid unnecessary
processing at higher levels.

ANT

ANT [44, 46] is an intrusion detection framework based on mobile agents mim-
icking behaviours of social insects developed at Université Claude Bernard Lyon.
Mobile intrusion detection agents randomly travel between hosts monitoring local
machines trying to discriminate between normal and abnormal behaviour. If an
anomaly is detected, the intrusion detection agent will send an alert by building
and spreading artificial pheromone. The pheromone consists of a number of fields
including a gradient that can be used by agents to trace the source of the alert. The
pheromone field is detected by intrusion response agents. Those will climb the
pheromone gradient to find the target of the attack and implement various response
behaviours.

The alert distribution and response of ANT is very different from Safeguard

RELATED WORK 107

and most other approaches. It is important that the administrator trusts and can
predict the behaviour of protective systems in the network. This may be easier
using traditional communication means, rather than using artificial pheromone.
ANT has been tested in a simulation, illustrating that agents can find the source
of attacks using the pheromones. The emergent behaviour if applied in a real
network as well as a detailed comparison with traditional communication means
would be very interesting to study.

Lightweight agents

Helmer et al [62] present an agent architecture in multiple levels developed at Iowa
State University. At the bottom level stationary agents are used at each data source
to collect and clean data. At the next level, mobile agents travel between subsets
of data cleaning agents to monitor and classify ongoing activities. At the highest
level data mining and data fusion agents are located together with databases and
an interface agent.

The agent architecture is implemented using the Voyager [113] agent platform
and Java. One feature of this platform is the possibility to dynamically aggregate
agents. Such added functionality called facets is used to extend the behaviour of
agents dynamically providing significant flexibility.

Agents in general provide a very flexible implementation of an intrusion de-
tection system. Using most agent platforms, it is easy to start, stop, upgrade
and clone individual agents without shutting down the complete system. Using
Java, regardless of the choice of agent platform, it is easy today to load classes
dynamically and update different aspects of agents without recompilation. This
is actually implemented in our clustering hybrid detection agent (see chapter 6)
to remove the need for recompilation when alternating between different module
implementations. Because the Safeguard agents do not move, the amount of code
used by the agents is less relevant than for architectures making use of mobility.

7.2 Learning-based anomaly detection

Significant effort has been devoted to learning-based anomaly detection and count-
less papers have been published in this area of research. In the following sections
we present a range of different approaches that have been proposed. Of course this
list is not complete, but it is representative and will provide some insights about
work done in this field. In the first section we start by describing approaches
that like ADWICE make use of clustering. In section 7.2.2 we describe other

108 7.2. LEARNING-BASED ANOMALY DETECTION

techniques for learning-based anomaly detection and finally we discuss important
properties of those alternative techniques and compare them with ADWICE.

7.2.1 Clustering-based anomaly detection

ADWICE builds a model using clustering. In this section we present some other
approaches using clustering-based data models, and discuss how they relate to
ADWICE.

Watcher

Munson and Wimer [84] have used a clustering-based pure anomaly detection
technique to protect a real web server executing on an instrumented Linux sys-
tem. Each c-function of the Linux kernel is given an identity, and each time a
c-function is called a corresponding counter is increased. Because there are 3 300
instrumentation points, this results in a 3 300 dimensional vector of counters. Dur-
ing a well defined time-interval, an epoch, the counters are increased, resulting in
a profile vector at the end of each such time interval.

To reduce the number of dimensions, statistical filters are applied. If two
different c-functions are always called together, including both in the model does
not add information. The complete number of modules is thus mapped into a
much smaller set of 100 virtual modules.

During normal execution profile vectors are collected and together form a
model of normal behaviour. Munson and Wimer noted that the vectors when
plotted together in a 100 dimensional space formed natural clusters. Each such
cluster was then represented by its centroid, a centre point and a radius, resulting
in a very small model compared to the large set of original vectors.

Watcher is evaluated by protecting a real computer connected to Internet and
inviting interested people to try to get root access. Execution profiles are com-
pared to the model in real-time, and by including real-time responses like killing
processes and banning IP-addresses, attacks can be stopped autonomously before
succeeding. The experiment resulted initially in a 100 % rejection rate of port
scans, buffer overflow attacks and worms.

The authors state that the threshold for rejection was set quite low. This of
course makes detection of attacks more probable while increasing the number of
false positives. The authors do not include evaluation of false positives in their
experiment.

The Watcher model representation is very similar to that of ADWICE. Even
if current evaluation of ADWICE makes use of network data, the algorithm could

RELATED WORK 109

also be applied to application data similar to Watcher. Unlike Watcher that in
the presented implementation builds a static model, ADWICE provides multiple
possibilities for adaptation and a search index to increase performance.

Intrusion detection with unlabeled data

Intrusion detection in general builds on the assumption that intrusions are qualita-
tively different from normal data. Portnoy et al [90] build a model of unlabelled
training data, adding the assumption that the number of normal instances vastly
outnumbers the number of intrusions. Building on this assumption, large clusters
of data are given the classification normal, while small clusters will be considered
intrusions. Based on initial experiments, a fixed percentage N is used to decide
how many large clusters that will be labelled normal.

Portnoy et al use single linkage clustering, similar to BIRCH and ADWICE,
implying one pass through training data and linear training time. Feature vectors
are normalised using mean and standard deviation. Euclidian distance is used
for continuous values, adding a constant for each disagreeing categorical value.
Unlike ADWICE a fixed cluster width is set, rather than step-wise increasing this
width. Adaptability is not considered, but periodical retraining on two-week basis
is discussed as a possibility to keep the model updated.

The detection method is evaluated on the KDD-99 data set. Cross validation
was used, meaning the original data set was divided in multiple parts, each con-
taining about 490 000 data items. Only four out of ten subsets were used, because
those contained sufficient variations of different types of intrusion and normal
data. Training with the raw data set yielded very poor performance, because the
KDD-99 data set consists to a large extent of intrusions, thereby breaking the as-
sumption that normal data should be much more common. Therefore the original
data set was filtered, resulting in data sets with only about 1 % attacks. Multi-
ple tests were then performed, choosing one subset for training and another for
testing. For some subsets a 1–2 % false positives rate at a 50–55 % detection
rate were obtained, but other subsets produce considerably inferior results. Even
though the detection rate is lower than some other approaches, one should keep in
mind that this was achieved without need for complete data cleaning or labelling.
One should however note the need for filtering of the KDD training data to fulfil
the assumption that normal data outnumbers attack data. Such filtering would also
to some extent be needed if the approach is applied to real data. Flooding denial
of service attacks and scanning attacks will otherwise give rise to large clusters
breaking the underlying assumption. This filtering may however be easier than
the need for removal of possible less visible attacks required by pure anomaly

110 7.2. LEARNING-BASED ANOMALY DETECTION

detection such as ADWICE.

Y-means

Guan et al [57] use a clustering approach called Y-means to model unlabelled
network data. Based on the population in a cluster, the cluster will be labelled
as normal or abnormal. Large clusters are considered normal as in the work by
Portnoy et al [90].

Y-means overcomes two shortcomings of the original K-means algorithm. K-
means requires the user to choose a suitable number of clusters (K) which is criti-
cal to the clustering result. In addition some of the K-clusters may be empty after
clustering. Y-means starts like K-means by assigning all instances to K clusters.
If there are empty clusters, new clusters are created using data points that are very
far from their cluster centres. When empty clusters have been eliminated, K can
be adjusted by splitting and merging clusters. If δ is the standard deviation of
data, 99 % of the data points will statistically be inside a 2, 32δ radius of a cluster.
The authors call this area the confident area of the cluster. Data points outside this
area are deemed outliers, and the remotest outliers will be used first when creating
new clusters by splitting. Splitting continues until no outliers exist. To avoid over
splitting, clusters with overlapping confident areas will be merged.

Y-means is like ADWICE evaluated using the KDD-99 data set. However,
only a small subset consisting of 12 000 data points are used to create the model.
On this small subset, the authors present a detection rate of 82,32% at 2,5% false
positives rate. This result is, somewhat unexpectedly, significantly better than the
result by Portnoy et al [90] also performing unsupervised anomaly detection using
clustering but on other larger subsets of data.

The KDD-data consists of some types of attacks (scanning, DoS) that consist
of a large number of data records, while other attacks may consist of only one
packet. This means that a small random subset may not truly be representative of
the complete data set, making such experiments hard to compare with experiments
on the complete data set or other subsets.

Similar to the work by Portnoy et al [90], Guan et al perform unsupervised
anomaly detection modelling both attacks and normal data detecting intrusions
based on cluster sizes. ADWICE models only normal data, thereby performing
pure anomaly detection. ADWICE, designed to be scalable, was able to model
all 1 000 000 normal data points without difficulty rather than only a small subset.
Unlike ADWICE and the work by Portnoy et al, Y-means requires a large number
of passes through training data.

RELATED WORK 111

Clustering packet payload

The meaning of a network packet header is well known, but the payload varies
a lot and consists of significantly less structured data. Many attacks are not vis-
ible if considering only packet headers. This calls for general methods ignoring
the abundance of payload content types, while searching for defining differences
between normal and attack payload.

Many proposed detection methods, including our application of ADWICE
in the Safeguard context, ignore the payload and apply learning only to header-
based features or a small number of selected content-based features. Zanero and
Savaresi [121] on the other hand use clustering in a first stage to group payload
into a number of different classes represented by a single byte, thereby signifi-
cantly compressing the information. In a second tier an anomaly detection algo-
rithm based on self-organising maps (SOMs) [72] is applied to payload classes
together with the header features.

Experiments were performed with three different clustering algorithms for
the first stage, of which the authors consider SOM to be the most successful. The
authors used the DARPA/Lincoln Labs 1998 data set for their proof-of-concept
evaluation, which corresponds to the data used to produce the KDD-99 data set.
They used a 10 × 10 SOM, thereby organising data in 100 different clusters. The
network was trained in 10 000 epochs over a representative subset of network
packets. The authors do not state how many packets were used for training, or
how much time was needed to train the model.

2 000 packets are classified using the trained SOM. When the number of pack-
ets in each class is presented for normal and Nessus2 traffic, it is clear that the
distribution of packets into classes is different. However, some Nessus packets
will be classified into the same classes as normal packets and vice versa. It is
shown that normal FTP traffic is classified into a small set of 8 classes out of total
100. Examples of FTP-based attacks are given, of which two were classified into
classes not containing any FTP-traffic, and one into a class that is an uncommon
FTP-class. This suggests that the compressed information can indeed provide
some useful contribution to the detection of payload-based attacks.

If further evaluation of the approach proves that the results hold in general,
much work on anomaly detection including ADWICE could be extended with
such compressed payload-based features. However, unlike ADWICE, SOMs re-
quires significant amounts of training, and is not as easily adapted when normality
changes.

2Nessus [85] is a security scanner for various flavours of Unix. It performs a large number of
remote security checks, and suggests solutions for security problems.

112 7.2. LEARNING-BASED ANOMALY DETECTION

The authors claim that adding the payload-based feature to the second stage
increased detection rate by 75% at the cost of an unspecified but limited increase
in false positives.

Detection of modified files

When having compromised a machine, the attacker may install a root kit to facil-
itate easy access in the future. By using data bases of hashes of known normal
files, and comparing those to hashes of potentially compromised hosts, intrusions
can be detected. However, for large networks with many different types of sys-
tems and different patch levels, maintaining a complete data base of benign files
may not be practical. Carrier and Matheny [20] propose a method to use when the
original hashes are unknown or hash data bases incomplete.

Hashes of a set of relevant system files are collected from all hosts in the
network. The vectors of hash values are then clustered. The distance between
hosts is defined to be the number of hash values that are different. In the presented
experiments all hosts were clustered into sets, such that the distance between all
hosts in a single cluster was zero. This corresponds to all hashes being equal.

If one assumes, that only a minority of the hosts in a large network are com-
promised, and many uncompromised hosts have the same patch level, suspected
hosts may be detected by examining the size of host clusters. Small clusters of
hosts are more probable to be compromised in this case.

By handling host clusters rather than individual hosts, false positives are more
easily handled. If a cluster of hosts results in a false positive, examining only
one of the hosts in the cluster suffices to discard this false alert. The authors
therefore also count false positives as the number of erroneously detected clusters,
rather than individual hosts. Experiments using a simulated data set, show that the
method has a potential to help identify compromised hosts and reducing the work
of examining suspected hosts.

Clustering normal user behaviour

Oh and Lee [87] cluster each data feature by itself, while taking user transactions
into account when creating user profiles. A user transaction is represented by a
list of occurrence frequencies of kernel signals for all the commands of a user
during a session. Similar data objects of each feature are clustered together and
clusters represented by a minimum, maximum, count of the represented transac-
tions, the centre and ratio together with their standard deviations. The centre is
computed by taking the average of the data objects in each transaction, and then

RELATED WORK 113

computing the average over the number of transactions in the cluster. Similarly,
the individual repetitive ratio of a transaction in a cluster is the number of data
objects in the present cluster and transaction, divided by the complete number of
data in the transaction. The overall ratio is the average of individual ratios over all
transactions.

The user profiles consist of internal cluster summaries as explained above, and
external summaries representing statistics of the noise data objects not present
in clusters. During detection four different anomaly measures are computed for
each feature when comparing a new transaction with existing user profiles. The
internal distance is the difference between the centre of a cluster and the average
of data objects in the user transactions that are in range of the cluster. The global
internal distance is then computed by taking the average of all individual internal
distances. The other three measures are called internal ratio, external difference
and external ratio. If the anomaly measures are larger than a threshold, the user
transaction is suspicious.

Two sets of experiments are presented. In the second user logs from the
DARPA/Lincoln Labs 1998 data set were used and the results compared to the
classic statistics-based NIDES intrusion detection system [2]. At about 10% false
positives, all anomaly measures resulted in almost 100% detection rates. NIDES
had a higher false positives rate and a lower detection rate.

Unlike this work, ADWICE clusters all features together. This facilitates de-
tection based on combinations of anomalous values that may go undetected if only
considering features one by one. On the other hand, considering features together
makes it more difficult to understand what features that were the primary cause to
the anomaly. ADWICE provides some help in this context, by including into the
alert the individual features that contributed most to the overall anomaly level.

ADWICE in its current form does not represent outliers separately (i.e. ex-
ternal summaries). Normal outliers either are present in the model as sparsely
populated clusters, or they may be removed if forgetting is applied.

Fuzzy clustering

Shah et al [102] use fuzzy clustering to detect anomalies in low level system data
including statistical network data, process information and global system data
such as memory usage and CPU load. Samples are collected at a rate of once per
second. In total 189 features are collected, but using principal component analysis
the number of dimensions are reduced to 12. The resulting vectors are clustered
using the Fuzzy mediods algorithm [73].

114 7.2. LEARNING-BASED ANOMALY DETECTION

Unlike traditional clustering approaches, including ADWICE, data may be-
long to more than one fuzzy cluster. Membership is not a binary function. The
Fuzzy mediods algorithm outputs n representative objects (mediods), such that
the total fuzzy dissimilarity within each of the n clusters is minimized.

The diameter of the clusters is computed as the average pair-wise distance
between members of the cluster, and the radius is half this distance. A threshold
based on the radius is compared to the distance to an unknown data point to decide
if the data is anomalous or not.

A model is trained on data collected in an attack-free environment, using a
Linux kernel running a vulnerable Apache server [3]. A number of different at-
tacks are used for testing. One of the best results was an attack that was detected
with a 43,53 % detection rate at a 16,12 % false positives rate. The authors state
themselves that the false positives rate is high, but they assume that higher level
reasoning may mitigate that to some extent.

Unlike ADWICE, clustering of Fuzzy mediods requires multiple iterations
over data objects increasing training time and making incremental training and
adaptation less viable.

Seurat

Xie et al. [120] collect system file change data from multiple hosts and use cluster-
ing to detect common changes at multiple hosts at specific time intervals, possibly
indicating distributed attacks such as worms. Each host is equipped with a light
weight tool that collects a daily summary of file update attributes. The attributes
include file name, type, device number, permissions, size, time-stamps and MD5
checksum. Currently only a binary bit representing whether the file was changed
or not during the present day is used.

Data vectors from the detection window are clustered and compared with clus-
ters from previous t days (e.g. the comparison window). The clustering algorithm
is a simple iterative algorithm normally used for K-means initialization, using no
prior knowledge of the number of clusters. A cluster is called a new cluster if
it consists of multiple vectors only from the detection window. This indicates
abnormal file updates and causes generation of an alert.

7.2.2 Other selected techniques

Of course there are countless other approaches to model intrusion detection data
besides clustering and below we take a broader view of learning-based intrusion

RELATED WORK 115

Max Open to Any
Host

Connect Code
Distribution

Session Class

Event Intensity

Error Intensity

Service Distribution

Number of Unique
Ports

Max Open to Any
Host

Figure 7.1: eBayes TCP model

detection. In this section we broadly present a number of different such ap-
proaches by briefly explaining them and in the next section we summarise some
of their key properties in the context of ADWICE.

EBayes TCP

Valdes and Skinner [111] present eBayes TCP, a component of a larger system
called EMERALD [42]. The model is a Bayesian tree where the root node con-
tains the different hypotheses and the leaves contain observable events as shown
in figure 7.1.

Two possibilities for model adaptation are presented:

• If a single hypothesis is dominant at the root node this dominant hypothesis
will be reinforced.

• A dummy state is included in the root node and the belief of this state is
computed as for other normal states. If the dummy becomes the dominat-
ing state, it is promoted to a normal state. Dynamic hypothesis generation
realises use of unlabelled data for training the model but may then not be
able to discriminate between different attack classes.

A real-time IDS based on learning program behaviour

Ghosh et al. [52] describe three machine learning techniques to model normal pro-
gram behaviour using sequences of system calls from the Basic Security Module

116 7.2. LEARNING-BASED ANOMALY DETECTION

(BSM) in Solaris. The presented approaches are:

• An Elman neural network is used to predict the next sequence of events at
any point in time. The n:th input sequence In is presented to the network
which produces an output On. On is then compared to In+1 to obtain the
prediction error (i.e. the anomaly measure).

• A finite automata where states correspond to n-grams in the BSM data and
output states correspond to sets of l-grams (where l < n) that may be seen
when the automata is in a given state. During training statistics of successor
l-grams are collected through counting. During testing the deviation of the
successor l-grams from expected values is used for anomaly scores.

• A finite automata that represents program behaviour is automatically con-
structed from normal training data. One or more n-grams are assigned to
each state. The automata predicts an n-gram N if there is a transition from
the current state to the state corresponding to N and if the transition is la-
belled with the first l events of N . If there is no matching transition labels
no prediction is made. If the matching transition leads to a state not con-
taining N this is considered a prediction error (i.e. an anomaly).

Intrusion detection applied to CORBA objects

Marrakchi et al. [79] perform application level intrusion detection by modelling
client request at a CORBA [27] server. Request interceptors of the VisiBroker
ORB [28] are used to collect request names and their parameter values. Each
client connection is considered one data item, where bind/unbind between server
and client object corresponds to connect/disconnect.

The normality model is a tree structure where nodes correspond to requests,
the root marks connection and leafs disconnection. Each node also contains in-
formation of the parameter values. During training all client requests are assumed
to be attack-free and new branches are added to the tree as new connections are
presented to the system. In a second manual phase during training a tolerance
interval is constructed for each numerical parameter value.

During detection incoming requests are matched against the model following
a path from the root to a leaf. During tree traversal the similarity between the
present connection and the model is computed. Similarity starts at 1 and receives
a penalty at each node where parameter values do not match normality. Alerts
are generated if an unexpected request is detected during tree traversal or if a leaf
node is reached and the similarity is less than a threshold.

RELATED WORK 117

CDIS: Computer defence immune system

Williams et al [117] present an anomaly detection scheme based on the computer
immune system approach. The data used are 28 header attributes from individual
TCP-packets, and 16 attributes from UDP and ICMP which are processed into
binary strings of 320 bits. Each non-binary attribute is represented by an interval
rather than a fixed value, thereby realising imperfect matching.

Initially the system goes through a training phase (see figure 7.2). Antibodies
are created as random binary strings and matched against a corpus of self-packets
thereby performing negative selection with removal of matching antibodies. The
model may then optionally be tuned by affinity maturation to obtain more general
antibodies. The attribute intervals are then increased until they start matching self
after which they are decreased again. The initial training is a very time-consuming
task performed off-line.

During detection the model of antibodies is matched against network packets.
After an initial match against one antibody, an extended search for other matching
antibodies is performed. If additional matches are found on the local host or
another remote host, the antibody is said to be costimulated and only then an alert
is generated to reduce false positives.

The dotted parts of figure 7.2 are not yet implemented. This includes removing
(forgetting) antibodies after a certain life-span and to reinforce those antibodies
that generate alerts to handle changing system behaviour.

Data mining methods for detection of new malicious executables

Schultz et al [99] have evaluated the application of several data mining methods
to the problem of detecting previously unknown malicious executables.

The authors compare a base-line signature-based approach against the RIP-
PER algorithm [24] and two approaches based on the naive Bayes approach. The
RIPPER algorithm used character strings within the executables as features for
generating classification rules. The Naive Bayes algorithms used character strings
as well as sequences of byte codes from the executable files. In addition to the
standard Naive Bayes the authors introduced the so-called multi-Naive Bayes,
which basically splits the features in different sets and then applies the standard
naive Bayes to each set of features, and then makes a vote based on the prediction
for each set of features.

118 7.2. LEARNING-BASED ANOMALY DETECTION

Antibodies Randomly Created

Negative Selection

Affinity Maturation (optional)

Detection

Co-stimulated?

Generate Alert

Lifetime Extended

1010100011010

Not Match Self

Match Event

Yes

Lifetime Reached ?

Not Match Event

Death

No Yes

No

In
iti

al
 T

ra
in

in
g

Match Self

D
et

ec
tio

n

Figure 7.2: CDIS antibody life cycle

RELATED WORK 119

Monitoring anomalous windows registry access

Apap et al [4] introduce RAD (Registry Anomaly Detection) which uses a proba-
bilistic normality model to detect anomalous Windows registry access. From each
registry access five features are extracted, namely the process name, query (set,
get ...), key, response (success, not found, buffer overflow ...) and result value.
Since the Windows event logger causes a major resource drain if used to log all
registry accesses, the basic audit module was implemented to create and store
registry-based feature vectors in a data warehouse.

A set of consistency checks is applied to detect anomalies. P (X) for each
feature and P (X|Y) for each pair of features are computed resulting in 25 con-
sistency checks for each registry access. A normality model is computed out of
the collected normal data. For each data record, an anomaly score is computed
and then compared with a user threshold to decide whether to send an alert or not.
Training is performed off-line, while detection is performed real-time, keeping up
with the 50 000 records per hours produced during experiments

Detecting anomalous network traffic with self-organizing maps

Ramadas et al. [94] use self organizing maps (SOMs) [72] as normality mod-
els for network data. Network packets are captured with the tcpurify program,
which captures only the first 64 bytes and has the option of obfuscating the sender
and receiver addresses. The tcptrace program then reports a number of periodic
messages during a TCP or UDP connection (for UDP defined using time-outs).
6 features are used (and reported from tcptrace) including questions per second,
average question size and idle time between questions.

A self organizing map converts non-linear statistical relationships between
data points in high dimensional space to relations between points in two dimen-
sional space. During training all neurons are presented with each training sample,
and for each sample the closest neuron and its neighbours are adjusted closer to
the sample. During detection a sample is compared to all neurons and if there is
more than two units of standard deviation from the closest neuron it is considered
anomalous.

Detecting self-propagating email using anomaly detection

Gupta and Sekar [59] use a state machine and statistics to detect increasing vol-
umes of email traffic. The data source is email server logs, but the current evalua-
tion simulates the users.

120 7.2. LEARNING-BASED ANOMALY DETECTION

The basis is a state machine for email server operation with one send event and
an arbitrary number of deliver events. Each email creates a new instance of the
state machine. Four frequency statistics are captured at the email server, ranging
over all clients as well as individual clients.

Each statistic was maintained at multiple time-scales ranging from about one
second to one hour. Rather than using averages the frequency distribution was
captured using time windows and histograms using geometric bins (since value
ranges are not known). The severity of an anomaly is defined to be the difference
between the highest non-zero bin at detection and training.

HMM-based intrusion detection

Cho and Han [21] propose two techniques to improve HMM-based (Hidden
Markov Model [93]) detection applied to events from the basic security mod-
ule in Unix. To simplify modelling, the amount of training data is reduced by
concentrating on events related to privilege flows. This includes change from user
and group ID to execution ID root when setuid processes3 are used. In this way
only about 25% of the original events are needed. Performance is improved by
combining multiple HMM-models.

The system call related information, such as file paths and system call return
values, is too large and varying to be directly modelled using HMMs. The many
different measures are reduced by applying a self-organised map so that all mea-
sures are converted into one representative.

Training is performed by observing training sequences and updating the model
until probabilities for the normal sequences are maximised. During detection the
probability that a specific sequence is normal (generated by the HMM) is calcu-
lated.

Anomalous payload-based network intrusion detection

Wang and Stolfo [115] present PAYL, a fully automatic, simple, unsupervised,
and incremental anomaly detector. The data source is binary payload content
where the payload may optionally be truncated. The simplest approach considers
payload from individual packets but payload from complete or partial connections
may also be used. To obtain a good model, the complete data stream needs to
be divided into smaller subsets so that similar payloads are modelled together.

3In some applications, a user process needs extra privileges, such as permission to read the
password file. Unix systems offer a set of system calls, called the uid-setting system calls, for a
process to raise and drop privileges. Such a process is called a setuid process.

RELATED WORK 121

Usually the standard network services have fixed pre-assigned ports (e.g. port 80
for HTTP, 21 for FTP). Each application has its own payload distribution. The
distribution of payload also varies due to payload length where longer payload
may indicate non-printable characters indicative of media files or executables.
Also the direction of the data stream is relevant.

A sliding window of one byte is passed over the complete payload and the
occurrence for each byte is counted. For a payload the feature vector is calculated
by dividing each byte count with the total number of bytes. Each byte is treated
as a variable and its mean and standard deviation computed.

Given a training data set a model Mij is computed for each observed length
i and port number j. Mij stores the mean byte frequency and standard deviation
of each byte’s frequency. Incremental updating of the model is possible. During
detection the distribution of the tested payload is computed and compared with
the model.

Anomaly detection based on eigen co-occurrence matrix

Oka et al. [88] introduce a new method, Eigen Co-occurrence Matrix (ECM) that
models system call sequences and extracts their principal features to be used for
anomaly detection. For each sample user sequence of length l a co-occurrence
matrix is constructed by counting the occurrence of every event pair within a cer-
tain distance. This results in an m × m matrix Mi for each sequence where m
is the number of unique events. By finding the principal components the very
large matrix can be reduced. A feature vector is obtained by projecting Mi into
the reduced co-occurrence matrix space. The feature vectors are used to construct
multiple layered networks with events as nodes and connections as edges. Un-
known data are then compared to those networks.

An empirical analysis of target-resident DoS filters

Collins and Reiter [25] analyse the performance of several previously proposed
techniques for denial of service filtering.

Four different filtering techniques are evaluated. Two of the techniques make
use of source address data, and the other two make use of coarse indications of
the path that each packet traverses on its way to the destination node.

122 7.2. LEARNING-BASED ANOMALY DETECTION

Network-based
Packet headers 4
Complete packets 1

Host-based
System calls 3
Windows registry 1
Files 1

Application-based
CORBA requests 1
Email server 1

Table 7.1: Data sources

7.2.3 Discussion of key properties

This section discusses some key properties of the presented non-clustering based
techniques and relates those to ADWICE.

Data source

If we classify the papers according to what data sources they use we get the re-
sult shown in table 7.1. We can conclude that all three considered types of data
sources (see section 2.2.2) are present. The most common ones are packet headers
and system calls. Using packet headers rather than complete packets implies that
a majority of attack classes, those visible only in payload, will not be detected. On
the other hand, using payload may decrease performance if the payload needs to
be parsed and may aggravate the privacy problem due to user data processing. De-
ciding how to use the unstructured packet content or what features to extract is not
straightforward. This may explain why more effort has been spent on processing
packet headers.

In the Safeguard setting we used only packet-based features for ADWICE to
minimize processing time and avoid the feature selection problem for payload
data. Selecting a specific number of specific features will make the detection
approach less general. It will possibly reduce the probability that new attacks will
be detected in the case when they are not visible in the selected features. General
approaches to payload does not have this problem, including the work by Wang
and Stolfo [115].

Detection method

In this section we summarise what subclasses of anomaly detection are present
in the surveyed work. Pure anomaly detection means that only normality is mod-
elled while hybrid anomaly detection provides explicit models also of attacks.

RELATED WORK 123

Pure anomaly detection 10
Hybrid anomaly detection 3

Table 7.2: Detection methods

Labelled attack and normal data 3
Only normal training data 10
Unlabelled normal and attack data 1

Table 7.3: Training data

This means that a model built of normal usage statistics will be considered pure
in this sense, even though the model may also contain some attacks. On the other
hand, if a learning algorithm has knowledge about attack classes in addition to
normality, this approach will be considered hybrid. Table 7.2 shows the result-
ing classifications for the survey. Note that the work by Williams et al. [117]
represents normality by its inverse by using antibodies.

In table 7.3 the training data used by the different approaches is summarised.
We can conclude that most approaches assume that training data is normal and
therefore will consider attacks included in the training data as normal. This is
the approach taken by ADWICE too. There are also a number of supervised ap-
proaches [25, 99, 111], where data has to be labelled. One interesting approach is
the work by Valdes et al. [111]. The learning scheme is able to adapt the existing
model with new attack hypothesis using unlabelled data. No approach performs
full unsupervised anomaly detection or is trained only on unlabelled data con-
taining attacks. In the section covering cluster-based techniques both Portnoy et
al. [90] and Guan et al. [57] are applying unsupervised anomaly detection.

Detection algorithm

Below is a list of the different algorithms used for learning:

• Bayes learning [99, 111]

• Neural networks [52, 94]

• Finite automata [52]

• Computer immune system [117]

• Decision trees [99]

124 7.2. LEARNING-BASED ANOMALY DETECTION

Yes (Training) Yes (Detection) No
Performance
evaluated

3 7 4

Table 7.4: Performance evaluations

• Probabilistic model [4]

• Hidden Markov Model [21]

• Statistics [59, 115]

• Other methods [79, 88]

As we can see, many different approaches have been evaluated, and even
though this list is representative, there are certainly other methods not included
here. Unfortunately the motivation behind choosing a certain learning scheme is
not always presented. More explicit discussions of alternative learning schemes
and why they have been considered inferior would have been helpful for direct-
ing future research. Some authors do not consider the use of a specific learning
scheme the primary contribution. This may to some extent explain why the spe-
cific properties of the selected learning scheme are not discussed more.

When it comes to on-line detection (and adaptability) execution performance
is very important. Table 7.4 shows to what extent performance is measured. Con-
sidering training time is less common than time for detection, because many ap-
proaches assume off-line training and no on-line adaptation. In many cases where
performance is considered the authors only conclude that the detection scheme
is fast enough to keep up with the data processed during evaluation. Few pa-
pers [88, 94, 115] present the maximum throughput of the detection scheme. In
our work with ADWICE we consider time for detection as well as training, be-
cause we want to provide the possibility of on-line adaptation.

Usage frequency

To minimize time to detection, the intrusion detection system needs to be vigi-
lant at all times, using continuous on-line detection. If the detector is executed
only periodically, attacks may be missed. On the other hand, periodic usage re-
quires significantly less resources in terms of processing power than continuous
detection.

For real applications, what is considered normal will vary over time. New
users and services will be added to the system and old ones stop being present in

RELATED WORK 125

Yes No
Continuous detection 12 0
Continuous model
adaptation

1 11

Table 7.5: Usage frequency

the system. In such a dynamic environment the model needs to adapt to changing
behaviour. This may be performed continuously or by periodic retraining. If
continuous training is implemented, it is possible to always keep the model up to
date and minimize the need for off-line periodic retraining. Adaptation may also
be problematic, since frequent normality may become very dominant in the model
depending on which techniques that are used. Adaptation may also give rise to
new risks, because an attacker, at least in theory, for certain implementations may
slowly adapt the model to include also attacks.

Table 7.5 shows to what extent the different approaches implement on-line
detection and continuous model adaptation. Most surveyed research targets on-
line detection, although in many cases only off-line evaluation has been performed
and full continuous detection prototypes have not been implemented.

Valdes et al. [111] present two possibilities for adaptation, including new at-
tack hypothesis generation. The other surveyed approaches perform training off-
line and do not consider continuous adaptation or leave this as future work. Some
approaches may be able to be extended to continuous adaptation but such exten-
sions are not discussed.

Alert granularity

An intrusion detection system needs to provide enough information on detected
events, so that other systems or humans may respond to the attacks appropriately.
The alerts produced by the intrusion detection system may consider the attacks on
different levels and thereby limit the specific information that can be provided to
the human. Most surveyed approaches can provide information of the host/user
targeted by the attack, and in many cases also about the specific process or appli-
cation.

When it comes to the type of attack, for most approaches the operator will
get no specific information on the type of attack detected. This holds also for
ADWICE. This is implied from the fact that most approaches are pure anomaly
detection systems and are trained only on normal data.

Some approaches [99, 111] have hybrid models, modelling both normal and

126 7.2. LEARNING-BASED ANOMALY DETECTION

attack data. Those may provide more specific information on known attacks at the
cost of higher training data requirements or attack knowledge.

Anomaly detection is primarily used for detecting new attacks. Often misuse
detection will be used in parallel providing the user with very specific information
on the attack type of known attacks.

Attack resistance

The attacker may want to cover her tracks, thereby giving the motivation for at-
tacking the intrusion detection system itself or hide the attack in normal data. Ex-
amples of attacks against intrusion detection system are for example evasion [92]
and mimicry attacks [114]. It is important to consider how vulnerable the intru-
sion detection system is to such attacks.

Very few papers consider the security or insecurity of their detection approach.
Some authors claim that they will consider at least mimicry attacks in future works
[4, 115].

In our work, attack resistance was mostly considered on the global level of
the agent system. We expect that individual agents with some difficulty can be
disabled or evaded, but the complete system should still be able to detect the
attack with high probability. Applying multiple detection schemes in parallel as
in the case of Safeguard, makes it much harder to avoid detection than evading a
single anomaly detector.

Evaluation data

There exist a number of different approaches to intrusion detection evaluation.
To avoid practical problems data may be simulated, using more or less complex
models of users and systems. This makes evaluation of very complex systems
possible and avoids the difficulties of collecting real data. Unfortunately it is hard
to prove that the simulation results are valid in a real world setting.

Collecting or generating good realistic data for intrusion detection system
evaluation is a difficult task. Ideally real normal data produced by real users in a
real system should be used. Then regularities arising from use of simulated data
can be avoided. This is especially important for learning-based systems since they
otherwise may learn properties of data not present in the real world. Using real
data may however introduce other problems, e.g. related to privacy. [77]

To evaluate detection accuracy, attacks need to be included in the data. In the
most realistic setting, the attacks are performed by real possibly unknown as well
as malicious adversaries. Unfortunately this implies a number of difficulties and

RELATED WORK 127

Attacks
Simulated Real attacks Real attackers

Normality
Simulated 2 4
Real data 1 4 3

Table 7.6: Use of real world data

is therefore not very common. For evaluation we need to know what attacks are
present where in the data and this may require extensive analysis if the intent and
even presence of the attacker is unknown. We also do not have any control over
to what extent different attack types are included in the data, and suitable attack
coverage may be hard to obtain.

An alternative way of collecting attack data is to let non-malicious people
perform the attack in a well-controlled setting. This means we have real attacks,
but not real attackers and reasonable realistic attack data may be produced. Now
we may have full control on what attacks are present in data and where. A problem
with this approach is if the normal data is collected in a real world network. Then
performing attacks targeting the real network will in most settings not be a viable
option, even when the attacker is known and not truly malicious. A way around
this may be to inject the attacks in data off-line or during replay of normal data.
This may however again introduce features in data not corresponding to the real
world setting.

In table 7.6 we classify the surveyed evaluations according to what extent real
world data is used. If the system is evaluated using only real data, normally the
experiment is very limited when it comes to attack coverage [25,111,115]. Using
real data may however increase the confidence that the approach is able to model
real complex systems. A good trade-off is to use real users to produce real normal
data and real but controlled attacks [4,21,94,99]. In those cases often a reasonable
number of attacks have been performed. If simulated data is used for the most
extensive experiments, the confidence in the approach may be increased by at
least performing feasibility tests with real users. Combining different evaluation
approaches will increase the confidence with the results.

When it comes to detection rate and false positives, it is not possible to com-
pare the different approaches considered here. In some cases it does not make
sense to compare, due to the fact that different problems are being addressed, e.g.
performing supervised learning or pure anomaly detection or detecting different
types of attacks. In other cases comparisons are impossible due to different eval-
uation data or even different metrics of performance (e.g. alerts/day versus false

128 7.2. LEARNING-BASED ANOMALY DETECTION

positives rate). In many cases the evaluation could be improved, although it may
not always be straightforward to do so due to the difficulty of obtaining good
evaluation data. Overall the false positives rate is still a significant problem for
learning-based approaches including ADWICE.

CONCLUSIONS AND FUTURE WORK 129

Chapter 8

Conclusions and future work

In this thesis we have described ADWICE, a pure anomaly detection scheme using
incremental clustering. The use of incremental clustering results in scalability,
facilitating the use of very large training data sets and building of large normality
models. This was confirmed in experiments building models out of millions of
training data resulting in normality models with tenths of thousands of clusters.

Incremental clustering provides the opportunity to adapt a cluster-based model
online, possibly interleaving adaptation with detection. We have explained how
incremental training can be used to reduce the need for complete periodical re-
training of the model and illustrated how this can be used to reduce false posi-
tives. In the context of adaptability we also introduce the use of forgetting for a
cluster-based model. This prevents the model to grow indefinitely and may in-
crease detection of new anomalies that once have been considered normal.

Training time is linear due to the use of incremental clustering. The search
index further improves performance of training as well as detection by provid-
ing logarithmic search times of the model. In related work, real-time detection
and indices for fast matching against the normality model are seldom considered
together with the basic detection approach. We think, however, that it is impor-
tant to include the index in the detection scheme from the start, since the index
may influence not only performance, but also other properties such as adaptation
and even accuracy as shown in this thesis. We explained how the initial index
could contribute to false positives providing insights that can be useful also in the
context of other detection schemes using indices.

A software agent was developed using ADWICE as primary detection engine.
This agent was fully integrated into the prototype of the Safeguard agent architec-
ture. The complete Safeguard architecture, including the agent using ADWICE,

130

was installed and used in the Safeguard test network. This illustrated the use of
ADWICE in a larger context, protecting a network from attacks and failures and
confirmed that scalability and performance of the agent and ADWICE were good
enough to be useful in a realistic environment.

The DARPA/Lincoln Labs related data sets have been widely used but also
criticised [78]. The normal traffic regularity as well as distribution of attacks
compared to distribution of normality does not correspond to network data in
a real network. With this in mind, our DARPA/Lincoln Labs based evaluation
with the KDD data set still shows feasibility of ADWICE given the assumptions
that relevant features are used and that those features separate normal data from
attacks.

For full evaluation of forgetting and incremental training, data over a longer
period needs be collected. We see the experiments used in this thesis as a proof of
concept. It is improbable that parts of normality should be forgotten already after
a few days in a real network. Producing good public data for intrusion detection
evaluation including anomaly detection and correlation is still an important task
for the intrusion detection community and we think collaboration on this task is
very important. Two main approaches exist:

• A test network or simulator can be used for generation of data, thereby real-
ising a fully controlled environment. Generation of more extensive data sets
in the Safeguard test network is ongoing work but requires more resources,
primarily to generate good normal data, but also to perform attacks.

• Data can be collected from real live networks. Here, normality is no longer
a problem, but privacy is, and so is the issue of attack coverage. Emerging
tools can be used to sanitise [15] data with some limitations. Sanitising
data while keeping relevant properties of data so that intrusion detection
analysis is still valid is not easy, especially for unstructured information,
for example, network packet content. When it comes to attacks, they may
have to be inserted into data offline if the real attack present in data is not
enough. Performing attacks online in a real network is typically not a viable
option.

If correlation is to be evaluated, such as the correlation agents of Safeguard,
data generation becomes even more complex. Many different data sources may be
relevant to the detection process. Although some work has been performed in this
area [60] further efforts are needed creating open data sets to make comparisons
between different approaches easier.

CONCLUSIONS AND FUTURE WORK 131

Pure anomaly detection is useful even if training data is not free from attacks.
We can then detect changes in behaviour, and the old attacks already present in
training data should be handled by misuse detection systems to a large extent.
What is the implication of training online on both attack and normal data? As
long as statistics is used, attacks may be assumed to be outliers in normal data
and detected based on this assumption. In the case of ADWICE and similar ap-
proaches, training online on data not assumed to be normal is probably not a good
idea. Then we may learn attacks as normality the first time they occur. By only
adapting the model using data that is classified as normal (by ADWICE itself,
another detection scheme or a human expert) this problem can be reduced.

8.1 Future work

The current implementation only handles numerical data and the mapping from
categorical values to numerical is not a general solution. Future work includes de-
velopment of a detection scheme that is more general and able to handle categori-
cal data as well as numerical. Using categorical values means that representatives
of data need to be stored inside a cluster, rather than just the CF used by BIRCH
and currently ADWICE. To what extent this use of categorical data would influ-
ence performance, memory usage, and detection quality needs to be investigated.
Work by Ganti et al. [49,50] may be used as a starting point for scalable clustering
of categorical data.

We have here evaluated two kinds of threshold requirements using radius or
distance. Using distance produces better detection quality but using the radius is
more resistant to outliers of data raising the question whether a combination of
these two could lead to the best of both worlds.

Forgetting may be used for handling outliers. Future implementations should
study cluster size when deciding whether a cluster ought to be forgotten. Large
clusters, corresponding to very common normality in the past, should be very re-
sistant against forgetting. Also, rather than forgetting clusters periodically, the
influence of clusters could be reduced step by step until the point where it is
completely forgotten. This could be realised by defining an influence radius to
complement the normal radius of the cluster when performing detection. The in-
fluence radius could be defined as a percentage of the original radius for example,
where the percentage will decrease over time.

Global clustering will produce a more optimal clustering than the local incre-
mental clustering used by ADWICE. One approach to get the best of both worlds
may be to use non-incremental global clustering periodically, and incremental

132 8.1. FUTURE WORK

clustering online for adaptability. This requires the global clustering algorithm
to be scalable enough to handle large training data sets in the context of network
data.

In our work service names and host addresses are included as data features.
This means each host/service will be modelled by a separate set of clusters, but
that all clusters even representing separate hosts/services will be collected into one
global network model. This implies that the model only has global parameters,
thereby removing the need to set model parameters for individual hosts/services.
However, this approach results in a single large tree of clusters. An alternative
approach would be to represent each host/service by a separate tree of clusters.
The global network model would then consist of a forest of trees, rather than
one large tree. This would significantly reduce the number of clusters in each
model, thereby reducing the height of the tree implying improved performance.
The correct tree could be found in constant time using hashing, similar to the hash-
based tree used in the grid-index. Such a forest of trees could use global parameter
settings to avoid the need for handling a large set of individual parameter settings.

In the Safeguard prototype only features based on packet headers were in-
cluded. Many attacks require also payload-based features to be detected. Like in
the case of the KDD data set, such features can be selected by a human expert
and pre-processed before feature vectors are processed by an intrusion detection
scheme. An alternative more general approach is to compute statistics based on
the binary packet content without caring about semantics of the packet data simi-
lar to the work by Wang and Stolfo [115]. More work is required to analyse and
collect statistics on the usefulness of individual features for detection of specific
attacks and attack types. Lundin-Barse and Jonsson [13] present a framework
for determining exactly which log data can reveal a specific attack. Larson et
al [74] continue this work by presenting a tool that can be used to find differences
between normal and attack data in log files. Knowledge of such differences is
required for selection of relevant features for intrusion detection. Knowledge of
specific features relevant for existing attacks will not be enough for detection of
all new attacks, but could provide a starting point.

Our experience with incremental training indicates the need for new tech-
niques to complement the anomaly detector. Julish [70] describes how clustering
of alerts is used to identify root causes (e.g. misconfiguration of a system resulting
in false alerts). This technique could be used to suggest to the operator that large
classes of similar alerts may possibly be false positives that should be included
into the model by incremental training.

We have further noted that there may be a need for the operator to tell the

CONCLUSIONS AND FUTURE WORK 133

anomaly detector to learn not only the data producing the alert, but also a general-
isation of data. For example, the two step incremental training during evaluation
of adaptation would not have been necessary if the operator could have told the
system to learn that the data producing alerts was normal both during working
and non-working hours. Those experiences call for intelligent tools to help the
operator using pure anomaly detection with adaptation in a real environment.

8.2 Final words

Anomaly detection in general is a difficult problem, as illustrated by the high false
alert rate produced by most presented approaches. Knowing this, is then anomaly
detection something we want to include in the defence of our networks? We argue
that it is already useful but of course no silver bullet. Anomaly detection should
be used as a complement to other defences and for solving specific problems.

The complexity of the general problem of anomaly detection can be signifi-
cantly reduced using the following principles:

• Model something simple not the complete world.

• Detect simple things not everything.

• Do not use a complex model if a simple one is enough.

In our work with ADWICE we can be accused to break all those principles.
We model a complete computer network which is certainly complex. We try
to detect many types of attacks. We use a quite complex cluster-based model,
rather than simple statistics like mean and standard deviation. It should come
as no surprise that like many related approaches this results in a relatively high
false alert rate. When exploring new approaches and designing new algorithms
hard problems are a welcome challenge. The easiest path is not the one most
probable to result in new knowledge. However, when using anomaly detection
in the real world, we need to be much more pragmatic. Many commercial ap-
proaches include anomaly detection to some extent today. Approaches in commer-
cial tools include detection of attacks resulting in significant statistical deviations,
like flooding denial service attacks and scanning attacks and modelling relatively
simple things like network protocols. This reduces the problem of false positives.
Unfortunately this also implies that the goal of using anomaly detection to detect
new attacks is only partially fulfilled. The trend of using more general rule-based
approaches, detecting attack types, rather than individual attack instances may to
some extent compensate for this.

134 8.2. FINAL WORDS

The topic of this thesis is intrusion detection. One should in this context re-
member that many problems and attacks can be completely avoided or reduced
using suitable prevention techniques. Some may go further and argue that preven-
tion is the only thing we need. We do not think that is the case. Prevention is of
course very important, but where prevention fails, we need also intrusion detec-
tion. Using distributed network defence systems like Safeguard, attacks that slip
through our other defences can be detected and with suitable response in place
also stopped.

BIBLIOGRAPHY 135

Bibliography

[1] Edward Amoroso. Intrusion Detection An introduction to Internet Surveil-
lance, Correlation, Trace Back, Traps and Response. Intrusion.net Books,
1999.

[2] Debra Anderson, Teresa F. Lunt, Harold Javits, Ann Tamaru, and Alfonso
Valdes. Detecting unusual program behavior using the statistical compo-
nents of NIDES. Technical Report SRI-CSL-95-06, SRI Internation, Com-
puter Science Laboratory, May 1995.

[3] Apache, 2005. http://www.apache.org/ Acc. December 2005.

[4] Frank Apap, Andrew Honig, Shlomo Hershkop, Eleazar Eskin, and Sal-
vatore J. Stolfo. Detecting malicious software by monitoring anomalous
windows registry accesses. In Recent Advances in Intrusion Detection
(RAID’02), Proceedings, volume 2516 of Lecture Notes in Computer Sci-
ence, pages 36–53. Springer, 2002.

[5] Martin Arvidson and Markus Carlbark. Intrusion detection systems - tech-
nologies, weaknesses and trends. Master’s thesis, Linköping university,
2003. LITH-ISY-EX-3390-2003.

[6] Midori Asaka, Takefumi Onabuta, Tadashi Inoue, and Shigeki Goto. The
use of mobile agents in tracing an intruder in a local area network. In Pa-
cific Rim International Conference on Artificial Intelligence (PRICAI’00),
Proceedings, volume 1886 of Lecture Notes in Computer Science, pages
373–382. Springer, 2000.

[7] Midori Asaka, Takefumi Onabuta, Tadashi Inoue, and Shigeki Goto. Re-
mote attack detection method in ida: Mlsi-based intrusion detection us-
ing discriminant analysis. In Symposium on Applications and the Internet
(SAINT’02), Proceedings, pages 64–73. IEEE Computer Society, 2002.

136 BIBLIOGRAPHY

[8] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, and Carl E.
Landwehr. Basic concepts and taxonomy of dependable and secure
computing. IEEE Transactions on Dependable and Secure Computing,
1(1):11–33, 2004.

[9] Stefan Axelsson. The base-rate fallacy and the difficulty of intrusion detec-
tion. ACM Transactions on Information and Systems Security, 3(3):186–
205, 2000.

[10] Stefan Axelsson. Intrusion detection systems a survey and taxonomy. Tech-
nical Report 99-15, Department of Computer Engineering, Chalmers Uni-
versity of Technology, 2000.

[11] Rebecca Gurley Bace. Intrusion Detection. Macmillian Technical Publish-
ing, 2000.

[12] Emelie Lundin Barse. Logging for intrusion and fraud detection. PhD
thesis, Chalmers University of Technology, 2004.

[13] Emilie Lundin Barse and Erland Jonsson. Extracting attack manifestations
to determine log data requirements for intrusion detection. In 20th Annual
Computer Security Applications Conference (ACSAC 2004), Proceedings,
pages 158–167. IEEE Computer Society, 2004.

[14] John Bigham, David Gamez, and Ning Lu. Safeguarding scada systems
with anomaly detection. In Mathematical Methods, Models, and Architec-
tures for Computer Network Security (MMM-ACNS’03), Proceedings, vol-
ume 2776 of Lecture Notes in Computer Science, pages 171–182. Springer,
2003.

[15] Matt Bishop, Bhume Bhumiratana, Rick Crawford, and Karl N. Levitt.
How to sanitize data. In 13th IEEE International Workshops on Enabling
Technologies, Infrastructure for Collaborative Enterprises (WETICE’04),
Proceedings, pages 217–222. IEEE Computer Society, 2004.

[16] Kalle Burbeck. A preliminary agent architecture survey. Technical re-
port, Real-Time Systems Laboratory, Linköping University, October 2002.
http://www.ida.liu.se/∼rtslab/publications/2002/burbeck2002Agent.pdf.

[17] Kalle Burbeck. Agent platform evaluation. Technical report,
Real-Time Systems Laboratory, Linköping University, April 2003.
http://www.ida.liu.se/∼rtslab/publications/2003/burbeck2003Agent.pdf.

BIBLIOGRAPHY 137

[18] Kalle Burbeck, Daniel Garpe, and Simin Nadjm-Tehrani. Scale-up and
performance studies of three agent platforms. In 23rd IEEE International
Performance, Computing, and Communications Conference (IPCCC’04),
Proceedings, pages 857–863. IEEE, 2004.

[19] Alan Burns and Andy Wellings. Real-Time Systems and Programming Lan-
guages. Addison Wesley, 2001.

[20] Brian D. Carrier and Blake Matheny. Methods for cluster-based incident
detection. In Second IEEE International Workshop on Information Assur-
ance (IWIA’04), Proceedings, pages 71–78. IEEE Computer Society, 2004.

[21] Sung-Bae Cho and Sang-Jun Han. Two sophisticated techniques to improve
hmm-based intrusion detection systems. In Recent Advances in Intrusion
Detection (RAID’03), Proceedings, volume 2820 of Lecture Notes in Com-
puter Science, pages 207–219. Springer, 2003.

[22] Tobias Chyssler. Reducing false alarm rates in intrusion detection systems.
Master’s thesis, Linköping University, 2003. LiTH-IDA-Ex-03/067-SE.

[23] Tobias Chyssler, Simin Nadjm-Tehrani, Stefan Burschka, and Kalle
Burbeck. Alarm reduction and correlation in defence of ip networks. In
13th IEEE International Workshops on Enabling Technologies, Infrastruc-
ture for Collaborative Enterprises (WETICE’04), Proceedings, pages 229–
234. IEEE Computer Society, 2004.

[24] W. W. Cohen. Fast effective rule induction. In Machine Learning: the 12th
International Conference, Proceedings. Morgan Kaufmann, 1995.

[25] Michael Collins and Michael K. Reiter. An empirical analysis of target-
resident dos filters. In IEEE Symposium on Security and Privacy (S&P’04),
pages 103–114. IEEE Computer Society, 2004.

[26] Common intrusion detection framework (cidf), 1999.
http://www.isi.edu/gost/cidf/ Acc. March 2005.

[27] Corba, 2005. http://www.corba.org/ , Acc. December 2005.

[28] Borland Software Corporation. Visibroker, 2005.
http://www.borland.com/visibroker/ Acc. March 2005.

[29] Cougaar agent architecture, 2005. http://www.cougaar.org/ , Acc. Decem-
ber 2005.

138 BIBLIOGRAPHY

[30] North American Electricity Reliability Council. Sql slam-
mer worm: Lessons learned for consideration by the
electricity sector slammer, June 2003. available at:
http://www.esisac.com/publicdocs/SQL_Slammer_2003.pdf, Acc. August
2005.

[31] D. Dasgupta, F. Gonzalez, K. Yallapu, J. Gomez, and R. Yarramsettii.
Cids: An agent-based intrusion detection system. Computers & Security,
24(5):387–398, 2005.

[32] Dipankar Dasgupta and Hal Brian. Mobile security agents for network traf-
fic analysis. In DARPA Information Survivability Conference and Exposi-
tion II (DISCEX-II), Volume 2, Proceedings, pages 332–340. IEEE Com-
puter Society, 2001.

[33] Jose Duarte de Queiroz, Luiz F. Rust da Costa Carmo, and Luci Pirmez.
Micael: An autonomous mobile agent system to protect new genera-
tion networked applications. In Recent Advances in Intrusion Detection
(RAID’99), Proceedings, 1999.

[34] Hervé Debar and David A. Curry. The intrusion detection mes-
sage exchange format. Internet-Draft: work in progress, January
2005. http://www.ietf.org/internet-drafts/draft-ietf-idwg-idmef-xml-14.txt
Acc. March 2005.

[35] Hervé Debar, Marc Dacier, and Andreas Wespi. A revised taxonomy for
intrusion detection systems. Technical Report 3176, IBM Research, 1999.

[36] Hervé Debar, Marc Dacier, and Andreas Wespi. Towards a taxonomy of
intrusion-detection systems. Computer Networks, 31(8):805–822, 1999.

[37] Hervé Debar, Marc Dacier, and Andreas Wespi. A revised taxonomy for in-
trusion detection systems. Annales des Télécommunications, 55(7-8):361–
378, 2000.

[38] Luc Devroye and László Györfi Gábor Lugosi. A probabilistic theory of
pattern recognition. Applications of Mathematics, 31, 1996.

[39] eeye digital security - pr20050812, 2005.
http://www.eeye.com/html/company/press/PR20050812.html Acc. August
2005.

BIBLIOGRAPHY 139

[40] Charles Elkan. Results of the kdd’99 classifier learning. ACM SIGKDD
Explorations, 1(2):63 – 64, 2000.

[41] B. Ellison, D. A. Fisher, R. C. Linger, H. F. Lipson, T. Longstaff, and N. R.
Mead. Survivable network systems: An emerging discipline. Technical
Report CMU/SEI-97-TR-013, Carnegie Mellon University, Software Engi-
neering Institute, November 1997.

[42] Emerald, 2005. http://www.sdl.sri.com/projects/emerald/ Acc. March
2005.

[43] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. A density-
based algorithm for discovering clusters in large spatial databases with
noise. In 2nd International Conference on Knowledge Discovery and Data
Mining (KDD’96), Proceedings, pages 226–231. AAAI Press, 1996.

[44] Serge Fenet and Salima Hassas. A distributed intrusion detection and re-
sponse system based on mobile autonomous agents using social insects
communication paradigm. Electronic Notes in Theoretical Computer Sci-
ence, 63, 2001.

[45] Douglas H. Fisher. Improving inference through conceptual clustering. In
Sixth National Conference on Artificial Intelligence, Proceedings, pages
461–465. Morgan Kaufmann, 1987.

[46] Noria Foukia, Salima Hassas, Serge Fenet, and Paul Albuquerque. Com-
bining immune systems and social insect metaphors: A paradigm for
distributed intrusion detection and response system. In Mobile Agents
for Telecommunication Applications, 5th International Workshop (MATA
2003), volume 2881 of Lecture Notes in Computer Science, pages 251–
264. Springer, 2003.

[47] F-secure, 2005. http://www.f-secure.com/ Acc. August 2005.

[48] David Gamez, Simin Nadjm-Tehrani, John Bigham, Claudio Balducelli,
Tobias Chyssler, and Kalle Burbeck. Safeguarding critical infrastructures.
In Hassan B. Diab and Albert Y. Zomaya, editors, Dependable Comput-
ing Systems: Paradigms, Performance Issues and Applications, chapter 18.
John Wiley & Sons, 2005.

140 BIBLIOGRAPHY

[49] Venkatesh Ganti, Johannes Gehrke, and Raghu Ramakrishnan. Cactus -
clustering categorical data using summaries. In Fifth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD’99),
Proceedings, pages 73–83. ACM, 1999.

[50] Venkatesh Ganti, Raghu Ramakrishnan, Johannes Gehrke, Allison L. Pow-
ell, and James C. French. Clustering large datasets in arbitrary metric
spaces. In 15th International Conference on Data Engineering, Proceed-
ings, pages 502–511. IEEE Computer Society, 1999.

[51] Daniel Garpe. Comparison of three agent platforms performance, scalabil-
ity and security. Master’s thesis, Linköping University, 2003. LiTH-IDA-
Ex-03/070-SE.

[52] Anup K. Ghosh, Christoph Michael, and Michael Schatz. A real-time in-
trusion detection system based on learning program behavior. In Recent
Advances in Intrusion Detection (RAID’00), Proceedings, volume 1907 of
Lecture Notes in Computer Science, pages 93–109. Springer, 2000.

[53] Dieter Gollman. Computer security. John Wiley & Sons, 1999.

[54] Vaibhav Gowadia, Csilla Farkas, and Marco Valtorta. Paid: A probabilistic
agent-based intrusion detection system. Computers & Security, 24(7):529–
545, 2005.

[55] Grasshopper. http://www.grasshopper.de/index.html, Acc. August 2002.

[56] Robert S. Gray, George Cybenko, David Kotz, Ronald A. Peterson, and
Daniela Rus. D’agents: Applications and performance of a mobile-agent
system. Software - Practice and Experience, 32(6):543–573, 2002.

[57] Yu Guan, Ali A. Ghorbani, and Nabil Belacel. Y-means a clustering method
for intrusion detection. In Canadian Conference on Electrical and Com-
puter Engineering (CCECE 2003), Proceedings, volume 2, pages 1083 –
1086. IEEE, 2003.

[58] Sudipto Guha, Rajeev Rastogi, and Kyuseok Shim. Cure: An efficient
clustering algorithm for large databases. In ACM SIGMOD International
Conference on Management of Data (SIGMOD 1998), Proceedings, vol-
ume 27 of SIGMOD Record, pages 73–84. ACM Press, 1998.

BIBLIOGRAPHY 141

[59] Ajay Gupta and R. Sekar. An approach for detecting self-propagating
email using anomaly detection. In Recent Advances in Intrusion Detec-
tion (RAID’03), Proceedings, volume 2820 of Lecture Notes in Computer
Science, pages 55–72. Springer, 2003.

[60] J. Haines, D. Kewley Ryder, L. Tinnel, and S. Taylor. Validation of sensor
alert correlators. IEEE Security and Privacy, 1(1):46–56, 2003.

[61] D. Heckerman. A tutorial on learning with bayesian networks. Technical
Report MSR-TR-95-06, Microsoft Research, March 1996.

[62] Guy G. Helmer, Johnny S. Wong, Vasant Honavar, Les Miller, and Yanxin
Wang. Lightweight agents for intrusion detection. Journal of Systems and
Software, 67(2):109–122, 2003.

[63] Internet Systems Concortium Inc. Internet domain survey, 2005.
http//www.isc.org/index.pl?/ops/ds/ Acc. September 2005.

[64] Tripwire Inc. Tripwire, 2005. http://www.tripwire.com/ Acc. Feb. 2005.

[65] Pew Internet and American Life. Online banking 2005 a pew internet
project data memo, 2004. http//www.pewinternet.org/ Acc. Feb. 2005.

[66] Intrusion detection exchange format working group(idwg), 2005.
http://www.ietf.org/html.charters/idwg-charter.html Acc. March 2005.

[67] Issrl : Intelligent security systems research laboratory.
http://issrl.cs.memphis.edu/, Acc. November 2005.

[68] Jade. http://sharon.cselt.it/projects/jade/, Acc. August 2005.

[69] JiaweiHan and Micheline Kamber. Data Mining - Concepts and Tech-
niques. Morgan Kaufmann, 2001.

[70] K. Julisch. Clustering intrusion detection alarms to support root cause
analysis. ACM Transactions on Information and Systems Security,
6(4):443–471, 2003.

[71] George Karypis, Eui-Hong Han, and Vipin Kumar. Chameleon: Hierar-
chical clustering using dynamic modeling. IEEE Computer, 32(8):68–75,
1999.

[72] Teuvo Kohonen. The self-organizing map. Neurocomputing, 21(1-3):1–6,
1998.

142 BIBLIOGRAPHY

[73] R. Krishnapuram, A. Joshi, O. Nasraoui, and L. Yi. Low-complexity fuzzy
relational clustering algorithms for web mining. IEEE transactions on fuzzy
systems, 9:595–607, 2001.

[74] Ulf Larson, Emilie Lundin Barse, and Erland Jonsson. Metal - a tool for
extracting attack manifestations. In Detection of Intrusions and Malware,
and Vulnerability Assessment (DIMVA’05), Proceedings, volume 3548 of
Lecture Notes in Computer Science, pages 85–102. Springer, 2005.

[75] Richard Lippmann, Joshua W. Haines, David J. Fried, Jonathan Korba, and
Kumar Das. The 1999 darpa off-line intrusion detection evaluation. Com-
puter Networks, 34(4):579–595, 2000.

[76] Richard Lippmann, Seth E. Webster, and Douglas Stetson. The effect of
identifying vulnerabilities and patching software on the utility of network
intrusion detection. In Recent Advances in Intrusion Detection (RAID’02),
Proceedings, volume 2516 of Lecture Notes in Computer Science, pages
307–326. Springer, 2002.

[77] Emilie Lundin and Erland Jonsson. Anomaly-based intrusion detection:
privacy concerns and other problems. Computer Networks, 34(4):623–640,
2000.

[78] Matthew V. Mahoney and Philip K. Chan. An analysis of the 1999
darpa/lincoln laboratory evaluation data for network anomaly detection.
In Recent Advances in Intrusion Detection (RAID’03), Proceedings, vol-
ume 2820 of Lecture Notes in Computer Science, pages 220–237. Springer,
2003.

[79] Zakia Marrakchi, Ludovic Mé, Bernard Vivinis, and Benjamin Morin.
Flexible intrusion detection using variable-length behavior modeling in dis-
tributed environment: Application to corba objects. In Recent Advances
in Intrusion Detection (RAID’00), Proceedings, volume 1907 of Lecture
Notes in Computer Science, pages 130–144. Springer, 2000.

[80] John McHugh. Testing intrusion detection systems: a critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed by lin-
coln laboratory. ACM Transactions on Information and System Security,
3(4):262–294, 2000.

BIBLIOGRAPHY 143

[81] Peter Mell, Donald G. Marks, and Mark McLarnon. A denial-of-service
resistant intrusion detection architecture. Computer Networks, 34(4):641–
658, 2000.

[82] Tom M. Mitchell. Machine Learning. McGraw-Hill, 1997.

[83] Srinivas Mukkamala, Guadalupe Janoski, and Andrew Sung. Intrusion de-
tection using neural networks and support vector machines. In Proceedings
of the 2002 International Joint Conference on Neural Networks (IJCNN
’02), pages 1702–1707. IEEE, 2002.

[84] J.C. Munson and S. Wimer. Watcher the missing piece of the security
puzzle. In Proceedings of the 17th Annual Computer Security Applications
Conference (ACSAC’01), pages 230–239. IEEE Computer Society, 2001.

[85] Nessus, 2005. http://www.nessus.org/ Acc. December 2005.

[86] Nmap, 2005. http://www.insecure.org/nmap/ Acc. December 2005.

[87] Sang Hyun Oh and Won Suk Lee. An anomaly intrusion detection method
by clustering normal user behavior. Computers & Security, 22(7):596–612,
2003.

[88] Mizuki Oka, Yoshihiro Oyama, Hirotake Abe, and Kazuhiko Kato. Anom-
aly detection using layered networks based on eigen co-occurrence matrix.
In Recent Advances in Intrusion Detection (RAID’04), Proceedings, vol-
ume 3224 of Lecture Notes in Computer Science, pages 223–237. Springer,
2004.

[89] The perl directory, 2005. http://www.perl.org/ , Acc. December 2005.

[90] Leonid Portnoy, Eleazar Eskin, and Salvatore Stolfo. Intrusion detection
with unlabeled data using clustering. In ACM Workshop on Data Mining
Applied to Security (DMSA-2001). ACM, 2001.

[91] K. Poulsen. Slammer worm crashed ohio nuke plant network, August 2003.
SecurityFocus News: http://www.securityfocus.com/news/6767, Acc. Au-
gust 2005.

[92] Thomas H. Ptacek and Timothy N. Newsham. Insertion, evasion and denial
of service: Eluding network intrusion detection. Technical Report T2R-
0Y6, Secure networks Inc., 1998.

144 BIBLIOGRAPHY

[93] Lawrence R. Rabiner. A tutorial on hidden markov models and selected
applications in speech recognition. Proceedings of the IEEE, 77(2):257 –
286, 1989.

[94] Manikantan Ramadas, Shawn Ostermann, and Brett C. Tjaden. Detecting
anomalous network traffic with self-organizing maps. In Recent Advances
in Intrusion Detection (RAID’03), Proceedings, volume 2820 of Lecture
Notes in Computer Science, pages 36–54. Springer, 2003.

[95] Stuart Russell and Peter Norvig. Artificial Intelligence A Modern Ap-
proach. Prentice-Hall, 1995.

[96] Safeguard. http://www.ist-safeguard.org/ Acc. May 2004.

[97] Final report on architecture. Deliverable D6, The Safeguard project, July
2003.

[98] Validation, test beds and results. Deliverable D9, The Safeguard project,
2004.

[99] Matthew G. Schultz, Eleazar Eskin, Erez Zadok, and Salvatore J. Stolfo.
Data mining methods for detection of new malicious executables. In IEEE
Symposium on Security and Privacy (S&P’01), Proceedings, pages 38–49.
IEEE, 2001.

[100] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and
S. Zhou. Specification-based anomaly detection: a new approach for de-
tecting network intrusions. In 9th ACM conference on computer and com-
munications security (CCS’02), Proceedings, pages 265–274. ACM Press,
2002.

[101] Karlton Sequeira and Mohammed Zaki. Admit anomaly-based data mining
for intrusions. In 8th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, Proceedings, pages 386–395. ACM Press,
2002.

[102] Hiren Shah, Jeffrey L Undercoffer, and Anupam Joshi. Fuzzy clustering for
intrusion detection. In Proceedings of the 12th IEEE International Confer-
ence on Fuzzy Systems (FUZZ ’03), pages 1274 – 1278. IEEE, 2003.

[103] Robert W. Shirey. Internet security glossary. RFC 2828, May 2000.
http://www.ietf.org/rfc/rfc2828.txt Acc. March 2005.

BIBLIOGRAPHY 145

[104] J. Sima. Introduction to neural networks. Technical Report V-755, ICS
CAS, Prague, 1998.

[105] Snort, 2005. http://www.snort.org/ Acc. September 2005.

[106] Eugene H. Spafford and Diego Zamboni. Intrusion detection using au-
tonomous agents. Computer Networks, 34(4):547–570, 2000.

[107] Hideki Tai and Kazuya Kosaka. The aglets project. Communications of the
ACM, 42(3):100–101, 1999.

[108] Tryllian. http://www.tryllian.com, Acc. August 2005.

[109] Jeffrey Undercoffer, Anupam Joshi, and John Pinkston. Modeling com-
puter attacks: An ontology for intrusion detection. In Recent Advances
in Intrusion Detection (RAID’03), Proceedings, volume 2820 of Lecture
Notes in Computer Science, pages 113–135. Springer, 2003.

[110] Irvine University of California. The uci kdd archive, 2003.
http//kdd.ics.uci.edu Acc. February 2004.

[111] Alfonso Valdes and Keith Skinner. Adaptive, model-based monitoring
for cyber attack detection. In Recent Advances in Intrusion Detection
(RAID’00), Proceedings, volume 1907 of Lecture Notes in Computer Sci-
ence, pages 80–92. Springer, 2000.

[112] H. S. Venter and Jan H. P. Eloff. A taxonomy for information security
technologies. Computers & Security, 22(4):299–307, 2003.

[113] Voyager, 2005. http://www.recursionsw.com/mobile_agents.htm , Acc. De-
cember 2005.

[114] David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion
detection systems. In 9th ACM conference on Computer and communi-
cations security (CCS’02), Proceedings, pages 255–264, New York, NY,
USA, 2002. ACM Press.

[115] Ke Wang and Salvatore J. Stolfo. Anomalous payload-based network in-
trusion detection. In Recent Advances in Intrusion Detection (RAID’04),
Proceedings, volume 3224 of Lecture Notes in Computer Science, pages
203–222. Springer, 2004.

146 BIBLIOGRAPHY

[116] Wei Wang, Jiong Yang, and Richard R. Muntz. Sting: A statistical informa-
tion grid approach to spatial data mining. In 23rd International Conference
on Very Large Data Bases (VLDB’97), Proceedings, pages 186–195. Mor-
gan Kaufmann, 1997.

[117] Paul D. Williams, Kevin P. Anchor, John L. Bebo, Gregg H. Gunsch, and
Gary B. Lamont. Cdis: Towards a computer immune system for detecting
network intrusions. In Recent Advances in Intrusion Detection (RAID’01),
Proceedings, volume 2212 of Lecture Notes in Computer Science, pages
117–133. Springer, 2001.

[118] Mark Wood and Michael Erlinger. Intrusion detection message ex-
change requirements. Internet-Draft: work in progress, October 2002.
http://www.ietf.org/html.charters/idwg-charter.html Acc. March 2005.

[119] Michael Wooldridge. An introduction to multi agent systems. John Wiley
& Sons, 2002.

[120] Yinglian Xie, Hyang-Ah Kim, David R. O’Hallaron, Michael K. Reiter,
and Hui Zhang. Seurat: A pointillist approach to anomaly detection. In
Recent Advances in Intrusion Detection (RAID’04), Proceedings, volume
3224 of Lecture Notes in Computer Science, pages 238–257. Springer,
2004.

[121] Stefano Zanero and Sergio M. Savaresi. Unsupervised learning techniques
for an intrusion detection system. In Proceedings of the 2004 ACM Sympo-
sium on Applied Computing (SAC´04), pages 412–419. ACM, 2004.

[122] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch an efficient
data clustering method for very large databases. In ACM SIGMOD Interna-
tional Conference on Management of Data (SIGMOD 1996), Proceedings,
volume 25 of SIGMOD Record, pages 103–114. ACM, 1996.

LINKÖPINGS UNIVERSITET

Rapporttyp
Report category

Licentiatavhandling

Examensarbete

C-uppsats

D-uppsats

Övrig rapport

Språk
Language

 Svenska/Swedish

 Engelska/English

Titel
Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks

Författare
Kalle Burbeck

Sammanfattning
Abstract

ISBN

ISRN

Serietitel och serienummer ISSN
Title of series, numbering

Linköping Studies in Science and Technology

Thesis No. 1231

Nyckelord
intrusion detection, anomaly detection, real-time, clustering, adaptation, IP networks

Datum
Date

URL för elektronisk version

X

X

2006-02-28

Avdelning, institution
Division, department

Institutionen för datavetenskap

Department of Computer
and Information Science

Critical networks require defence in depth incorporating many different security technologies including intrusion
detection. One important intrusion detection approach is called anomaly detection where normal (good) behaviour
of users of the protected system is modelled, often using machine learning or data mining techniques. During
detection new data is matched against the normality model, and deviations are marked as anomalies. Since no
knowledge of attacks is needed to train the normality model, anomaly detection may detect previously unknown
attacks.
 In this thesis we present ADWICE (Anomaly Detection With fast Incremental Clustering) and evaluate it in IP
networks. ADWICE has the following properties:
(i) Adaptation - Rather than making use of extensive periodic retraining sessions on stored off-line data to handle
changes, ADWICE is fully incremental making very flexible on-line training of the model possible without
destroying what is already learnt. When subsets of the model are not useful anymore, those clusters can be
forgotten.
(ii) Performance - ADWICE is linear in the number of input data thereby heavily reducing training time compared
to alternative clustering algorithms. Training time as well as detection time is further reduced by the use of an
integrated search-index.
(iii) Scalability - Rather than keeping all data in memory, only compact cluster summaries are used. The linear time
complexity also improves scalability of training.
 We have implemented ADWICE and integrated the algorithm in a software agent. The agent is a part of the
Safeguard agent architecture, developed to perform network monitoring, intrusion detection and correlation as well
as recovery. We have also applied ADWICE to publicly available network data to compare our approach to related
works with similar approaches. The evaluation resulted in a high detection rate at reasonable false positives rate.

91-85497-23-1

0280-7971

LiU-Tek-Lic-2006:12

No 17

No 28

No 29
No 48
No 52
No 60
No 71
No 72
No 73
No 74
No 104

No 108
No 111
No 113
No 118

No 126
No 127

No 139
No 140
No 146
No 150
No 165
No 166
No 174
No 177
No 181
No 184
No 187
No 189
No 196
No 197
No 203
No 212
No 230
No 237
No 250
No 253
No 260
No 283

No 298
No 318

No 319

No 326
No 328
No 333
No 335

No 348
No 352

No 371
No 378
No 380
No 381
No 383
No 386
No 398
Department of Computer and Information Science
Linköpings universitet

Linköping Studies in Science and Technology
Faculty of Arts and Sciences - Licentiate Theses

Vojin Plavsic: Interleaved Processing of Non-Numerical Data Stored on a Cyclic Memory. (Available at:
FOA, Box 1165, S-581 11 Linköping, Sweden. FOA Report B30062E)
Arne Jönsson, Mikael Patel: An Interactive Flowcharting Technique for Communicating and Realizing Al-
gorithms, 1984.
Johnny Eckerland: Retargeting of an Incremental Code Generator, 1984.
Henrik Nordin: On the Use of Typical Cases for Knowledge-Based Consultation and Teaching, 1985.
Zebo Peng: Steps Towards the Formalization of Designing VLSI Systems, 1985.
Johan Fagerström: Simulation and Evaluation of Architecture based on Asynchronous Processes, 1985.
Jalal Maleki: ICONStraint, A Dependency Directed Constraint Maintenance System, 1987.
Tony Larsson: On the Specification and Verification of VLSI Systems, 1986.
Ola Strömfors: A Structure Editor for Documents and Programs, 1986.
Christos Levcopoulos: New Results about the Approximation Behavior of the Greedy Triangulation, 1986.
Shamsul I. Chowdhury: Statistical Expert Systems - a Special Application Area for Knowledge-Based Com-
puter Methodology, 1987.
Rober Bilos: Incremental Scanning and Token-Based Editing, 1987.
Hans Block: SPORT-SORT Sorting Algorithms and Sport Tournaments, 1987.
Ralph Rönnquist: Network and Lattice Based Approaches to the Representation of Knowledge, 1987.
Mariam Kamkar, Nahid Shahmehri: Affect-Chaining in Program Flow Analysis Applied to Queries of Pro-
grams, 1987.
Dan Strömberg: Transfer and Distribution of Application Programs, 1987.
Kristian Sandahl: Case Studies in Knowledge Acquisition, Migration and User Acceptance of Expert Sys-
tems, 1987.
Christer Bäckström: Reasoning about Interdependent Actions, 1988.
Mats Wirén: On Control Strategies and Incrementality in Unification-Based Chart Parsing, 1988.
Johan Hultman: A Software System for Defining and Controlling Actions in a Mechanical System, 1988.
Tim Hansen: Diagnosing Faults using Knowledge about Malfunctioning Behavior, 1988.
Jonas Löwgren: Supporting Design and Management of Expert System User Interfaces, 1989.
Ola Petersson: On Adaptive Sorting in Sequential and Parallel Models, 1989.
Yngve Larsson: Dynamic Configuration in a Distributed Environment, 1989.
Peter Åberg: Design of a Multiple View Presentation and Interaction Manager, 1989.
Henrik Eriksson: A Study in Domain-Oriented Tool Support for Knowledge Acquisition, 1989.
Ivan Rankin: The Deep Generation of Text in Expert Critiquing Systems, 1989.
Simin Nadjm-Tehrani: Contributions to the Declarative Approach to Debugging Prolog Programs, 1989.
Magnus Merkel: Temporal Information in Natural Language, 1989.
Ulf Nilsson: A Systematic Approach to Abstract Interpretation of Logic Programs, 1989.
Staffan Bonnier: Horn Clause Logic with External Procedures: Towards a Theoretical Framework, 1989.
Christer Hansson: A Prototype System for Logical Reasoning about Time and Action, 1990.
Björn Fjellborg: An Approach to Extraction of Pipeline Structures for VLSI High-Level Synthesis, 1990.
Patrick Doherty: A Three-Valued Approach to Non-Monotonic Reasoning, 1990.
Tomas Sokolnicki: Coaching Partial Plans: An Approach to Knowledge-Based Tutoring, 1990.
Lars Strömberg: Postmortem Debugging of Distributed Systems, 1990.
Torbjörn Näslund: SLDFA-Resolution - Computing Answers for Negative Queries, 1990.
Peter D. Holmes: Using Connectivity Graphs to Support Map-Related Reasoning, 1991.
Olof Johansson: Improving Implementation of Graphical User Interfaces for Object-Oriented Knowledge-
Bases, 1991.
Rolf G Larsson: Aktivitetsbaserad kalkylering i ett nytt ekonomisystem, 1991.
Lena Srömbäck: Studies in Extended Unification-Based Formalism for Linguistic Description: An Algo-
rithm for Feature Structures with Disjunction and a Proposal for Flexible Systems, 1992.
Mikael Pettersson: DML-A Language and System for the Generation of Efficient Compilers from Denota-
tional Specification, 1992.
Andreas Kågedal: Logic Programming with External Procedures: an Implementation, 1992.
Patrick Lambrix: Aspects of Version Management of Composite Objects, 1992.
Xinli Gu: Testability Analysis and Improvement in High-Level Synthesis Systems, 1992.
Torbjörn Näslund: On the Role of Evaluations in Iterative Development of Managerial Support Sytems,
1992.
Ulf Cederling: Industrial Software Development - a Case Study, 1992.
Magnus Morin: Predictable Cyclic Computations in Autonomous Systems: A Computational Model and Im-
plementation, 1992.
Mehran Noghabai: Evaluation of Strategic Investments in Information Technology, 1993.
Mats Larsson: A Transformational Approach to Formal Digital System Design, 1993.
Johan Ringström: Compiler Generation for Parallel Languages from Denotational Specifications, 1993.
Michael Jansson: Propagation of Change in an Intelligent Information System, 1993.
Jonni Harrius: An Architecture and a Knowledge Representation Model for Expert Critiquing Systems, 1993.
Per Österling: Symbolic Modelling of the Dynamic Environments of Autonomous Agents, 1993.

Johan Boye: Dependency-based Groudness Analysis of Functional Logic Programs, 1993.

No 402
No 406
No 414

No 417
No 436
No 437
No 440
FHS 3/94

FHS 4/94

No 441
No 446
No 450
No 451
No 452

No 455

FHS 5/94

No 462
No 463
No 464
No 469
No 473
No 475
No 476
No 478
FHS 7/95
No 482

No 488

No 489
No 497
No 498

No 503
FHS 8/95

FHS 9/95

No 513
No 517
No 518
No 522
No 538
No 545

No 546
FiF-a 1/9

No 549
No 550

No 557
No 558
No 561
No 563
No 567
No 575
No 576
No 587
No 589

No 591
No 595
No 597
Lars Degerstedt: Tabulated Resolution for Well Founded Semantics, 1993.
Anna Moberg: Satellitkontor - en studie av kommunikationsmönster vid arbete på distans, 1993.
Peter Carlsson: Separation av företagsledning och finansiering - fallstudier av företagsledarutköp ur ett agent-
teoretiskt perspektiv, 1994.
Camilla Sjöström: Revision och lagreglering - ett historiskt perspektiv, 1994.
Cecilia Sjöberg: Voices in Design: Argumentation in Participatory Development, 1994.
Lars Viklund: Contributions to a High-level Programming Environment for a Scientific Computing, 1994.
Peter Loborg: Error Recovery Support in Manufacturing Control Systems, 1994.
Owen Eriksson: Informationssystem med verksamhetskvalitet - utvärdering baserat på ett verksamhetsinrik-
tat och samskapande perspektiv, 1994.
Karin Pettersson: Informationssystemstrukturering, ansvarsfördelning och användarinflytande - En kompa-
rativ studie med utgångspunkt i två informationssystemstrategier, 1994.
Lars Poignant: Informationsteknologi och företagsetablering - Effekter på produktivitet och region, 1994.
Gustav Fahl: Object Views of Relational Data in Multidatabase Systems, 1994.
Henrik Nilsson: A Declarative Approach to Debugging for Lazy Functional Languages, 1994.
Jonas Lind: Creditor - Firm Relations: an Interdisciplinary Analysis, 1994.
Martin Sköld: Active Rules based on Object Relational Queries - Efficient Change Monitoring Techniques,
1994.
Pär Carlshamre: A Collaborative Approach to Usability Engineering: Technical Communicators and System
Developers in Usability-Oriented Systems Development, 1994.
Stefan Cronholm: Varför CASE-verktyg i systemutveckling? - En motiv- och konsekvensstudie avseende ar-
betssätt och arbetsformer, 1994.
Mikael Lindvall: A Study of Traceability in Object-Oriented Systems Development, 1994.
Fredrik Nilsson: Strategi och ekonomisk styrning - En studie av Sandviks förvärv av Bahco Verktyg, 1994.
Hans Olsén: Collage Induction: Proving Properties of Logic Programs by Program Synthesis, 1994.
Lars Karlsson: Specification and Synthesis of Plans Using the Features and Fluents Framework, 1995.
Ulf Söderman: On Conceptual Modelling of Mode Switching Systems, 1995.
Choong-ho Yi: Reasoning about Concurrent Actions in the Trajectory Semantics, 1995.
Bo Lagerström: Successiv resultatavräkning av pågående arbeten. - Fallstudier i tre byggföretag, 1995.
Peter Jonsson: Complexity of State-Variable Planning under Structural Restrictions, 1995.
Anders Avdic: Arbetsintegrerad systemutveckling med kalkylkprogram, 1995.
Eva L Ragnemalm: Towards Student Modelling through Collaborative Dialogue with a Learning Compani-
on, 1995.
Eva Toller: Contributions to Parallel Multiparadigm Languages: Combining Object-Oriented and Rule-Based
Programming, 1995.
Erik Stoy: A Petri Net Based Unified Representation for Hardware/Software Co-Design, 1995.
Johan Herber: Environment Support for Building Structured Mathematical Models, 1995.
Stefan Svenberg: Structure-Driven Derivation of Inter-Lingual Functor-Argument Trees for Multi-Lingual
Generation, 1995.
Hee-Cheol Kim: Prediction and Postdiction under Uncertainty, 1995.
Dan Fristedt: Metoder i användning - mot förbättring av systemutveckling genom situationell metodkunskap
och metodanalys, 1995.
Malin Bergvall: Systemförvaltning i praktiken - en kvalitativ studie avseende centrala begrepp, aktiviteter och
ansvarsroller, 1995.
Joachim Karlsson: Towards a Strategy for Software Requirements Selection, 1995.
Jakob Axelsson: Schedulability-Driven Partitioning of Heterogeneous Real-Time Systems, 1995.
Göran Forslund: Toward Cooperative Advice-Giving Systems: The Expert Systems Experience, 1995.
Jörgen Andersson: Bilder av småföretagares ekonomistyrning, 1995.
Staffan Flodin: Efficient Management of Object-Oriented Queries with Late Binding, 1996.
Vadim Engelson: An Approach to Automatic Construction of Graphical User Interfaces for Applications in
Scientific Computing, 1996.
Magnus Werner : Multidatabase Integration using Polymorphic Queries and Views, 1996.

6 Mikael Lind: Affärsprocessinriktad förändringsanalys - utveckling och tillämpning av synsätt och metod,
1996.
Jonas Hallberg: High-Level Synthesis under Local Timing Constraints, 1996.
Kristina Larsen: Förutsättningar och begränsningar för arbete på distans - erfarenheter från fyra svenska före-
tag. 1996.
Mikael Johansson: Quality Functions for Requirements Engineering Methods, 1996.
Patrik Nordling: The Simulation of Rolling Bearing Dynamics on Parallel Computers, 1996.
Anders Ekman: Exploration of Polygonal Environments, 1996.
Niclas Andersson: Compilation of Mathematical Models to Parallel Code, 1996.
Johan Jenvald: Simulation and Data Collection in Battle Training, 1996.
Niclas Ohlsson: Software Quality Engineering by Early Identification of Fault-Prone Modules, 1996.
Mikael Ericsson: Commenting Systems as Design Support—A Wizard-of-Oz Study, 1996.
Jörgen Lindström: Chefers användning av kommunikationsteknik, 1996.
Esa Falkenroth: Data Management in Control Applications - A Proposal Based on Active Database Systems,
1996.
Niclas Wahllöf: A Default Extension to Description Logics and its Applications, 1996.
Annika Larsson: Ekonomisk Styrning och Organisatorisk Passion - ett interaktivt perspektiv, 1997.

Ling Lin: A Value-based Indexing Technique for Time Sequences, 1997.

No 598
No 599
No 607

No 609
FiF-a 4
FiF-a 6

No 615
No 623
No 626
No 627
No 629
No 631
No 639
No 640
No 643
No 653
FiF-a 13

No 674

No 676
No 668

No 675

FiF-a 14

No 695
No 700
FiF-a 16

No 712

No 719
No 723
No 725
No 730

No 731
No 733
No 734

FiF-a 21
FiF-a 22
No 737
No 738
FiF-a 25

No 742
No 748
No 751

No 752
No 753
No 754

No 766
No 769
No 775
FiF-a 30
No 787

No 788

No 790
No 791
No 800
No 807
Rego Granlund: C3Fire - A Microworld Supporting Emergency Management Training, 1997.
Peter Ingels: A Robust Text Processing Technique Applied to Lexical Error Recovery, 1997.
Per-Arne Persson: Toward a Grounded Theory for Support of Command and Control in Military Coalitions,
1997.
Jonas S Karlsson: A Scalable Data Structure for a Parallel Data Server, 1997.
Carita Åbom: Videomötesteknik i olika affärssituationer - möjligheter och hinder, 1997.
Tommy Wedlund: Att skapa en företagsanpassad systemutvecklingsmodell - genom rekonstruktion, värde-
ring och vidareutveckling i T50-bolag inom ABB, 1997.
Silvia Coradeschi: A Decision-Mechanism for Reactive and Coordinated Agents, 1997.
Jan Ollinen: Det flexibla kontorets utveckling på Digital - Ett stöd för multiflex? 1997.
David Byers: Towards Estimating Software Testability Using Static Analysis, 1997.
Fredrik Eklund: Declarative Error Diagnosis of GAPLog Programs, 1997.
Gunilla Ivefors: Krigsspel coh Informationsteknik inför en oförutsägbar framtid, 1997.
Jens-Olof Lindh: Analysing Traffic Safety from a Case-Based Reasoning Perspective, 1997
Jukka Mäki-Turja:. Smalltalk - a suitable Real-Time Language, 1997.
Juha Takkinen: CAFE: Towards a Conceptual Model for Information Management in Electronic Mail, 1997.
Man Lin: Formal Analysis of Reactive Rule-based Programs, 1997.
Mats Gustafsson: Bringing Role-Based Access Control to Distributed Systems, 1997.
Boris Karlsson: Metodanalys för förståelse och utveckling av systemutvecklingsverksamhet. Analys och vär-
dering av systemutvecklingsmodeller och dess användning, 1997.
Marcus Bjäreland: Two Aspects of Automating Logics of Action and Change - Regression and Tractability,
1998.
Jan Håkegård: Hiera rchical Test Architecture and Board-Level Test Controller Synthesis, 1998.
Per-Ove Zetterlund: Normering av svensk redovisning - En studie av tillkomsten av Redovisningsrådets re-
kommendation om koncernredovisning (RR01:91), 1998.
Jimmy Tjäder: Projektledaren & planen - en studie av projektledning i tre installations- och systemutveck-
lingsprojekt, 1998.
Ulf Melin: Informationssystem vid ökad affärs- och processorientering - egenskaper, strategier och utveck-
ling, 1998.
Tim Heyer: COMPASS: Introduction of Formal Methods in Code Development and Inspection, 1998.
Patrik Hägglund: Programming Languages for Computer Algebra, 1998.
Marie-Therese Christiansson: Inter-organistorisk verksamhetsutveckling - metoder som stöd vid utveckling
av partnerskap och informationssystem, 1998.
Christina Wennestam: Information om immateriella resurser. Investeringar i forskning och utveckling samt
i personal inom skogsindustrin, 1998.
Joakim Gustafsson: Extending Temporal Action Logic for Ramification and Concurrency, 1998.
Henrik André-Jönsson: Indexing time-series data using text indexing methods, 1999.
Erik Larsson: High-Level Testability Analysis and Enhancement Techniques, 1998.
Carl-Johan Westin: Informationsförsörjning: en fråga om ansvar - aktiviteter och uppdrag i fem stora svens-
ka organisationers operativa informationsförsörjning, 1998.
Åse Jansson: Miljöhänsyn - en del i företags styrning, 1998.
Thomas Padron-McCarthy: Performance-Polymorphic Declarative Queries, 1998.
Anders Bäckström: Värdeskapande kreditgivning - Kreditriskhantering ur ett agentteoretiskt perspektiv,
1998.
Ulf Seigerroth: Integration av förändringsmetoder - en modell för välgrundad metodintegration, 1999.
Fredrik Öberg: Object-Oriented Frameworks - A New Strategy for Case Tool Development, 1998.
Jonas Mellin: Predictable Event Monitoring, 1998.
Joakim Eriksson: Specifying and Managing Rules in an Active Real-Time Database System, 1998.
Bengt E W Andersson: Samverkande informationssystem mellan aktörer i offentliga åtaganden - En teori om
aktörsarenor i samverkan om utbyte av information, 1998.
Pawel Pietrzak: Static Incorrectness Diagnosis of CLP (FD), 1999.
Tobias Ritzau: Real-Time Reference Counting in RT-Java, 1999.
Anders Ferntoft: Elektronisk affärskommunikation - kontaktkostnader och kontaktprocesser mellan kunder
och leverantörer på producentmarknader,1999.
Jo Skåmedal: Arbete på distans och arbetsformens påverkan på resor och resmönster, 1999.
Johan Alvehus: Mötets metaforer. En studie av berättelser om möten, 1999.
Magnus Lindahl: Bankens villkor i låneavtal vid kreditgivning till högt belånade företagsförvärv: En studie
ur ett agentteoretiskt perspektiv, 2000.
Martin V. Howard: Designing dynamic visualizations of temporal data, 1999.
Jesper Andersson: Towards Reactive Software Architectures, 1999.
Anders Henriksson: Unique kernel diagnosis, 1999.
Pär J. Ågerfalk: Pragmatization of Information Systems - A Theoretical and Methodological Outline, 1999.
Charlotte Björkegren: Learning for the next project - Bearers and barriers in knowledge transfer within an
organisation, 1999.
Håkan Nilsson: Informationsteknik som drivkraft i granskningsprocessen - En studie av fyra revisionsbyråer,
2000.
Erik Berglund: Use-Oriented Documentation in Software Development, 1999.
Klas Gäre: Verksamhetsförändringar i samband med IS-införande, 1999.
Anders Subotic: Software Quality Inspection, 1999.

Svein Bergum: Managerial communication in telework, 2000.

No 809
FiF-a 32

No 808
No 820
No 823
No 832
FiF-a 34

No 842
No 844
FiF-a 37
FiF-a 40
FiF-a 41
No. 854
No 863
No 881
No 882

No 890

Fif-a 47
No 894
No 906
No 917
No 916

Fif-a-49

Fif-a-51

No 919

No 915
No 931

No 933

No 938
No 942
No 956

FiF-a 58
No 964
No 973
No 958

Fif-a 61
No 985

No 982
No 989
No 990

No 991
No 999
No 1000
No 1001

No 988
FiF-a 62

No 1003
No 1005

No 1008
No 1010
No 1015
No 1018
No 1022

FiF-a 65

No 1024
Flavius Gruian: Energy-Aware Design of Digital Systems, 2000.
Karin Hedström: Kunskapsanvändning och kunskapsutveckling hos verksamhetskonsulter - Erfarenheter
från ett FOU-samarbete, 2000.
Linda Askenäs: Affärssystemet - En studie om teknikens aktiva och passiva roll i en organisation, 2000.
Jean Paul Meynard: Control of industrial robots through high-level task programming, 2000.
Lars Hult: Publika Gränsytor - ett designexempel, 2000.
Paul Pop: Scheduling and Communication Synthesis for Distributed Real-Time Systems, 2000.
Göran Hultgren: Nätverksinriktad Förändringsanalys - perspektiv och metoder som stöd för förståelse och
utveckling av affärsrelationer och informationssystem, 2000.
Magnus Kald: The role of management control systems in strategic business units, 2000.
Mikael Cäker: Vad kostar kunden? Modeller för intern redovisning, 2000.
Ewa Braf: Organisationers kunskapsverksamheter - en kritisk studie av ”knowledge management”, 2000.
Henrik Lindberg: Webbaserade affärsprocesser - Möjligheter och begränsningar, 2000.
Benneth Christiansson: Att komponentbasera informationssystem - Vad säger teori och praktik?, 2000.
Ola Pettersson: Deliberation in a Mobile Robot, 2000.
Dan Lawesson: Towards Behavioral Model Fault Isolation for Object Oriented Control Systems, 2000.
Johan Moe: Execution Tracing of Large Distributed Systems, 2001.
Yuxiao Zhao: XML-based Frameworks for Internet Commerce and an Implementation of B2B
e-procurement, 2001.
Annika Flycht-Eriksson: Domain Knowledge Management inInformation-providing Dialogue systems,
2001.
Per-Arne Segerkvist: Webbaserade imaginära organisationers samverkansformer, 2001.
Stefan Svarén: Styrning av investeringar i divisionaliserade företag - Ett koncernperspektiv, 2001.
Lin Han: Secure and Scalable E-Service Software Delivery, 2001.
Emma Hansson: Optionsprogram för anställda - en studie av svenska börsföretag, 2001.
Susanne Odar: IT som stöd för strategiska beslut, en studie av datorimplementerade modeller av verksamhet
som stöd för beslut om anskaffning av JAS 1982, 2002.
Stefan Holgersson: IT-system och filtrering av verksamhetskunskap - kvalitetsproblem vid analyser och be-
slutsfattande som bygger på uppgifter hämtade från polisens IT-system, 2001.
Per Oscarsson:Informationssäkerhet i verksamheter - begrepp och modeller som stöd för förståelse av infor-
mationssäkerhet och dess hantering, 2001.
Luis Alejandro Cortes: A Petri Net Based Modeling and Verification Technique for Real-Time Embedded
Systems, 2001.
Niklas Sandell: Redovisning i skuggan av en bankkris - Värdering av fastigheter. 2001.
Fredrik Elg: Ett dynamiskt perspektiv på individuella skillnader av heuristisk kompetens, intelligens, mentala
modeller, mål och konfidens i kontroll av mikrovärlden Moro, 2002.
Peter Aronsson: Automatic Parallelization of Simulation Code from Equation Based Simulation Languages,
2002.
Bourhane Kadmiry: Fuzzy Control of Unmanned Helicopter, 2002.
Patrik Haslum: Prediction as a Knowledge Representation Problem: A Case Study in Model Design, 2002.
Robert Sevenius: On the instruments of governance - A law & economics study of capital instruments in li-
mited liability companies, 2002.
Johan Petersson: Lokala elektroniska marknadsplatser - informationssystem för platsbundna affärer, 2002.
Peter Bunus: Debugging and Structural Analysis of Declarative Equation-Based Languages, 2002.
Gert Jervan: High-Level Test Generation and Built-In Self-Test Techniques for Digital Systems, 2002.
Fredrika Berglund: Management Control and Strategy - a Case Study of Pharmaceutical Drug Development,
2002.
Fredrik Karlsson: Meta-Method for Method Configuration - A Rational Unified Process Case, 2002.
Sorin Manolache: Schedulability Analysis of Real-Time Systems with Stochastic Task Execution Times,
2002.
Diana Szentiványi: Performance and Availability Trade-offs in Fault-Tolerant Middleware, 2002.
Iakov Nakhimovski: Modeling and Simulation of Contacting Flexible Bodies in Multibody Systems, 2002.
Levon Saldamli: PDEModelica - Towards a High-Level Language for Modeling with Partial Differential
Equations, 2002.
Almut Herzog: Secure Execution Environment for Java Electronic Services, 2002.
Jon Edvardsson: Contributions to Program- and Specification-based Test Data Generation, 2002
Anders Arpteg: Adaptive Semi-structured Information Extraction, 2002.
Andrzej Bednarski: A Dynamic Programming Approach to Optimal Retargetable Code Generation for
Irregular Architectures, 2002.
Mattias Arvola: Good to use! : Use quality of multi-user applications in the home, 2003.
Lennart Ljung: Utveckling av en projektivitetsmodell - om organisationers förmåga att tillämpa
projektarbetsformen, 2003.
Pernilla Qvarfordt: User experience of spoken feedback in multimodal interaction, 2003.
Alexander Siemers: Visualization of Dynamic Multibody Simulation With Special Reference to Contacts,
2003.
Jens Gustavsson: Towards Unanticipated Runtime Software Evolution, 2003.
Calin Curescu: Adaptive QoS-aware Resource Allocation for Wireless Networks, 2003.
Anna Andersson: Management Information Systems in Process-oriented Healthcare Organisations, 2003.
Björn Johansson: Feedforward Control in Dynamic Situations, 2003.
Traian Pop: Scheduling and Optimisation of Heterogeneous Time/Event-Triggered Distributed Embedded
Systems, 2003.
Britt-Marie Johansson: Kundkommunikation på distans - en studie om kommunikationsmediets betydelse i
affärstransaktioner, 2003.

Aleksandra Tesanovic: Towards Aspectual Component-Based Real-Time System Development, 2003.

No 1034
No 1033

Fif-a 69
No 1049
No 1052
No 1054
Fif-a 71
No 1055
No 1058
FiF-a 73

No 1079
No 1084

FiF-a 74
No 1094
No 1095
No 1099
No 1110
No 1116

FiF-a 77

No 1126
No 1127
No 1132

No 1130
No 1138
No 1149
No 1156
No 1162
No 1165

FiF-a 84
No 1166

No 1167

No 1168
FiF-a 85

No 1171
FiF-a 86

No 1172
No 1183
No 1184

No 1185

No 1190
No 1191

No 1192
No 1194
No 1204

No 1206
No 1207
No 1209

No 1225
No 1228
No 1229
No 1231
Arja Vainio-Larsson: Designing for Use in a Future Context - Five Case Studies in Retrospect, 2003.
Peter Nilsson: Svenska bankers redovisningsval vid reservering för befarade kreditförluster - En studie vid
införandet av nya redovisningsregler, 2003.
Fredrik Ericsson: Information Technology for Learning and Acquiring of Work Knowledge, 2003.
Marcus Comstedt: Towards Fine-Grained Binary Composition through Link Time Weaving, 2003.
Åsa Hedenskog: Increasing the Automation of Radio Network Control, 2003.
Claudiu Duma: Security and Efficiency Tradeoffs in Multicast Group Key Management, 2003.
Emma Eliasson: Effektanalys av IT-systems handlingsutrymme, 2003.
Carl Cederberg: Experiments in Indirect Fault Injection with Open Source and Industrial Software, 2003.
Daniel Karlsson: Towards Formal Verification in a Component-based Reuse Methodology, 2003.
Anders Hjalmarsson: Att etablera och vidmakthålla förbättringsverksamhet - behovet av koordination och
interaktion vid förändring av systemutvecklingsverksamheter, 2004.
Pontus Johansson: Design and Development of Recommender Dialogue Systems, 2004.
Charlotte Stoltz: Calling for Call Centres - A Study of Call Centre Locations in a Swedish Rural Region,
2004.
Björn Johansson: Deciding on Using Application Service Provision in SMEs, 2004.
Genevieve Gorrell: Language Modelling and Error Handling in Spoken Dialogue Systems, 2004.
Ulf Johansson: Rule Extraction - the Key to Accurate and Comprehensible Data Mining Models, 2004.
Sonia Sangari: Computational Models of Some Communicative Head Movements, 2004.
Hans Nässla: Intra-Family Information Flow and Prospects for Communication Systems, 2004.
Henrik Sällberg: On the value of customer loyalty programs - A study of point programs and switching costs,
2004.
Ulf Larsson: Designarbete i dialog - karaktärisering av interaktionen mellan användare och utvecklare i en
systemutvecklingsprocess, 2004.
Andreas Borg: Contribution to Management and Validation of Non-Functional Requirements, 2004.
Per-Ola Kristensson: Large Vocabulary Shorthand Writing on Stylus Keyboard, 2004.
Pär-Anders Albinsson: Interacting with Command and Control Systems: Tools for Operators and Designers,
2004.
Ioan Chisalita: Safety-Oriented Communication in Mobile Networks for Vehicles, 2004.
Thomas Gustafsson: Maintaining Data Consistency im Embedded Databases for Vehicular Systems, 2004.
Vaida Jakoniené: A Study in Integrating Multiple Biological Data Sources, 2005.
Abdil Rashid Mohamed: High-Level Techniques for Built-In Self-Test Resources Optimization, 2005.
Adrian Pop: Contributions to Meta-Modeling Tools and Methods, 2005.
Fidel Vascós Palacios: On the information exchange between physicians and social insurance officers in the
sick leave process: an Activity Theoretical perspective, 2005.
Jenny Lagsten: Verksamhetsutvecklande utvärdering i informationssystemprojekt, 2005.
Emma Larsdotter Nilsson: Modeling, Simulation, and Visualization of Metabolic Pathways Using Modelica,
2005.
Christina Keller: Virtual Learning Environments in higher education. A study of students’ acceptance of edu-
cational technology, 2005.
Cécile Åberg: Integration of organizational workflows and the Semantic Web, 2005.
Anders Forsman: Standardisering som grund för informationssamverkan och IT-tjänster - En fallstudie
baserad på trafikinformationstjänsten RDS-TMC, 2005.
Yu-Hsing Huang: A systemic traffic accident model, 2005.
Jan Olausson: Att modellera uppdrag - grunder för förståelse av processinriktade informationssystem i trans-
aktionsintensiva verksamheter, 2005.
Petter Ahlström: Affärsstrategier för seniorbostadsmarknaden, 2005.
Mathias Cöster: Beyond IT and Productivity - How Digitization Transformed the Graphic Industry, 2005.
Åsa Horzella: Beyond IT and Productivity - Effects of Digitized Information Flows in Grocery Distribution,
2005.
Maria Kollberg: Beyond IT and Productivity - Effects of Digitized Information Flows in the Logging
Industry, 2005.
David Dinka: Role and Identity - Experience of technology in professional settings, 2005.
Andreas Hansson: Increasing the Storage Capacity of Recursive Auto-associative Memory by Segmenting
Data, 2005.
Nicklas Bergfeldt: Towards Detached Communication for Robot Cooperation, 2005.
Dennis Maciuszek: Towards Dependable Virtual Companions for Later Life, 2005.
Beatrice Alenljung: Decision-making in the Requirements Engineering Process: A Human-centered
Approach, 2005
Anders Larsson: System-on-Chip Test Scheduling and Test Infrastructure Design, 2005.
John Wilander: Policy and Implementation Assurance for Software Security, 2005.
Andreas Käll: Översättningar av en managementmodell - En studie av införandet av Balanced Scorecard i ett
landsting, 2005.
He Tan: Aligning and Merging Biomedical Ontologies, 2006.
Artur Wilk: Descriptive Types for XML Query Language Xcerpt, 2006.
Per Olof Pettersson: Sampling-based Path Planning for an Autonomous Helicopter, 2006.
Kalle Burbeck: Adaptive Real-time Anomaly Detection for Safeguarding Critical Networks, 2006.

	001_003_lic-tfk-titelsid.en_kalbu.pdf
	005_lic-tfk-abstract.en_kalbu.pdf
	163_lic-tfk-bibblad.en_kalbu.pdf
	165_Lic-sammanst.pdf

