
OPT+: A Monotonic Alternative to OPTIONAL in
SPARQL

Sijin Cheng and Olaf Hartig

Dept. of Computer and Information Science (IDA), Linköping University, Sweden
<firstname>.<lastname>@liu.se

Abstract

Due to the OPTIONAL operator, the core fragment of the SPARQL query
language is non-monotonic. That is, some solutions of a query result can
be returned to the user only after having consulted all relevant parts of the
queried dataset(s). This property presents an obstacle when developing query
execution approaches that aim to reduce responses times rather than the over-
all query execution times. Reducing the response times—i.e., returning as
many solutions as early as possible—is important in particular in Web-based
client-server query processing scenarios in which network latencies dominate
query execution times. Such scenarios are typical in the context of integration
of Web data sources where a data integration component executes queries
over a decentralized federation of such data sources. In this paper we intro-
duce an alternative operator that is similar in spirit to OPTIONAL but without
causing non-monotonicity. We show fundamental properties of this operator
and observe that the downside of achieving the desired monotonicity property
is a potentially significant increase in query result sizes. We study the extend
of this trade-off in practice. Thereafter, we introduce different algorithms to
implement the new operator and evaluate them regarding their potential to
reduce response times.

River Journal, 1–31.
c© 2019 River Publishers. All rights reserved.

2 S. Cheng and O. Hartig

1 Introduction

While the SPARQL query language has been designed primarily for queries
over a centralized collection of RDF data, it also has become the prevalent
language for declarative approaches to query RDF datasets in decentralized
settings. In fact, in its latest version the SPARQL specification itself has been
extended with a notion of subqueries to be executed over a remote dataset
on a different server [15]. Other typical examples of adopting the SPARQL
language to query decentralized RDF data are queries over federations of
SPARQL endpoints [1, 17], over Linked Data on the Web [8, 18], and over
data sources that expose RDF via some Linked Data Fragments interface [19].

A feature of SPARQL that is particularly interesting for these use cases is
the OPTIONAL operator which allows users to indicate that specific parts of
a query can be ignored if no corresponding data is available. This feature is
important for querying and integrating decentralized data because, due to the
autonomous nature of the data sources, we cannot always assume that their
data is complete.

While the OPTIONAL operator is useful in this context in terms of ex-
pressiveness, it is unsuitable in terms of another property that is desirable
for a language to query decentralized data; namely, such a language should
enable a query execution engine to employ approaches that return as many
elements of a query result as early as possible during the query execution
process. This property is important because, due to network latencies, the
execution times of queries over decentralized data are typically greater than in
a centralized setting [2, 9, 10] and, thus, software applications that are based
on such queries should be enabled to achieve low user-perceived response
times by presenting at least a partial result soon after starting a query exe-
cution. Unfortunately, the OPTIONAL operator is an obstacle in this context
because the operator makes the core fragment of SPARQL non-monotonic as
illustrated by the following example.

Example 1. Assume a query execution engine executes the SPARQL query
in Figure 1(a) over a dataset of a remote data source, and during this query ex-

PREFIX ex: <http://example.org/>

SELECT ?post ?text ?img WHERE {

?post ex:hasText ?text

OPTIONAL { ?post ex:hasImage ?img } }

(a)

ex:post1 ex:hasText "Good ..."

ex:post2 ex:hasText "I can..."

ex:post1 ex:hasImage ex:sun.png

(b)

Figure 1 Example query (left) and example data (right).

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 3

ecution, the engine receives the sequence of RDF triples listed in Figure 1(b).
After having received the first two of these triples, the query engine may
produce an intermediate query result that consists of two solution mappings:

µ1 = { ?post→ ex:post1, ?text→ "Good ..." },
µ2 = { ?post→ ex:post2, ?text→ "I can..." }.

However, after having received the complete sequence of triples, it turns out
that µ2 is a solution for the query but µ1 is not; instead, the following new
mapping is another solution in the (sound and complete) query result:
µ3 = { ?post→ ex:post1, ?text→ "Good ...", ?img→ ex:sun.png }.

This example shows that there may be solution mappings that are in the
result of a query over a subset of data, but the result of the query over the
complete dataset does not contain these mappings anymore.1 We also notice
that, due to this non-monotonic nature of the OPTIONAL operator, the query
engine in the example cannot output the mapping µ2—which is indeed a
correct solution of the final query result—until the engine has received and
processed all of the data that is relevant for the optional pattern of the query.

At this point, one may wonder: If we were aiming to reduce user-per-
ceived response times of applications that query decentralized data, we might
permit the query engine in the example to already output the solution map-
pings µ1 and µ2 as soon as these mappings have been produced; if it turns
out later that these mappings can be extended based on data that matches the
optional pattern (as it is the case for µ1 in the example), then the engine may
output the extended mapping(s) as well. Clearly, the final set of all solution
mappings returned in this way may not anymore be a sound query result in
terms of the definition of the OPTIONAL operator. However, the advantage
of being able to return some solution mappings earlier is worth investigating
because it appears to allow applications to query decentralized data using an
OPTIONAL-like query feature based on which the user-perceived response
times may be reduced.

In this paper we conduct such an investigation. To this end, we define
a new operator that we call OPT+ and that provides a formal foundation for
the alternative query evaluation outlined above. Like the OPTIONAL operator,
OPT+ has two subpatterns, one of which is treated as mandatory and the
other as optional. Informally, the result of an OPT+ operator with two such

1 For some queries that contain multiple OPTIONAL operators we may even observe cases
in which the result for a subset of data contains a solution mapping that is not anymore in the
result for a bigger subset but that is contained again in the result for the complete dataset.

4 S. Cheng and O. Hartig

subpatterns consists of all the solution mappings that also are in the result of
the OPTIONAL operator with the same two subpatterns and, additionally, all
the solution mappings that can be obtained from the mandatory subpattern
but that are not in the result of the corresponding OPTIONAL operator. For
instance, for a version of the query in Figure 1(a) in which the OPTIONAL
operator is replaced by OPT+, the query result over the triples in Figure 1(b)
consists of all three solution mappings mentioned in Example 1 (i.e., not only
µ2 and µ3, but also µ1).

It is not difficult to see that the OPT+operator is monotonic and the price
we have to pay for achieving this monotonicity is a possible increase in the
size of query results (when compared to using OPTIONAL). Our aim in this
paper is to achieve an understanding of this trade-off, including the potential
gain of reduced query response times. Hence, we focus on the following two
research questions.

RQ1. How significant is the increase of the size of query results in practice
when using the OPT+operator instead of OPTIONAL?

RQ2. How suitable is the OPT+ operator in terms of its potential for query
executions that return as many solutions of query results as early as
possible?

To address these questions we make the following contributions.

1. We define and analyze the OPT+ operator formally. Our analysis shows
properties (monotonicity, expressive power) that the core fragment of
SPARQL has if the OPTIONAL operator is replaced by OPT+(Section 3).

2. We provide an empirical analysis based on 10 real-world query logs
(with an overall of ca. 34M OPTIONAL queries) that shows how OP-
TIONAL is used in practice (Section 4), and we compare the result
sizes obtained by queries in these logs when using either OPTIONAL
or OPT+ (Section 5).

3. We introduce two different approaches to implement the OPT+operator
natively in a physical query execution plan (Section 6) and evaluate them
experimentally. In addition to showing their respective potential for re-
turning as many solution mappings of query results as early as possible,
this evaluation shows—to our surprise—that none of these approaches
can achieve a significant advantage over an approach to implement the
OPTIONAL operator (Section 7).

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 5

Before focusing on these contributions, we introduce existing relevant
definitions and results (Section 2). The source code and the data used for the
work in this paper is available at https://github.com/hartig/OptPlusExperiments.

2 Preliminaries

This section defines the relevant concepts of RDF and SPARQL formally.
We assume four pairwise disjoint, countably infinite sets: U (URIs),

B (blank nodes), L (literals), and V (variables). An RDF triple is a tuple
(s, p, o) ∈ (U ∪B)×U × (U ∪B∪L). An RDF graph is a set of such triples.

For SPARQL we focus on the core fragment of the language and adopt
the formalization approach of this fragment as introduced by Pérez et al. [13];
that is, we use the algebraic syntax and the multiset query semantics defined
by Pérez et al. [13]. We emphasize that this formalization and the official
specification of SPARQL [6] are equivalent in terms of expressive power [3].
Hence, the foundations of OPT+ as presented in this paper can be easily
carried over to the syntax and semantics of SPARQL as found in the specifica-
tion. Moreover, focusing on the core fragment of SPARQL is not a limitation
either because all language features are built on top of this core fragment [6].

The algebraic syntax of SPARQL defines SPARQL expressions recur-
sively: i) A tuple (s, p, o) ∈ (V ∪ U)× (V ∪ U)× (V ∪ U ∪L) is a SPARQL
expression called a triple pattern.2 ii) If P1 and P2 are SPARQL expressions,
then so are (P1 ANDP2), (P1 UNIONP2), (P1 OPTP2), and (P1 FILTERR),
where R is a filter condition [13].3 To denote the set of all variables in all
triple patterns of a SPARQL expression P we write vars(P).

The result of evaluating a SPARQL expression takes the form of a multi-
set of solution mappings; that is, partial functions µ : V → U ∪ B ∪ L. The
subset of V for which such a mapping µ is defined is denoted by dom(µ).
Two solution mappings µ and µ′ are compatible if for every variable ?v in
dom(µ) ∩ dom(µ′) we have that µ(?v) = µ′(?v); in this case, the combi-
nation of µ and µ′, denoted by µ ∪ µ′, is also a solution mapping. Given a
triple pattern tp and a solution mapping µ, we write µ[tp] to denote the triple
pattern that we obtain by replacing the variables in tp according to µ. Notice
that µ[tp] is an RDF triple if vars(tp) ⊆ dom(µ).

2 For the sake of simplicity we do not permit blank nodes in triple patterns. In practice,
each blank node in a SPARQL query can be replaced by a new variable.

3 We do not define filter conditions in this paper because they are not relevant for our work.
For a formal definition of their syntax and semantics refer to Pérez et al. [13].

https://github.com/hartig/OptPlusExperiments

6 S. Cheng and O. Hartig

The semantics of SPARQL expressions is defined based on a set of op-
erators over multisets of solution mappings. For the sake of conciseness, we
introduce only the set-specific versions of these operators and refer to Pérez
et al.’s work for the multiset versions [13]. Given two sets of solution map-
pings, Ω and Ω′, and a filter condition R, the operators join (on), union (∪),
difference (\), and selection (σ) are defined as follows.

Ω on Ω′ = {µ ∪ µ′ |µ ∈ Ω, µ′∈ Ω′, and µ and µ′ are compatible}
Ω ∪ Ω′ = {µ |µ ∈ Ω or µ ∈ Ω′}
Ω \ Ω′ = {µ ∈ Ω | there exists no µ′∈ Ω′ such that µ and µ′ are compatible}
σR(Ω) = {µ ∈ Ω |µ satisfies R [13]}

Now we are ready to define the semantics of SPARQL expressions:

Definition 1. Given a SPARQL expression P and an RDF graph G, the
evaluation of P over G, denoted by [[P]]G, is defined recursively as follows:

1. If P is a triple pattern tp, then [[P]]G is a multiset of solution map-
pings that consists of the solution mapping from the following set Ω
and contains each of these mappings exactly once.

Ω = {µ |dom(µ) = vars(tp) and µ[tp] ∈ G}

2. If P is (P1 ANDP2), then [[P]]G = [[P1]]G on [[P2]]G.

3. If P is (P1 UNIONP2), then [[P]]G = [[P1]]G ∪ [[P2]]G.

4. If P is (P1 OPTP2), then [[P]]G = ([[P1]]G on [[P2]]G)∪ ([[P1]]G \ [[P2]]G).

5. If P is (P ′ FILTERR), then [[P]]G = σR
(
[[P ′]]G

)
.

A SPARQL expression P is monotonic if for every pair G1, G2 of RDF
graphs such that G1 ⊆ G2, it holds that [[P]]G1 is a sub-multiset of [[P]]G2 . A
SPARQL expression P is satisfiable if there exists an RDF graph G such that
[[P]]G contains at least one solution mapping. It is trivial to show that every
SPARQL expression that is not satisfiable is monotonic, and every SPARQL
expression that is not monotonic is satisfiable. Furthermore, it is well known
that both satisfiability and monotonicity of SPARQL are undecidable, and
that SPARQL expressions without OPT are monotonic (see, e.g., [7]).

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 7

3 Formal Foundation

To define the OPT+operator formally we extend the notion of a SPARQL ex-
pression by adding the following case to the recursive definition: iii) If P1 and
P2 are SPARQL expressions, then (P1 OPT+P2) is a SPARQL expression.

Now, we need to define the semantics of SPARQL expressions with
OPT+. To this end, we extend the recursive definition of the SPARQL
evaluation function (cf. Definition 1) with an additional case for OPT+.

Definition 2. For every RDF graph G and every SPARQL expression P of
the form (P1 OPT+P2), we define that [[P]]G = ([[P1]]G on [[P2]]G) ∪ [[P1]]G.

Given these definitions, we can now show some fundamental properties
of SPARQL expressions with OPT+. We begin with a simple rewriting rule.

Proposition 1. For every two SPARQL expressions P1 and P2, the following
equivalence holds: (P1 OPT+P2) ≡ ((P1 ANDP2) UNIONP1).

Proof. The equivalence is a trivial consequence of Definitions 1 and 2.

As a corollary of this equivalence we can show that adding the OPT+

operator to SPARQL does not change the expressive power of the language.

Corollary 1. For every SPARQL expression P , there exists a SPARQL
expression P ′ such that P ≡ P ′ and P ′ does not contain OPT+.

Proof (Sketch). The corollary can be shown by using the rewriting rule of
Proposition 1. That is, given a SPARQL expression with OPT+, the rule can
be applied repeatedly until all OPT+operators have been replaced using AND
and UNION.

A natural question at this point is: Given that we can capture the idea
of OPT+ by using AND and UNION, why do we need the OPT+ operator at
all? There are two reasons: First, having an explicit OPT+operator enables a
query engine to use specific algorithms that implement this operator in a more
efficient way than a generic combination of algorithms that implement AND
and UNION, respectively. Our experiments in Section 7 verify this benefit.
The second reason is that expressions that capture the notion of OPT+by using
AND and UNION may become unmanageably large. More specifically, there
exist expressions with OPT+ for which the size of the equivalent expressions
with AND and UNION are exponential in the size of the OPT+ expressions.
To show this formally in the following result we define the size of a SPARQL
expression P, denoted by |P |, to be the number of triple patterns in P.

8 S. Cheng and O. Hartig

Proposition 2. For every n ≥ 2, there exists a SPARQL expression P that
contains OPT+ such that |P | = n and for every equivalent expression P ′

without OPT+ (i.e., P ≡ P ′), it holds that |P ′| ≥ 2n− 1.

Proof. Consider a SPARQL expression Pn of the form

((...((tp1 OPT+ tp2) OPT+ tp3)...) OPT+ tpn).

That is, Pn contains a sequence of n−1 OPT+operators with an overall of n
triple patterns that are all different from one another. Given Pn, we prove the
proposition by induction on n.

In the base case (n = 2), P2 is of the form (tp1 OPT+tp2). We rewrite
P2 into P ′2 = ((tp1 AND tp2) UNION tp1). Then, we have that P ′2 ≡ P2 (cf.
Proposition 1) and |P ′2| = 3 ≥ 2n− 1. Similarly, every other expression P ′′2
obtained by rewriting P ′2without using OPT+must contain tp1 twice and tp2
once (assuming P ′′2 ≡ P ′2 and, thus, P ′′2 ≡ P2).

For the induction step (n > 2), Pn is of the form (Pn−1 OPT+tpn)
where Pn−1 is ((...((tp1 OPT+ tp2) OPT+ tp3)...) OPT+ tpn−1). By the induc-
tion hypothesis, there exists aP ′n−1 without OPT+such thatP ′n−1 ≡ Pn−1 and∣∣P ′n−1∣∣ ≥ 2n−1−1. Then, by using P ′n−1 instead of Pn−1, we rewrite Pn into
P ′n = ((P ′n−1 AND tpn) UNIONP ′n−1), for which we know by Proposition 1
that Pn ≡ P ′n. Now, it remains to show that |P ′n| ≥ 2n− 1.∣∣P ′n∣∣ = 2 ·

∣∣P ′n−1∣∣ + 1

≥ 2 · (2n−1− 1) + 1

= 2 · 2n−1− 2 + 1

= 2n− 1.

Proposition 2 shows that representing OPT+using AND and UNION may
increase the size of the resulting expressions exponentially. We emphasize
that this exponential increase is specific to expressions that contain sequences
of OPT+operators. For instance, for expressions in which OPT+operators are
nested, the increase is linear as shown by the following result.

Proposition 3. For every SPARQL expression P of the form

(Pn OPT+ (Pn−1 OPT+ (...(P2 OPT+ P1)...)))

in which no Pi contains OPT+ (for all i ∈ {1, ..., n}), there exists a SPARQL
expression P ′ without OPT+ such that P ≡ P ′ and |P ′| = 2 · |P | − |P1|.

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 9

Proof. We show the proposition by induction. The base case (n = 2) fol-
lows trivially from Proposition 1. For the induction step (n > 2) we let P
be (Pn OPT+Q) where Q is (Pn−1 OPT+ (...(P2 OPT+ P1)...)). By induction,
there exists a SPARQL expression Q′ without OPT+ such that Q ≡ Q′ and
|Q′| = 2 · |Q| − |P1|. By using Q ≡ Q′, we have P ≡ (Pn OPT+Q′), and by
Proposition 1, we have P ≡ P ′ where P ′ is ((Pn ANDQ′) UNIONPn) with:∣∣P ′∣∣ = 2 · |Pn|+

∣∣Q′∣∣
= 2 · |Pn|+ (2 · |Q| − |P1|)
= 2 · (|Pn|+ |Q|)− |P1|
= 2 · |P | − |P1| .

We complete our formal analysis of SPARQL expressions with OPT+ by
another corollary which follows from Proposition 1, and which shows that,
by using OPT+ instead of OPT, we achieve the desired monotonicity.

Corollary 2. Every SPARQL expression without OPT (but possibly with
OPT+) is monotonic.

Proof. It is not difficult to verify that for a SPARQL expression with OPT+

but without OPT, there exists an equivalent expression without OPT+ (Corol-
lary 1) that does not contain OPT either. Then, the monotonicity follows from
the monotonicity of SPARQL expressions that use only AND, UNION, and
FILTER [7] (cf. Section 2).

As a final remark, we remind the reader of Pérez et al.’s results that
show that the complexity of the evaluation problem of expressions with AND,
UNION, and FILTER is NP-complete and it becomes PSPACE-complete if
we add OPT [14]. Hence, by Corollary 1, the complexity of the evaluation
problem drops to NP if we use OPT+ instead of OPT.

4 Usage of OPTIONAL in Practice

To understand the potential consequences of replacing OPTIONAL by the
OPT+ operator in queries over decentralized data it is important at first to
understand how OPTIONAL is used in practice. To achieve such an under-
standing we have analyzed 10 real-world query logs with an overall of more
than 34M SPARQL queries with OPTIONAL. This section describes our
analysis and the results.

10 S. Cheng and O. Hartig

Table 1 Information about the query logs used for our analysis.
Name of log Endpoint/Dataset Source Period of time

DBP3.3 DBpedia v.3.3 [11] 2009-07-01–2009-07-13
DBP3.4 DBpedia v.3.4 [11] 2009-11-18–2010-02-01

DBP3.5.1 DBpedia v.3.5.1 [11, 16] 2010-04-30–2010-07-20 [16], 2010-05-28–2010-07-20 [11]
DBP3.6 DBpedia v.3.6 [11] 2011-01-23–2011-06-10
DBP3.8 DBpedia v.3.8 [11] 2012-07-26–2012-11-01 and 2013-06-30–2013-08-07
SWDF Sem.Web Dog Food [11, 16] 2008-11-01–2013-01-22 [11], 2014-04-16–2014-11-12 [16]
LGD LinkedGeoData [11, 16] 2010-11-24–2011-07-06 [16], 2011-05-23–2011-11-24 and 2012-10-02–2014-01-12 [11]
BM British Museum [16] 2014-11-08–2014-12-01

WDall Wikidata [12] 2017-06-12 – 2017-09-03
WDorg Wikidata [12] 2017-06-12 – 2017-09-03

4.1 Query Logs

The query logs that we use are from three different sources. That is, we use
logs from the USEWOD datasets [11], from the LSQ dataset [16], and from
a dataset made available as part of a study of Wikidata [12]. Each of these
logs is from a different public SPARQL endpoint that provides (or provided)
SPARQL-based query access to a respective RDF dataset. Hence, each log
contains SPARQL queries that have been sent to the corresponding SPARQL
endpoint during the period of time covered by the log. There are three logs
in the USEWOD datasets for which the LSQ dataset contains another log
from the same endpoint, respectively. For our analysis we have combined the
corresponding logs into one. Table 1 provides provenance information about
the logs that we use, including the respective time periods covered by each of
the logs. The datasets related to these logs are the following:

• DBpedia contains data extracted from structured information in the
Wikipedia. Our analysis covers logs for five versions of DBpedia.

• The Semantic Web Dog Food dataset describes conferences and work-
shops in the Semantic Web field, including data about corresponding
publications and authors.

• LinkedGeoData is a large spatial knowledge base consisting of data
collected by the OpenStreetMap effort.

• The British Museum dataset is a collection of data provided by the
British Museum.

• The Wikidata dataset is the result of collecting a large amount of struc-
tured knowledge across all Wikimedia projects and languages. While the
WDall log contains all queries that were issued to the Wikidata SPARQL
endpoint during the specified period of time, the WDorg log is a subset

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 11

Table 2 Statistics about the number of queries with OPTIONAL in the logs and the subsets
of these queries that could be parsed and, thus, can be analyzed. The percentages in the table
are calculated w.r.t. the total number of queries in the respective log.

log number of
all queries

number of queries
with OPTIONAL

distinct queries
w/ OPTIONAL

parsed queries
with OPTIONAL

distinct parsed
w/ OPTIONAL

DBP3.3 2,937,357 438,844 14.9% 325,957 11.1% 430,164 14.6% 322,053 11.0%
DBP3.4 2,640,253 472,295 17.9% 136,022 5.2% 461,556 17.5% 130,692 4.9%

DBP3.5.1 6,036,916 1,740,941 28.8% 630,004 10.4% 1,599,087 26.5% 574,720 9.5%
DBP3.6 8,384,677 2,308,730 27.5% 878,262 10.5% 1,429,332 17.0% 688,058 8.2%
DBP3.8 11,909,344 2,114,092 17.8% 960,060 8.1% 1,541,483 16.6% 608,090 5.1%
WDall 173,091,565 24,545,693 14.2% 3,049,023 1.8% 3,171,721 1.8% 358,318 0.2%
WDorg 661,505 326,662 49.4% 99,722 15.1% 88,046 13.3% 29,113 4.4%
LGD 12,719,055 1,315,085 10.3% 307,954 2.4% 1,135,630 8.9% 100,406 0.8%

SWDF 99,165 34,267 34.6% 34,267 34.6% 6,433 6.5% 6,433 6.5%
BM 1,589,840 1,106,750 69.6% 101,103 6.4% 1,106,710 69.6% 101,064 6.4%

total: 220,069,677 34,403,359 6,522,374 10,970,162 2,918,941

from which all queries have been removed that are assumed to be sent
by bots [12]. It has been shown that the queries in WDorg are structurally
more diverse, whereas WDall contains many trivial queries [12].

4.2 Statistics Collection

To process the logs and to collect relevant statistics from them we have devel-
oped a program that uses the Apache Jena framework4 to parse and to analyze
SPARQL queries. As a first processing step, this program simply extracts all
the query strings from each of the logs. Thereafter, for each query string,
the program records whether the string contains the keyword OPTIONAL
and whether the exact same string has been processed before. We use the
latter as a simple approach to identify duplicates. Next, if the query string
contains the keyword OPTIONAL, the program tries to parse the string into
an object representation of a SPARQL query. If the string can be parsed
successfully, the resulting query object is analyzed to record statistics about
the use of OPTIONAL in the given query. Hereafter, we call these queries
analyzed queries.

4.3 Basic Statistics

Before going into the details of how exactly OPTIONAL is used in the queries,
we refer to Table 2 which shows how many queries in the different logs
use OPTIONAL and how many of them are analyzed queries. While the

4 https://jena.apache.org/

https://jena.apache.org/

12 S. Cheng and O. Hartig

number of OPTIONAL operators per query

Figure 2 Percentage of all the analyzed queries with a given number of OPTIONALs.

percentage of queries with OPTIONAL differs significantly for the different
logs (ranging from 10.3% to 69.6%), we observe that each log contains a non-
negligible portion of them. Hence, the OPTIONAL operator is indeed used in
practice. Another noteworthy observation is that for some logs (e.g., DBP3.3,
SWDF) almost all the queries with OPTIONAL are distinct whereas for other
logs (e.g., WDall, BM) there are many duplicates among these queries.

4.4 Number of OPTIONALs per Query

We now focus on the analyzed queries. First, we consider the number of OP-
TIONAL operators in these queries. Figure 2 illustrates, for each of the query
logs, the percentage of all the analyzed queries that contain a given number
of OPTIONAL operators. For all logs together, we observe that the majority
of queries contains a single OPTIONAL operator only (namely, 69% of all the
10.9M analyzed queries; respectively, 53% of the 2.9M distinct queries).

There are some logs (DBP3.3, DBP3.4, WDall, LGD, SWDF) in which
almost all of the analyzed queries contain only one OPTIONAL. On the other
hand, there also are logs (DBP3.5.1, DBP3.6, DBP3.8, WDorg, BM) that contain
a sizable fraction of analyzed queries with more than one OPTIONAL. For
instance, for both DBP3.8 and BM, more than 60% of the analyzed queries
have more than one OPTIONAL, respectively. Among the 101K distinct an-
alyzed queries in BM, 35% of them have 3 OPTIONALs and 28.8% have 6,
and among the 608K distinct analyzed queries in DBP3.8, 35% have 3 OP-
TIONALs and 47.8% have 7. The maximum are 50 OPTIONALs per query,
which is the case for 16 of all 1.5M analyzed queries in DBP3.8.

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 13

4.5 Sequences and Nesting of OPTIONALs

For each of the subsets of queries with multiple OPTIONAL operators,
we now report how these operators are combined into sequences or by
nesting (including combinations thereof).

Regarding sequences, only 3032 of all multi-OPTIONAL queries (across
all the logs) do not contain a sequence! 99.9% contain one sequence, and
0.01% contain two separate sequences (no query contains more than two).
The logs with the highest number of queries with sequences are DBP3.8 (ca.
1.0M, or 64%, of the 1.5M queries in the log), DBP3.5.1 (ca. 716K, 44.8%),
BM (ca. 675K, 61.0%), and DBP3.6 (ca. 661K, 46.2%). When it comes to the
lengths of such sequences, considering all logs, we observe that the lengths
of the longest sequence per query range from 1 (i.e., two OPTIONALs) to
49 (!), where most of these (longest) sequences are short (e.g., 98% have a
length smaller than 7 and 50% have a length smaller than 3). Queries with
long sequences (length > 10) are in WDall, WDorg, DBP3.5.1, DBP3.6, and
DBP3.8. When considering only distinct queries, the observations regarding
sequences are essentially the same.

In contrast to the very high number of multi-OPTIONAL queries with
sequences, only very few queries contain nested OPTIONALs (namely, only
3803 of all 10.9M analyzed queries; respectively, only 1350 of all 2.9M
distinct queries).

5 Result Size Increase in Practice

We now are ready to focus on research question RQ1 about the increase of
query result sizes when using the OPT+ operator instead of OPTIONAL. We
answer this question based on an empirical analysis, which we describe in
this section.

5.1 Method

Our approach to conduct this analysis has been to use queries obtained from
some of the aforementioned query logs to create pairs of queries consisting
of an OPTIONAL version and an OPT+version; then, we execute these queries
over the corresponding dataset and compare the sizes of the query results.

We have created such a pair of queries for every distinct analyzed query
in the selected logs (recall that these queries use the OPTIONAL operator).
Given the WHERE clause of such a query, the first query for the correspond-
ing new pair of queries is created by simply combining the WHERE clause

14 S. Cheng and O. Hartig

with a SELECT clause of the form “SELECT *”. This query becomes the
OPTIONAL query of the pair. We use only the WHERE clause (i.e., the query
pattern) of the original query from the log because additional query features
such as DISTINCT and LIMIT are irrelevant for our analysis and may even
introduce bias. The other query of the pair, called the OPT+-like query, is
created as follows. We copy the OPTIONAL query of the pair, replace every
occurrence of OPTIONAL by OPT+, and apply the rewriting rule of Proposi-
tion 1 repeatedly; then, we obtain a query that does not anymore contain any
OPT+ operator (nor OPTIONAL) but that is equivalent to the OPT+-version
of the OPTIONAL query. This rewriting is necessary because the systems that
we use for executing the test queries are standard SPARQL systems and, thus,
not aware of the OPT+ operator. A downside of rewriting is that some of the
resulting OPT+-like queries are rather large (cf. Proposition 2).

For the analysis we have selected both Wikidata logs, DBP3.5.1, and LGD.
Hence, we have ca. 358K pairs of test queries from WDall, ca. 29K pairs
from WDorg, etc. To execute these test queries we either use the SPARQL
endpoint of the corresponding dataset (Wikidata and LGD) or a local triple
store loaded with the dataset (DBpedia v.3.5.1). If the execution of any of the
two queries of a pair fails (e.g., a timeout error from the SPARQL endpoint),
we ignore this pair. Otherwise, we record the respective size of the results of
both queries in the pair and calculate both the difference between these two
sizes (i.e., the number of additional solutions in the result of the OPT+-like
query) and the increase factor (i.e., the factor of how much greater the result
size of the OPT+-like query is).

5.2 Results

Table 3 summarizes the statistics that we have calculated from our measure-
ments. We first focus on statistics that consider all pairs of test queries for
which there were no errors (i.e., the first block of statistics in the table).

We observe that for a large fraction of query pairs, the two queries have
the same result size. For instance, for ca. 66% of the pairs for DBP3.5.1, the
OPTIONAL query and the OPT+-like query in the pair have a result of the
same size (which, by the definition of OPT+, means the two query results are
equivalent). For WDorg and LGD it is even more than 98%, respectively. For
the pairs of queries from WDorg for which there is a result size increase,
the charts in Figure 3 illustrate the respective differences and the respec-
tive increase factors (both ordered from smaller to greater). We notice that

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 15

Table 3 Statistics about the increase of query result sizes.
log % of pairs

with same
result size

at most
2x

increase

at most
10x

increase

at most
100x

increase

at most
1000x
increase

greatest
increase

greatest
difference

All pairs of test queries (for which there were no errors)
DBP3.5.1 65,74% 71,23% 80,86% 91,46% 99,57% 6144x 35.768

WDall 67,19% 98,90% 99,88% 99,89% 99,90% 4806x 718.290
WDorg 98,73% 99,73% 99,95% 99,95% 99,95% 9.62x 455.588
LGD 98,46% 99,88% 100,00% 100,00% 100,00% 22.52x 19.682

Only the pairs whose OPTIONAL query did not contain sequences of OPTIONALs
DBP3.5.1 93,09% 100,00% 100,00% 100,00% 100,00% 2.00x 1.104

WDall 66,04% 99.99% 100,00% 100,00% 100,00% 2.94x 263.919
WDorg 99,08% 99.99% 100,00% 100,00% 100,00% 2.12x 159.622
LGD 98,57% 100,00% 100,00% 100,00% 100,00% 2.00x 19.682

Only the pairs whose OPTIONAL query did contain sequences of OPTIONALs
DBP3.5.1 65,41% 70,88% 80,63% 91,36% 99,56% 6144x 35.768

WDall 75,12% 91,35% 99,06% 99,17% 99,17% 4806x 718.290
WDorg 97,61% 98,88% 99,81% 99,81% 99,81% 9.62x 455.588
LGD 92,69% 93,67% 99,95% 100,00% 100,00% 22.52x 19.199

Figure 3 Query result size differences (left) and increase factors (right), both ordered from
smaller to greater, for the test queries of WDorg for which the result sizes differ.

there is a non-negligible number of cases for which the result sizes increase
substantially. The same holds for the queries of the other logs (cf. Table 3).

After looking at all pairs of test queries as a whole, we have tried to isolate
the queries for which there is a notable result size increase. It turns out that
the differentiating characteristic is whether the queries contain sequences of
OPTIONALs or not. As shown by the statistics in the second and the third
block of Table 3, almost all of the queries for which we observe the more
significant results size increases are queries with sequences of OPTIONALs.

16 S. Cheng and O. Hartig

6 Approaches to Implement OPT+

We now turn to research question RQ2 which is concerned with the potential
of reducing the response times when using OPT+ instead of OPTIONAL. Since
OPT+ is a logical operator, the crux of the question is whether OPT+enables a
query execution engine to employ a specific algorithm that implements OPT+

and is designed to return as many solution mappings of query results as early
as possible. If that is the case, an additional aspect of research question RQ2
is whether this algorithm allows the engine to return the first solutions for an
OPT+query earlier than the same number of solutions that the engine would
return for the corresponding OPTIONAL query (naturally, for the latter, the
engine has to employ an algorithm that implements the OPTIONAL operator).

Our approach to answer RQ2 has been to use an existing SPARQL query
execution engine and extend it with algorithms for the OPT+ operator. We
have selected the query engine of Apache Jena for this purpose. That is,
we have developed an OPT+-aware extension for Jena. This extension con-
sists of two different algorithms to implement the OPT+ operator natively in
query execution plans (i.e., in contrast to implementing OPT+ by using AND
and UNION as done for the aforementioned OPT+-like queries).

In this section we describe the algorithms, including the algorithm that
Jena uses for OPTIONAL and that is the basis of two of the four OPT+-specific
algorithms. In the next section we compare these algorithms experimentally.

6.1 Execution of OPTIONAL queries in Apache Jena

Query execution in Jena is based on the well-known iterator model [5]. That
is, every query execution plan is a sequence (or a tree) of iterators that are
connected as a pipeline. Each iterator in the pipeline produces solution map-
pings by executing an algorithm that consumes input solution mappings from
the predecessor iterator. The approach is synchronous; that is, the solution
mappings are passed through the pipeline in a pull-based manner.

While the query engine of Jena contains various types of iterators for the
different logical operators of SPARQL, we are concerned only with the iter-
ator used for SPARQL expressions of the form (P1 OPTP2). The algorithm
implemented by this iterator is a variation of a nested loops join (NLJ) where
the outer loop consumes an input iterator IL that is created to produce the
result of P1. Every solution mapping µ obtained from IL is used to initialize
an iterator IµR for a version of P2 in which variables have been replaced
according to µ. Next, the algorithm uses IµR as the inner loop; during this
loop, every solution mapping µ′ that can be consumed from IµR is used to

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 17

produce an output mapping µ ∪ µ′. On the other hand, if IµR does not return
any solution mappings (i.e., µ does not have join partners in the result of P2),
then µ itself is an output mapping (as per the semantics of the OPT operator).

Example 2. Let us revisit the example query and example data in Figure 1.
To execute the query, Jena would first create an iterator IL that shall produce
the result of the non-optional first triple pattern in the query. Hence, for the
example data, this iterator would return the following two solution mappings:

µ1 = { ?post→ ex:post1, ?text→ "Good ..." },
µ2 = { ?post→ ex:post2, ?text→ "I can..." }.

Next, Jena would create an iterator IOPT for the OPTIONAL operator in the
query and connect it to IL as its input iterator. Then, during query execution,
IOPT requests the mappings produced by IL one after another. Suppose IL re-
turns µ1 first. Based on µ1, IOPT substitutes the variable ?post in the optional,
second triple pattern of the query, which results in the more specific triple
pattern (ex:post1, ex:hasImage, ?img). Now, IOPT initializes a new iterator Iµ1R
to obtain the result of this pattern. For the example data, Iµ1R returns a single
solution mapping, µ′ = { ?img→ ex:sun.png }, with which IOPT produces its
first output mapping µ3 = µ1 ∪ µ′, i.e.,

µ3 = { ?post→ ex:post1, ?text→ "Good ...", ?img→ ex:sun.png }.

Since Iµ1R does not return any more mappings, IOPT closes Iµ1R and requests
the next mapping from IL, which is µ2. When processing this mapping,
IOPT uses another new iterator, Iµ2R , to obtain the result of the triple pattern
(ex:post2, ex:hasImage, ?img). However, this result is empty for the example
data. Therefore, after unsuccessfully trying to obtain any solution mapping
from Iµ2R , it becomes clear that µ2 is another output mapping of IOPT.
Moreover, since IL has also been exhausted at this point, µ2 is the last output.

6.2 Algorithm NLJ+

Our first algorithm for the OPT+ operator, which we call NLJ+, is a simple
adaptation of the aforementioned NLJ-based algorithm for OPTIONAL. The
only difference is the following: Whenever NLJ+ obtains a solution map-
ping µ from the input iterator IL, this mapping is returned as an output
mapping immediately (which is a correct behavior for the OPT+ operator).
Only after this step does NLJ+ initialize the iterator IµR for the inner loop,
which then proceeds as described above (cf. Section 6.1). That is, during

18 S. Cheng and O. Hartig

this inner loop, µ is joined with all mappings returned by IµR . Then, after
exhausting IµR , NLJ+directly continues with the next solution mapping from
IL (i.e., independent of whether IµR has returned solution mappings or not).

Example 3. Assume that the keyword OPTIONAL in the example query (Fig-
ure 1) was replaced by a new keyword that denotes an OPT+ operator. Then,
for the evaluation of this operator we may use an iterator INLJ+ that im-
plements the NLJ+ algorithm. The input to this iterator would be the same
iterator IL as used in the previous example (cf. Example 2). During the query
execution, immediately after obtaining the solution mapping µ1 from IL,
INLJ+ returns µ1 as an output mapping. Thereafter, exactly as done by the
iterator IOPT in Example 2, INLJ+ creates iterator Iµ1R , consumes the mapping
µ′ returned by Iµ1R , and produces mapping µ3 = µ1 ∪ µ′ as the second output
mapping. Next, INLJ+ closes Iµ1R , receives µ2 from IL, and directly passes
µ2 on as the next output mapping. Finally, INLJ+ creates iterator Iµ2R , closes
it again after unsuccessfully trying to obtain any solution mapping from it,
and indicates that there are no more output mappings. Hence, by using the
algorithm NLJ+, the three solution mappings that make up the complete query
result are returned in the following order: µ1, µ3, µ2.

6.3 Algorithm mNLJ+

The second algorithm for OPT+, which we call mNLJ+, is a variation of NLJ+

in which the mappings from the input iterator IL are materialized into a list. In
addition to appending each such mapping to this list, the mapping is returned
immediately as an output mapping. After IL has been exhausted and, thus,
all its mappings are in the list, the list is now used for the outer loop and the
NLJ-style processing begins. Of course, in this case, solution mappings from
the list are not returned again as output mappings (but as join partners to be
merged with mappings from the inner-loop iterators).

Example 4. As in Example 3, assume that we aim to execute an OPT+version
of the example query in Figure 1. Now, however, we use an iterator ImNLJ+

that implements the mNLJ+ algorithm. As before, the input to this iterator
would be the iterator IL of Examples 2 and 3. During the query execution,
ImNLJ+ obtains the solution mapping µ1 from IL, returns it as an output map-
ping, and adds it to the list of mappings maintained by ImNLJ+. Next, ImNLJ+

immediately obtains the next solution mapping from IL, which is µ2. As
for µ1, µ2 is returned as an output mapping and added to the list of mappings.
Now, IL has been exhausted and, thus, ImNLJ+ proceeds to the next phase in

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 19

which each solution mapping µx that has been added to the internal list is used
to find join partners by creating a corresponding iterator IµxR as in the previous
examples. Hence, the result of this phase is that the third output mapping µ3
is produced and returned. Therefore, in comparison to the NLJ+-based query
execution in Example 3, the mNLJ+-based query execution returns the three
solution mappings in a different order: µ1, µ2, µ3.

7 Evaluation

Given our OPT+-aware extension for Apache Jena, we have conducted an
experimental evaluation. In this evaluation we compare query executions us-
ing the resulting OPT+-aware execution plans to executions of corresponding
OPTIONAL queries as well as corresponding OPT+-like queries (see above).
The goal of this evaluation is to gain an understanding of the response times
that can be achieved by such query executions. In this section we describe the
setup of the experiments and the results.

7.1 Experimental Environment

For the experiments we have used HDT [4] as a back-end for storing RDF
data. Data in HDT can be accessed in terms of triple patterns. Hence, using
HDT as storage back-end bears similarities to accessing data from a remote
server that provides a Triple Pattern Fragments interface [19]. The HDT java
libraries come with a Jena connector that we have employed to use the query
execution engine of Jena—with our OPT+-aware extension—on top of an
HDT-stored RDF dataset. We have integrated these components into a driver
program that runs the experiments. This program executes a given workload
of queries sequentially, one query at a time. For each query, the program
records the relevant measurements (see below). Query executions that take
longer than 10 seconds are stopped and recorded as timed out.

The experiments have been conducted on a computer that is equipped
with an Intel Core i7-2620M CPU (2.7GHz) and 8 GB of main memory.
This computer runs the Ubuntu 12.04.5 LTS operating system with Ora-
cle Java 1.8.0_92. Our Jena-based experiment system is implemented using
Jena 3.7.0 and the latest version of the HDT Java libraries from the HDT
github repository.5 4 GB of main memory have been assigned to the Java
process of the experiment system.

5 https://github.com/rdfhdt/hdt-java (last commit from May 10, 2018)

https://github.com/rdfhdt/hdt-java

20 S. Cheng and O. Hartig

7.2 Metrics

We have instrumented our experiment driver program to record a timestamp
and the number of triples retrieved from the HDT back-end at any point at
which a solution mapping is returned for the executed query. After a query
execution finishes, this data is used to produce the following measurements:

RTX%: response time until the first 10% of all solutions (RT10%), until the
first 20% (RT20%), ..., until 100% of the solutions (RT100%);

TrX%: number of triples retrieved from the back-end to produce the first 10%
of all solutions (Tr10%), the first 20% (Tr20%), ..., 100% (Tr100%);

RT1stX: response time to return the first 10 solutions (RT1st10), the first 20
solutions (RT1st20), ..., the first 100 solutions (RT1st100).

Additionally, we measure the overall query execution time (QET).

7.3 Dataset and Queries

We have selected (uniformly at random) a collection of 60K pairs of queries
that we had created from the DBP3.5.1 query log for the result-size analysis
presented in Section 5. The reason for selecting the queries from DBP3.5.1
is that the OPTIONAL queries in this log are comparably diverse in terms of
how they use OPTIONAL (cf. Section 4) and in terms of result-size increase
when replacing OPTIONAL by OPT+ (cf. Table 3). As a consequence of this
choice of queries, we have to use the DBpedia dataset, version 3.5.1. Hence,
the HDT back-end for our experiments contains this dataset.

Recall that each pair of queries created for our result-size analysis consists
of an OPTIONAL query and a corresponding OPT+-like query; the latter is a
representation of the OPT+ version of the OPTIONAL query that has been
obtained by first replacing every OPT operator by OPT+ and then rewriting
every OPT+ operator using AND and UNION (cf. Proposition 1). Therefore,
in our experiment we can also use these OPT+-like queries to observe how
their execution (using the standard Jena query iterators for AND and UNION)
compares to the executions that use the OPT+-specific algorithms for the
OPT+version of the OPTIONAL queries in the query pairs.

In addition to the pairs of real-world queries from the DBP3.5.1 log, we
have created 4 more query pairs for which we handcrafted new OPTIONAL
queries (and then generated the corresponding OPT+-like queries). These
queries are listed in the Appendix. Each of these handcrafted queries contains
a single OPTIONAL and represents some form of an extreme case:

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 21

Table 4 Statistics about the query result sizes of the handcrafted queries.
Query Q1 Q2 Q3 Q4

Result size OPT version 21,862 21,862 65,618 809,372
Result size OPT+ version 21,862 43,724 87,480 810,486

Q1 The result of the optional part of this query is empty; thus, none of the
solutions for the non-optional part has join partners in the optional part.

Q2 Every solution for the non-optional part of this query has exactly one
join partner in the result of the optional part.

Q3 Every solution for the non-optional part of this query has at least one join
partner in the result of the optional part; some have a few join partners.

Q4 The non-optional part of the query is more complex, and every solution
for this part has several join partners in the result of the optional part.

Table 4 presents statistics about the result sizes of the handcrafted queries.

7.4 Comparison of OPT+ Approaches for the Handcrafted Queries

We begin our analysis by taking a detailed look at the response times mea-
sured for the executions of each of the handcrafted queries. The charts in
Figure 4 illustrate the times required by the different OPT+-specific ap-
proaches to produceX% of the solution mappings contained in the respective
query results (i.e., RTX%), and the charts in Figure 6 illustrate the number
of triples that the approaches had to retrieve for producing these solution
mappings (i.e., TrX%). Additionally, the charts in Figure 5 illustrate the times
required to produce the firstX of these solution mappings for Q1 and Q4 (i.e.,
RT1stX). The latter figure does not contain the corresponding charts for Q2
and Q3 because, for these queries, all RT1stX measurements are below 1ms
and do not show any significant differences between the approaches.

We first focus on Q1 for which we observe that the execution of the OPT+-
like version of this query has the greatest (i.e., worst) RTX% values, while the
mNLJ+-based execution of the OPT+version of Q1 achieves the best response
times. To describe the behavior of the approaches in detail we recall that the
OPT+-like version of a single-OPT+ expression (P OPT+P ′) is of the form
((P ANDP ′) UNIONP). Hence, the non-optional subexpression P of such
queries is contained—and, thus, executed—twice in the OPT+-like versions.

We first focus on the executions of the OPT+-like queries: Except for
query Q4, the RTX% values are the greatest (i.e., worst) for these execu-
tions (cf. Figure 4), and the same holds for the RT1stX values in the case

22 S. Cheng and O. Hartig

(a) Q1 (b) Q2

(c) Q3 (d) Q4

Figure 4 Response times for the handcrafted queries in terms of time to X% of all solutions.

of Q1 (cf. Figure 5(a)). To explain this behavior we recall that the OPT+-like
version of an expression (P OPT+P ′) is of the form ((P ANDP ′) UNIONP).
Hence, the non-optional subexpression P of such queries is contained—and,
thus, executed—twice in the OPT+-like versions: first in the (P ANDP ′) part
and second as the right argument of the UNION operator used in the OPT+-
like queries. This double effort does not only lead to typically higher query
execution times (as shown in Figure 7) but it also means that the triples for

(a) Q1 (b) Q4

Figure 5 Response times to the first X solutions for the handcrafted queries (log scale).

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 23

(a) Q1 (b) Q2

(c) Q3 (d) Q4

Figure 6 Number of triples retrieved for X% of all solutions for the handcrafted queries.

executing the non-optional subexpression P are retrieved twice from the stor-
age back-end (as indicated by the comparably higher TrX% values shown in
Figure 6) and that the response times may be affected negatively.

As an example of the latter, consider query Q1. For this query, the result
of the optional part P ′ is empty. Thus, executing the (P ANDP ′) part of the
OPT+-like version of this query does not produce any solution mappings; yet
it requires time (namely, ca. 81ms as can be seen in Figures 4(a) and 5(a)).

(a) Q1 (b) Q2 (c) Q3 (d) Q4

Figure 7 Overall query execution times for the handcrafted queries.

24 S. Cheng and O. Hartig

Only after this time, the query execution proceeds to the second argument of
the UNION operator and starts producing the first output.

The execution of the OPT+-like version of Q4 is also interesting. For this
query, ca. 90% of the solution mappings of the query result are produced by
executing the join between the optional and the non-optional part. For the
remaining 10%, the non-optional part has to be executed again in the case
of the OPT+-like version of Q4, which explains the sudden rise at the end
of the corresponding curves in Figures 4(d) and 6(d). In contrast, by using
the dedicated OPT+ algorithms (NLJ+ and mNLJ+) it becomes unnecessary
to produce the solution mappings for the non-optional part twice.

When comparing the two native OPT+ approaches, we observe that the
mNLJ+ executions achieve better response times for Q1-Q3, whereas, for
Q4, the NLJ+ execution is better. In some ways, the behavior of the mNLJ+

algorithm is the opposite of how the OPT+-like versions of the queries are
executed; that is, mNLJ+ first returns all solution mappings for the non-op-
tional part before it tries to find corresponding join partners in the optional
part (but without having to re-execute the non-optional part). This strategy is
beneficial in cases in which most (or even all) of the solution mappings for
the non-optional part have a few join partners only (like in Q2 and Q3) or no
join partner at all (as in Q1). If, in contrast, most of the solution mappings
for the non-optional part have many join partners, the strategy becomes less
suitable. In such cases (with Q4 being one of them), the idea of NLJ+ is more
effective in terms of achieving small response times.

7.5 Comparison of OPT+ versus OPT for the Handcrafted Queries

We now compare the executions of the OPT+versions versus the OPT versions
of the handcrafted queries. Since the query results for the two versions may
have a different size (cf. Section 5 and Table 4), comparing the query exe-
cutions in terms of their response times to return a particular percentage of
the respective query results is an apples-to-oranges comparison. Therefore,
we focus on the response times to return a fixed number of solution map-
pings (i.e, RT1stX). Figure 5 illustrates the corresponding measurements.

For Q1, the executions of the OPT+ version achieve slightly better re-
sponse times than the execution of the OPT version. For the NLJ+ execution
this observation may be surprising, given that the NLJ+ algorithm is very
similar to the algorithm used for the OPT operator (cf. Sections 6.1 and 6.2).
However, recall that the none of the solution mappings for the non-optional
part of Q1 has a join partner in the optional part. Then, the NLJ+ algorithm

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 25

returns each of these solution mappings before the unsuccessful attempt to
find join partners, whereas the algorithm for the OPT operator first tries to
find join partners and, thereafter, checks whether it has found some or not.
Although this check presents only a very small overhead, it adds up when
iterating over the solution mappings obtained for the non-optional part.

For Q4, this small advantage of NLJ+ over the OPT algorithm becomes
insignificant for the following reason. Each solution mapping obtained for
the non-optional part of Q4 does have join partners in the optional part. As
a consequence, processing each of these solution mappings takes more time
overall, which makes the overhead of the additional check negligible.

In comparison to the NLJ+ executions, the mNLJ+ executions achieve
response times that are more different to the response times of the OPT ex-
ecutions, and these differences may be either positive (as in the case of Q1)
or negative (Q4). The reasons for these differences are the same as the afore-
mentioned reasons for the differences between mNLJ+and NLJ+ (because of
the similarity of the algorithm for the OPT operator and the NLJ+algorithm).

In summary, this experiment with the handcrafted queries shows that there
are cases in which replacing the OPT operator by OPT+ is beneficial in terms
of response times (assuming a native implementation of OPT+). This benefit
may be more substantial if the mNLJ+ algorithm is chosen to implement
OPT+(instead of the NLJ+algorithm). However, there are also cases in which
this choice can have the opposite of the desired effect (see Q4).

7.6 Comparison of OPT+ Approaches for the Real-World Queries

While the handcrafted queries allow us to reason in detail about how the dif-
ferent approaches behave in specific cases, we now discuss our observations
for the large workload of real-world queries obtained from the DBP3.5.1 query
log. We begin with a comparison of the OPT+approaches.

First, we notice that a number of query executions have hit our timeout
threshold of 10 seconds (for details refer to the table in Figure 8(d)). Addition-
ally, many of the queries whose executions did not time out have the empty
query result. For these cases it is impossible to compare the approaches in
terms of our response time metrics (RT1stX and RTX%). As a consequence,
out of the 60K queries there are only 20,797 for which we have relevant
measurements. For these queries, Figure 8(a) illustrates the number of cases
in which each approach has achieved the smallest (i.e., best) RTX% value
among the three approaches, and Figure 8(b) illustrates the average RTX%
values that each of the three approaches has achieved for the 20,797 queries.

26 S. Cheng and O. Hartig

(a) # of cases of having the best RTX% (b) avg. RTX% for 20,797 queries (log scale)

(c) avg. differences between RTX% values

approach # of timeouts
OPT+-like 359
OPT+ (NLJ+) 167
OPT+ (mNLJ+) 166
OPT 144

(d) number of timeouts

Figure 8 Comparison of the OPT+ approaches for the real-world queries of the DBP3.5.1 log.

We observe that the OPT+-like approach cannot compete with the other
two approaches. That is, its average response times are two orders of magni-
tudes greater (i.e., worse) and, for every X ∈ {10, 20, ..., 100}, there are less
than 100 queries for which the approach has achieved the best RT1stX value.
The reasons for this behavior have already been mentioned above.

Regarding the NLJ+ approach versus the mNLJ+ approach, there is a
significantly higher number of queries for which mNLJ+ achieves better re-
sponse times; on the other hand, however, NLJ+ is slightly better in terms
of average response times. To analyze these observations further we refer
to Figure 8(c) which illustrates the average differences (in ms) between the
RTX% values achieved by both approaches for the cases in which mNLJ+

was better than NLJ+ (light blue curve) and for the cases in which NLJ+

was better than mNLJ+ (brown curve). Our conclusion of this comparison is
two-fold: First, while there are more cases in which mNLJ+ achieves better
response times than NLJ+, the differences in these cases typically are not
particularly significant. Second, there are a notable number of cases in which
NLJ+ achieves better response times than mNLJ+, and in these cases the
response times are significantly different.

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 27

(a) # of cases of having the best RT1stX (b) avg. differences between RT1stX values

(c) # of cases of having the best RT1stX (d) avg. differences between RT1stX values

Figure 9 Comparison of OPT+ versus OPT for the real-world queries of the DBP3.5.1 log.

7.7 Comparison of OPT+ versus OPT for the Real-World Queries

To compare the OPT-based executions versus OPT+-based executions of the
real-world query workload we, again, focus on the RT1stX measurements
only (as the RTX% measurements are not comparable due to the differences
in the query result sizes; cf. Section 5). Then, from the 20,797 queries that
have a nonempty result, there are only 41 for which the query result of the
OPT version contains at least 100 solution mappings. Since this number of
solution mappings is needed to obtain RT1stX measurements with an X of
up to 100, we use these 41 queries for the comparison of OPT+versus OPT.

We separately consider both of the two OPT+-specific approaches for
this comparison because none of them turned out to be a clear winner over
the other one—neither for the handcrafted queries (cf. Section 7.4) nor for
the real-world queries (cf. Section 7.6). For the NLJ+ approach, Figure 9(a)
illustrates the number of cases in which the RT1stX values of the OPT+-
based executions are better than for the OPT-based executions and vice versa;
Figure 9(c) provides the same type of chart for the mNLJ+approach.

For both, NLJ+ and mNLJ+, we make very similar observations. That
is, there are significantly more cases in which the respective OPT+-based

28 S. Cheng and O. Hartig

executions of the 41 queries achieved better RT1stX response times (cf. Fig-
ures 9(a) and 9(c)). However, the average differences between the response
times in all of these cases are below 1ms (cf. Figures 9(b) and 9(d)).

8 Conclusions

In this paper we have analyzed a monotonic alternative to the OPTIONAL
feature of SPARQL, which we have formalized as a new query operator
called OPT+. The main use case for this alternative are Web data integration
components that execute queries over RDF-based data sources on the Web.

The trade-off of using the OPT+ operator instead of OPTIONAL is that
it may increase the size of query results. Regarding the question of how
significant this increase can be in practice (i.e., research question RQ1), we
conclude that:

C1.1 For a large fraction of the real-world queries we analyzed, there would
be no result size increase at all if these queries were using OPT+ instead
of OPTIONAL.

C1.2 However, there is also a sizable fraction of queries for which the result
size would increase.

C1.3 For many of these queries, the result sizes would increase no more than
2x, but there is also a non-negligible number of queries for which the
result sizes would increase substantially. Almost exclusively, the latter
are queries with sequences of OPTIONALs.

The motivation for introducing this alternative operator was to enable
dedicated implementations that can reduce the response times of query ex-
ecutions in comparison to implementations of the OPTIONAL feature (i.e.,
returning a first fraction of the respective query results earlier). Regarding
the question of how suitable the OPT+ operator actually is for achieving this
goal (research question RQ2), our main conclusion is that:

C2.1 Surprisingly, for the dedicated OPT+ implementation approaches that
we have considered we cannot confirm any significant advantages in
terms of response times; although there are some differences, they are
all below 1ms.

Other, more specific conclusions that we draw from our evaluation are:

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 29

C2.2 Implementing the idea of the OPT+operator by simply using the seman-
tically equivalent expressions with AND and UNION is not an efficient
approach; typically, it results in worse response times and also increases
the amounts of data (triples) that have to be retrieved from the stor-
age back-end (or from the remote server in case of a client-server
architecture or in a decentralized query processing context).

C2.3 For each of the two OPT+-specific algorithms, NLJ+ and mNLJ+, there
exist cases in which it is better than the other in terms of achieving
smaller response times. More specifically, our results show that mNLJ+

achieves better response times than NLJ+ in a greater number of cases,
but the differences in these cases typically are not particularly signif-
icant. On the other hand, in the cases in which NLJ+ achieves better
response times than mNLJ+, which are notably many, the response times
are significantly different.

Acknowledgements This work has been funded by the CENIIT program at
Linköping University (project no. 17.05).

Appendix

A1 Handcrafted Benchmark Queries

Q1 SELECT ?x ?o2 WHERE {

?x a <http://dbpedia.org/ontology/Band> .

OPTIONAL { ?x <http://example.org/thisPropertyDoesNotExist> ?o2 }

}

Q2 SELECT ?x WHERE {

?x a <http://dbpedia.org/ontology/Band> .

OPTIONAL { ?x a <http://dbpedia.org/ontology/Band> }

}

Q3 SELECT ?x ?o2 WHERE {

?x a <http://dbpedia.org/ontology/Band> .

OPTIONAL { ?x a ?o2 }

}

30 S. Cheng and O. Hartig

Q4 SELECT ?x WHERE {

?x a <http://dbpedia.org/ontology/Band> ;

<http://dbpedia.org/ontology/recordLabel> ?rl ;

<http://www.w3.org/2000/01/rdf-schema#label> ?l .

?rl <http://www.w3.org/2000/01/rdf-schema#label> ?lrl

FILTER (strStarts(?lrl, "A"))

OPTIONAL { ?b2 <http://dbpedia.org/ontology/recordLabel> ?rl }

}

References

[1] Maribel Acosta, Olaf Hartig, and Juan Sequeda. Federated RDF Query Processing.
In Sherif Sakr and Albert Zomaya, editors, Encyclopedia of Big Data Technologies.
Springer, 2018.

[2] Maribel Acosta, Maria-Esther Vidal, Tomas Lampo, Julio Castillo, and Edna Ruck-
haus. ANAPSID: An Adaptive Query Processing Engine for SPARQL Endpoints. In
The Semantic Web - ISWC 2011 - 10th International Semantic Web Conference, Bonn,
Germany, October 23-27, 2011, Proceedings, Part I, pages 18–34, 2011.

[3] Renzo Angles and Claudio Gutiérrez. The expressive power of SPARQL. In The
Semantic Web - ISWC 2008, 7th International Semantic Web Conference, ISWC 2008,
Karlsruhe, Germany, October 26-30, 2008. Proceedings, pages 114–129, 2008.

[4] Javier D. Fernández, Miguel A. Martínez-Prieto, Claudio Gutiérrez, Axel Polleres, and
Mario Arias. Binary RDF representation for publication and exchange (HDT). J. Web
Sem., 19:22–41, 2013.

[5] Goetz Graefe. Query Evaluation Techniques for Large Databases. ACM Comput. Surv.,
25(2):73–170, 1993.

[6] Steve Harris, Andy Seaborne, and Eric Prud’hommeaux. SPARQL 1.1 Query Language.
W3C Recommendation, Online at http://www.w3.org/TR/sparql11-query/, March 2013.

[7] Olaf Hartig. Querying a Web of Linked Data: Foundations and Query Execution. PhD
thesis, Humboldt-Universität zu Berlin, Germany, 2014.

[8] Olaf Hartig, Christian Bizer, and Johann Christoph Freytag. Executing SPARQL Queries
over the Web of Linked Data. In The Semantic Web - ISWC 2009, 8th International
Semantic Web Conference, ISWC 2009, Chantilly, VA, USA, October 25-29, 2009.
Proceedings, pages 293–309, 2009.

[9] Olaf Hartig and M. Tamer Özsu. Walking without a map: Ranking-based traversal for
querying linked data. In The Semantic Web - ISWC 2016 - 15th International Semantic
Web Conference, Kobe, Japan, October 17-21, 2016, Proceedings, Part I, pages 305–
324, 2016.

[10] Lars Heling, Maribel Acosta, Maria Maleshkova, and York Sure-Vetter. Querying large
knowledge graphs over triple pattern fragments: An empirical study. In The Semantic
Web - ISWC 2018 - 17th International Semantic Web Conference, Monterey, CA, USA,
October 8-12, 2018, Proceedings, Part II, pages 86–102, 2018.

[11] Markus Luczak-Roesch, Saud Aljaloud, Bettina Berendt, and Laura Hollink. USEWOD
2016 Research Dataset. University of Southampton, 10.5258/SOTON/385344, 2016.

http://www.w3.org/TR/sparql11-query/

OPT+: A Monotonic Alternative to OPTIONAL in SPARQL 31

[12] Stanislav Malyshev, Markus Krötzsch, Larry González, Julius Gonsior, and Adrian
Bielefeldt. Getting the Most Out of Wikidata: Semantic Technology Usage in
Wikipedia’s Knowledge Graph. In The Semantic Web - ISWC 2018 - 17th International
Semantic Web Conference, Monterey, CA, USA, October 8-12, 2018, Proceedings, Part
II, pages 376–394, 2018.

[13] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics of SPARQL. Technical
Report TR/DCC-2006-17, Department of Computer Science, University of Chile, 2006.

[14] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and Complexity of
SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45, 2009.

[15] Eric Prud’hommeaux and Carlos Buil-Aranda. SPARQL 1.1 Federated Query. W3C
Recommendation, Online at http://www.w3.org/TR/sparql11-federated-query/, March
2013.

[16] Muhammad Saleem, Muhammad Intizar Ali, Aidan Hogan, Qaiser Mehmood, and Axel-
Cyrille Ngonga Ngomo. LSQ: The Linked SPARQL Queries Dataset. In The Semantic
Web - ISWC 2015 - 14th International Semantic Web Conference, Bethlehem, PA, USA,
October 11-15, 2015, Proceedings, Part II, pages 261–269, 2015.

[17] Muhammad Saleem, Yasar Khan, Ali Hasnain, Ivan Ermilov, and Axel-Cyrille Ngonga
Ngomo. A Fine-Grained Evaluation of SPARQL Endpoint Federation Systems. Seman-
tic Web, 7(5):493–518, 2016.

[18] Jürgen Umbrich, Katja Hose, Marcel Karnstedt, Andreas Harth, and Axel Polleres. Com-
paring Data Summaries for Processing Live Queries over Linked Data. World Wide Web,
14(5-6):495–544, 2011.

[19] Ruben Verborgh, Miel Vander Sande, Olaf Hartig, Joachim Van Herwegen, Laurens De
Vocht, Ben De Meester, Gerald Haesendonck, and Pieter Colpaert. Triple Pattern
Fragments: A Low-Cost Knowledge Graph Interface for the Web. J. Web Sem.,
37-38:184–206, 2016.

http://www.w3.org/TR/sparql11-federated-query/

	Introduction
	Preliminaries
	Formal Foundation
	Usage of OPTIONAL in Practice
	Query Logs
	Statistics Collection
	Basic Statistics
	Number of OPTIONALs per Query
	Sequences and Nesting of OPTIONALs

	Result Size Increase in Practice
	Method
	Results

	Approaches to Implement OPT+
	Execution of OPTIONAL queries in Apache Jena
	Algorithm NLJ+
	Algorithm mNLJ+

	Evaluation
	Experimental Environment
	Metrics
	Dataset and Queries
	Comparison of OPT+ Approaches for the Handcrafted Queries
	Comparison of OPT+ versus OPT for the Handcrafted Queries
	Comparison of OPT+ Approaches for the Real-World Queries
	Comparison of OPT+ versus OPT for the Real-World Queries

	Conclusions

