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1 Introduction

Technological development in micro-electronics have made digital control an
indispensable component in all engineering systems. The rapid pace of devel-
opment and the demands on modern systems in terms of novel functions and
shorter development cycles has led to many challenges in system design and veri-
�cation. The down side of improved functionality is the unmanaged complexity:
never have we had systems built with so many di�erent disciplines simultane-
ously at work - each with their own collection of conceptual and concrete tools.

To manage complexity in this setting it is essential to recognise and accom-
modate the diversities as early as they arise. For most application domains
this results in a multi-paradigm development process, and is most visible in the
design modelling stage. In this paper we discuss how mathematical modelling
and analysis of system properties is a�ected by having several disciplines at
work. We show that soundness in design models can be obtained both through
static analysis based on properties de�ned for a meta-model, and through for-
mal veri�cation of an instance of a model { the latter being de�ned in terms of
conformance to a requirements speci�cation.

2 What is meant by multi-paradigm?

A major dividing line inevitably exists between the digital system and the non-
digital environment in which it is embedded in. During the nineties a large
volume of work has arisen from attempts to bridge the gap between tradi-
tional engineering models in mechanics, hydraulics, and electrical circuits on
the one hand, and digital systems on the other. The �rst group are uni�ed
at the mathematical modelling phase in the sense that continuous di�erential
and algebraic equations (DAE) provides them with a common mathematical
fundament. In contrast, models for digital hardware and software span a large
spectrum based on logic, automata, algebra and graph theory in the area of the-
oretical computer science, roughly classi�ed as discrete-systems modelling. The
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work in the nineties has led to an instance of multi-paradigm modelling called
hybrid systems, managing the complexities arising from the discrete-continuous
dichotomy.

There have also been attempts to unify traditional engineering modelling
prior to the mathematical modelling phase using DAEs. In this paper we are
not concerned with how the continuous mathematical models have been derived.
The interested reader is referred to the literature on energy-based physical mod-
elling with the language of bond graphs, for example [21] and references therein.
Also, considering simulations of traditional engineering systems, there has been
a marked interest in common model management environments based on object-
orientation [12, 11].

In this paper we focus more on digital hardware and software. These in
turn contribute to a number of additional dichotomies at the mathematical
formalisation stage. The notion of digital (for both hardware-like software and
electronics), is used here to emphasise the fact that a design can be realised in
terms of either software or hardware at a later design stage, after passing initial
tests at a high level design stage.

Since digital systems are easily extended and made more complex, the need
for concepts of hierarchy and information sharing between subsystems arises. To
mathematically characterise these, a global notion of computation step is con-
sidered. Thus, the dichotomy between synchronous and asynchronous models
appears. Also, to model the behaviour of a digital system in response to changes
in inputs (as a so-called reactive system) can be described in an event-triggered

or time-triggered fashion respectively.
In addition, the application domains bring a rich ora of modelling prefer-

ences to digital systems. A major such division is between the control-oriented
applications (where the complexity arises due to massive numbers of control lo-
cations in a computation) and data-oriented applications (where there is much
structure in the data on which a large number of operations can be performed in
few control locations). Many applications, of course, combine these two types of
computations leading to the need for a combination of state-based and data-ow



modelling.
Now, no matter how the individual subsystems are modelled and analysed

on their own, eventually the composed system will be subject to analysis. One of
the main reasons for developing hybrid continuous-discrete models, for example,
is to ascertain that the closed loop model consisting of a digital system in a
physical environment exhibits desired behaviours only. Thus, a very natural
way to model an embedded system is by including elements of the continuous
state and the discrete state in the same model. Note the distinction between
discrete states and treating the notion of time in a discrete manner. Figure 2
clearly shows the four resulting types of models.

3 Early design modelling

Many embedded systems are used in safety-critical applications. Several others
are used in such volumes that discovering a design aw after the production stage
is considered as a major failure. Just in the same way that bridges and buildings
are never made without a mathematical model and calculations to ensure a
certain degree of con�dence before major investments are made, today's complex
computer-based systems bene�t from a thorough analysis of a mathematical
model prior to implementation. It has in fact been shown that many major
failures have their roots in misconceptions or omissions in the early design stages
of the system.

Formal methods are promoted in order to assist discovering errors at an early
design stage. These methods are however geared towards a particular modelling
language or a tool, suiting a particular style of implementation. Multi-paradigm
development of systems implies that there are isolated islands of captured knowl-
edge, no uniform analysis techniques (or tools) at system level, and a lot of inte-
gration testing to compensate for this. A major challenge is therefore to combine
existing analysis techniques from various paradigms and to devise a coherent
veri�cation methodology for multi-paradigm systems. In the rest of the paper
we describe how some of the above dichotomies can be reconciled in the same
system using appropriate meta-models. That is, how can systems composed of
continuous/discrete, synchronous/asynchronous, state-based/data-ow, event-
triggered/time-triggered components be methodically developed based on well-
de�ned underlying semantics? In particular, which aspects of the analysis ben-
e�t from the existing capabilities of each paradigm? We give examples of multi-
paradigm system veri�cation techniques, illustrating with an industrial example.

4 Merging dichotomies

4.1 State-based vs. data-ow

The family of formal languages known as synchronous languages have shown
that they are simple enough to appeal to the engineering community and ex-
pressive enough to model non-trivial applications in embedded control. Lustre



and Signal [14, 13] have a data-ow style (declarative) whereas Esterel and
Statecharts are considered as state-based (imperative) [15, 5]. Each lan-
guage comes with a bunch of analysis techniques and well-developed toolboxes.
One of the major bene�ts of Signal, Lustre and Esterel is the clearly docu-
mented formal semantics which acts as a description of a meta-model. The clock
calculus in Lustre and Signal and the constructive semantics of Esterel,
for example, can be used for static checking of desired properties of an instance
(an application model) based on formal semantics of the languages and de�ned
correctness criteria. Major such properties are determinism in a controller and
causal consistency at every computation (macro) step [6, 23]. The Statemate
tool based on Statecharts checks type-coherence of the variables in a model
and performs some simple consistency checks.

These tools are �nding their ways into modelling the digital parts of sev-
eral embedded applications, e.g. energy and power systems and digital signal
processing (Signal), electronic circuit design and aerospace (Esterel~), rail

transportation and aerospace (Lustre~). These tools also provide eÆcient au-
tomatic code generation. So, once the design is "sanity checked" at compilation
stage it can be subjected to further formal veri�cation and code optimisation,
eventually leading to automatically generated controller code (in C, Ada, or
design model in VHDL).

Statecharts has had its original popularity in the aerospace sector, but
it is gaining popularity for general embedded system design due to inclusion in
the UML family of languages [9]. The tool Rhapsody, though no longer in the
framework of synchronous languages, is a valuable tool for modelling object-
oriented distributed systems.

All of the above-mentioned tools, however, have so far been applied on an
individual basis in the respective applications. Considering the growing needs
of multi-paradigm modelling, two recent European projects have been explor-
ing the combination potentials of these tools - SACRES for combining Signal
and Statecharts, and SYRF for combination of Signal, Lustre and Es-

terel. The work in SACRES has resulted in relating synchrony with asyn-
chrony [4], and the conditions under which these paradigms can be combined.
The work in SYRF has resulted in cross-compilation tools for Lustre, Signal,
and Esterel (loose integration) [22, 17], an environment for multi-paradigm
modelling (tight integration) [1], and code distribution for digital systems [8].

4.2 Event-triggered vs. time-triggered

As mentioned above, each member of the synchronous family has been exten-
sively used for design of digital systems. A recent activity has been to combine
analysis of continuous systems (as modelled in Matlab Simulink) with the
meta-model veri�cation and eÆcient code generation capabilities of the Signal
environment. This is one approach in a series of attempts at the problem of
analysis of hybrid systems - an approach we resort to for the case where the
plant in itself has abrupt structural changes, and its modelling bene�ts from a
study of simulation runs. Alternatively, we use the simulation environment for



the study of behaviours in a closed loop system with a non-linear plant.
To this end, a co-simulation environment has been developed whereby auto-

matically generated C-processes from each tool can be run in a pseudo-parallel
fashion [26]. Thus, Signal being a powerful tool for development of hierarchical
controllers with complex structures is used for the discrete parts, while Mat-

lab capabilities for generating simulation models of a continuous plant are used
for that purpose. The development of the co-simulation environment followed
an analysis of the communication mechanism between the two subsystems. In
consequence, it was decided that a protocol based on event-triggering of each
(discrete) control component should be combined with the time-triggering of
the various plant sub-components during simulation [25].

In recent years Matlab has been extended with a modelling facility for
describing a discrete controller (Stateflow - with a syntax reminiscent of
Statecharts ). However, the underlying computation mechanism for simula-
tion of the discrete part of a model is the same as the continuous part of the
model. That is, all signals are de�ned over continuous time and the simulation
is time-triggered based on the lowest sample period. In other words, in our
Signal-Simulink co-simulator one can combine models from the top left part
of Figure 2 with models from the bottom right part (where there is no regu-
lar metric distance between subsequent steps in the discrete model), whereas
the Simulink Stateflow models combine models from the bottom row of the
table. Another di�erence is that meta-model analysis, formal veri�cation, and
code optimisation based on the discrete clock calculus are features present in our
multi-paradigm approach and absent in the current Matlab implementation.

4.3 Synchronous vs. asynchronous

As it was mentioned above, not all applications can naturally be modelled as
a globally synchronous system. A recent development has been to relate the
notions of synchrony and asynchrony in the context of data-ow languages (in
particular Signal) [4, 3]. This work introduces the theoretical notions which
can be used to characterise an asynchronous network of locally synchronous
nodes, and compositionality properties as a meta-model property in this con-
text. Similar ideas are developed in the context of imperative languages where
it is shown how constructively checked Esterel can be used as an input lan-
guage to the POLIS environment, compiling into co-design �nite state machines
communicating over one-place bu�ers [7].

5 Mathematical analysis: continuous/discrete

Recent years have seen the extension of application of formal methods to models
with both continuous and discrete elements. A typical goal of veri�cation is to
show that an invariance holds over a model. In particular, a bad property does
not hold in any reachable state of a system. Since digital controllers are increas-
ingly complex with mode changes and multiple inputs and outputs, and the goal



Reference

Wait Work Block

Actual 
Temperature

Flow
Actual

Light Sound

User input System output

ON/OFF

Reference
Temperature

Flow

Mode

Warnings

Figure 2: The external interface to the system.

of the controller is typically to avoid a bad state in the physical environment,
the traditional methods for proving the invariance are not applicable (neither
the computer science methods for proving properties of discrete systems, nor
control theory methods for analysis of continuous systems).

Several techniques for dealing this inherently diÆcult problem have been
proposed, see e.g. [2, 16, 10]. We have studied the speci�c instance of the
problem where the digital controller is modelled by a synchronous program and
the controlled environment is modelled by DAEs [19]. We have attempted two
approaches to veri�cation: compositional veri�cation and one-shot veri�cation.
In each case we provided systematic transformations to one or more parts of the
model, arriving at instances of the model which are formally analysable.

5.1 Compositional veri�cation

In this approach we have automatically translated models of the controller in
Lustre or Statecharts to a logical representation analysable by the �rst order
theorem prover NP-Tools. This tool is based on the St�almarck method [24] and
deals with propositional logic and integer arithmetic. Proofs of a property R in
the closed loop system is then performed by �nding sub-properties R1; : : : ; Rn

such that
V
Ri ! R. Each Ri is then locally proved in the controller by theorem

proving, in the plant by continuous analysis, or by further re�nement into a new
conjunction of sub-properties [18].

5.2 One-shot Veri�cation

In this approach both the plant and controller are represented in the same ver-
i�cation environment (in the same language), and the properties of the system
are proved directly in the closed loop model. This is of course dependent on
abstractions of the plant model in order to represent it in the same environment
{ the abstraction being geared towards particular properties of the system [20].

In particular, transformations of a non-linear plant model to a piece-wise
linear model leads to an abstraction as a mode-automaton [17] in which a set



of di�erence equations (speci�ed in Lustre) are associated with each mode.
These models can be translated to at Lustre which in turn can be translated
to the input format of NP-Tools via the tool Lucifer (see work-package 3 in
[22]).

5.3 Example application

Here we briey explain an application on which several of the above modelling
and veri�cation paradigms were studied. It consists of a climatic chamber with a
heater and a fan. The multi-mode control and monitoring case study provided
by the industrial partners (Saab AB) exhibited the same types of problems
which appear in aircraft air control systems, including undesired mode changes
and uctuations in the heat and ow levels. The external interface is depicted
in Figure 2 showing three of the four modes of the system (idle, normal \work",
and emergency \block" mode).

Analysis of the textual requirements document from Saab led to identi�ca-
tion of the following overall goals for the controller.

� Keeping the reference values constant,

{ the work light shall be lit within a time bound from the start of the
system, and

{ the system shall be stable in the work mode.

� Chamber temperature never exceeds a given limit.

� Whenever the reference values are (re)set, the system will (re)stablise
within a time bound or warnings are issued.

Proving bounded response properties of a multi-mode synchronous controller
relies on two factors:

1. How many \steps" it takes to reach a particular discrete state.

2. How variations in the duration of the step a�ects the real-time response.

Of course, the �rst question can not be answered by considering the controller
alone. The environment (plant) behaviour is a major part of that. Here we
describe the transformations needed before theorem proving can be applied on
the closed loop system for con�rming the answer to the �rst question. This
is done on \unfolded" models of the system, which means that the transition
function for the closed loop system has to be speci�ed in terms of the language
of a theorem prover. In the case of NP-Tools, this is propositional logic and
integer arithmetic.

The second question is typically assumed to have a well-de�ned answer. The
software engineer assumes that the `right' period will be delivered by the control
engineer. In the Saab case study we see that this is not necessarily to be taken
for granted (for details see [18]). Also, the physical modelling performed in the
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Figure 3: Continuous plant model.

early stages of the case study was used for determining a reasonable step size,
in turn a�ecting the number of `unfoldings' mentioned above. This model is
shown in Figure 3, where x is the chamber temperature, u1 the airow as an
input to the temperature equation, u2 the controller signal based on voltage,
and u3 the temperature of incoming air.

This DAE model does not directly lend itself for plugging into the closed
loop model in the theorem prover. First, the plant model is \simpli�ed" by
restricting some inputs to piece-wise constant signals { replacing the non-linear
continuous dynamics with discrete modes and linear dynamics in each mode.
Then, using the knowledge that the remaining input signals are control signals
issued by a synchronous (and sampled) controller, each linear di�erential equa-
tion in each mode is transformed to di�erence equations (Lustre programs
with real variables).

Finally, using the same scheme applied for compilation of mode-automata till
at Lustre, we obtain a multi-mode Lustre model of the plant. This model
is now equivalent to the original model modulo restrictions on (physical) input
signals. One last step is to approximate the variables in the Lustre program
from reals to integer. This scheme is depicted in Figure 4.

6 Summary and future works

The transformation scheme presented here has been successfully applied to the
climatic chamber case resulting in some improvements in the translators and
compilers. Also, a multi-paradigm model was obtained based on Lustre Sig-

nal and Esterel and a further distribution of controller has been obtained
within the Signal environment [8]. There is howevermore work to do in improv-
ing the veri�cation tools and techniques, and the combined discrete-continuous
simulation tool is a step towards combining some veri�cation possibilities on the
controller, followed by co-simulation in the closed loop system.
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