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Abstract. GraphQL is a popular new approach to build Web APIs
that enable clients to retrieve exactly the data they need. Given the
growing number of tools and techniques for building GraphQL servers,
there is an increasing need for comparing how particular approaches or
techniques a�ect the performance of a GraphQL server. To this end, we
present LinGBM, a GraphQL performance benchmark to experimentally
study the performance achieved by various approaches for creating a
GraphQL server. In this paper, we discuss the design considerations of
the benchmark and describe its main components (data schema; query
templates; performance metrics). Thereafter, we present experimental
results obtained by applying the benchmark in two di�erent use cases,
which demonstrate the broad applicability of LinGBM.
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1 Introduction

GraphQL is a new approach to build data access APIs for Web and mobile
applications [7]. Since its �rst published speci�cation in 2015, the approach has
become highly popular with a �ourishing ecosystem of related software tools and
programming libraries [15], and many adopters. For instance, an early-2019 study
of open source projects identi�ed more than 37,000 code repositories that depend
on the GraphQL reference implementation (which is just one of several imple-
mentations of the approach) [10]. A similar study found 8,399 unique GraphQL
API schemas on Github [17]. Besides open source projects, many companies are
adopting GraphQL for their commercial software applications, including house-
hold names such as Airbnb, AWS, Expedia, IBM, Paypal, and Twitter [14].

What makes GraphQL interesting from a systems research perspective is
that it is based on a declarative query language which enables clients to de�ne
precisely the data they want to retrieve. In comparison to REST interfaces, this
approach reduces the number of requests that need to be issued and the amount
of data transferred from server to client [2,3]. Leveraging this advantage, however,
requires GraphQL servers that can process such query requests e�ciently.

While there exists a plethora of Web tutorials and blog posts, as well as sev-
eral books (e.g., [12,8,4,5,11,16]), that all describe approaches to implement a
GraphQL server and to avoid typical performance pitfalls, studies that show or
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even compare how using particular approaches may a�ect the performance of the
resulting GraphQL server are rare and remain often anecdotal. Yet, understand-
ing the pros and cons of di�erent solutions is crucial for building an e�cient
GraphQL server that provides an optimal performance for a given application.

Achieving such an understanding requires performance tests, for which suit-
able experimentation frameworks, methods, and tooling are needed. Although
there are a few performance-related test suites for speci�c GraphQL tools (cf.
Section 2) and some basic experimental results [13], we observe that there does
not exist any methodological approach to thoroughly evaluate and compare the
performance of approaches to create a GraphQL server. In this paper we intro-
duce a GraphQL performance benchmark called LinGBM to �ll this gap.

Contributions and organization of the paper: Our main contribution in
this paper is LinGBM, that is, a benchmark to experimentally study and compare
the performance achieved by various approaches to create a GraphQL server.
The benchmark consists of1 i) a data schema for creating benchmark datasets
at di�erent scales, ii) 16 query templates that cover di�erent performance-related
challenges of GraphQL, iii) performance metrics and execution rules, and iv) the
necessary tooling to conduct experiments with the benchmark (e.g., dataset and
query workload generators, test drivers). Before describing these elements of the
benchmark in detail (Section 4), we discuss the design considerations for the
benchmark, including the design methodology and design artifacts (Section 3).

Given the benchmark, we make further contributions by demonstrating sev-
eral microbenchmarking use cases in which we apply LinGBM (Section 5). In
particular, we show that LinGBM can be used i) to evaluate the e�ectiveness of
optimization techniques for GraphQL servers and ii) to study approaches that
focus on improving the read scalability of GraphQL servers. In this context, we
also present experimental results that highlight the pros and cons of selected
techniques, and we outline further application scenarios for the benchmark.

Due to space limitations, this paper assumes familiarity with GraphQL. In
an extended version of this paper we provide an overview of GraphQL and of
approaches to create GraphQL servers, and discuss LinGBM in more detail [6].

2 Existing Test Suites

While there is no work on GraphQL benchmarks in the research literature, there
exist a few performance-related test suites (cf. Table 1). These test suites are
GraphQL variations of HTTP load testing tools such as wrk and vegeta.2 Each of
them consists of a speci�c dataset (of a comparably small size), a few GraphQL
queries, and a test driver that records and visualizes throughput measurements
obtained by issuing these queries to a GraphQL server built over the dataset.

1 All the material related to LinGBM is available online (including, e.g., �les with the
query templates, the source code of tools, and documentation). In the related parts
of this paper we provide links to the relevant Web pages.

2 https://github.com/wg/wrk and https://github.com/tsenart/vegeta
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Table 1: Comparison of existing GraphQL test suites.
test suite number of datasets number of queries design method

gbench
https://github.com/graphql-quiver/gbench

1 (100 empty objects
and 1 string)*

5 queries unclear

The Benchmarker framework
https://github.com/the-benchmarker/graphql-benchmarks

1 (10 tuples)* 1 query unclear

PostGraphile's GraphQL Bench
https://github.com/benjie/graphql-bench-prisma

1 (15,607 tuples) 9 queries unclear

Hasura's GraphQL Bench
https://github.com/hasura/graphql-bench

1 (23,288 tuples) 3 queries unclear

GraphQL server benchmark
https://github.com/tsegismont/graphql-server-benchmark

1 (60 tuples)
4 templates with up
to 10 instances each

unclear

LinGBM (our proposal)
https://github.com/LiUGraphQL/LinGBM

unlimited (unbounded
scale factor)

16 templates with
100�1M+ instances each

choke-point
based

*need to be hardcoded in the resolver functions of the tested servers

We argue that these test suites are insu�cient for benchmarking the perfor-
mance achieved by di�erent approaches to build GraphQL servers. By focusing
on a single (small) dataset, these test suites cannot be used to study the behav-
ior of GraphQL server implementations at scale. By using only a small number
of �xed queries, it is not possible to extensively test or compare the through-
put of systems that may apply caching on various levels. Additionally, it is not
clear whether the few selected queries test all important aspects of approaches to
build GraphQL servers. Our work in this paper addresses the limitations of the
existing test suites and, more generally, the lack of a well-designed performance
benchmark for evaluating and comparing approaches to build GraphQL servers.

3 Design of the Benchmark

The aim of our benchmark is to provide a framework that can be used to test
and to compare the performance that can be achieved by di�erent approaches
to build GraphQL servers. To make this aim more concrete we identi�ed two
use case scenarios for the benchmark. Given these scenarios, we developed the
benchmark by applying the design methodology for benchmark development
of the Linked Data Benchmark Council [1]. The main artifacts created by the
process of applying this methodology are i) a data schema, ii) a workload of
operations to be performed by the system under test, iii) performance metrics,
and iv) benchmark execution rules. A crucial aspect of the methodology is to
identify key technical challenges, so-called choke points, for the types of systems
for which the benchmark is designed. These choke points then inform the creation
of the aforementioned artifacts. In this section we describe the two use case



scenarios and provide an overview of the choke points de�ned for our benchmark.
The benchmark artifacts shall then be introduced in the next section.

3.1 Use Case Scenarios

Scenario 1 represents use cases in which data from a legacy database has to be
exposed as a read-only GraphQL API with a user-speci�ed GraphQL schema.
Hence, this scenario focuses primarily on tools and techniques to implement
GraphQL servers manually.

Scenario 2 represents use cases in which data from a legacy database has to
be exposed as a read-only GraphQL API provided by an automatically gener-
ated GraphQL server. Hence, this scenario focuses on tools that auto-generate
all artifacts necessary to set up a GraphQL API over a legacy database. No-
tice that such tools do not support the �rst scenario out of the box because
any GraphQL API created by such a tool is based on a tool-specific generated
GraphQL schema (not a user-speci�ed one).

Due to the space limitation, the rest of this paper focuses primarily on Scenario 1.

3.2 Choke Points

As mentioned before, we have applied a choke-point based methodology [1] for
designing our benchmark. To this end, we have identi�ed 16 choke points for
GraphQL servers. As per our two benchmark scenarios (which capture read-
only use cases), these choke points focus only on queries. Table 2 (left-hand
side) lists these choke points, which are grouped into the following �ve classes.3

Choke Points Related to Attribute Retrieval: Queries may request the
retrieval of multiple attributes (scalar �elds) of the data objects selected by the
queries. The technical challenge captured by the corresponding choke point is to
fetch these attributes from the underlying data source using a single operation
rather than performing a separate fetch operation for each attribute.

Choke Points Related to Relationship Traversal: One of the main in-
novations of GraphQL in comparison to REST APIs is that it allows users to
traverse the relationships between data objects in a single request. Supporting
such a traversal in a GraphQL server may pose di�erent challenges, which are
captured by the choke points in this class. For instance, choke point CP 2.4
captures the challenge to avoid unnecessary operations in cases in which rela-
tionships between requested objects form directed cycles. Queries that traverse
along these relationships may come back to an object that has been visited be-
fore on the same traversal path. A naive implementation may end up requesting
the same data multiple times from the underlying data source. Even a more
sophisticated solution that caches and reuses the results of such requests may
end up repeating the same operations over the cached data.

3 For a detailed description of all 16 choke points covered by our benchmark we refer
to our wiki: https://github.com/LiUGraphQL/LinGBM/wiki/Choke-Points
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Table 2: Choke points of LinGBM and their coverage by the 16 query templates.
QT: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Attribute Retrieval
CP 1.1 Multi-attribute retrieval X X X X

Relationship Traversal
CP 2.1 Traversal of 1:N relationship types X X X X X X X X X X

CP 2.2 Traversal of 1:1 relationship types X X X X X X X X

CP 2.3 Traversal with retrieval of interme-
diate object data

X X X X X X X

CP 2.4 Traversal of relationship cycles X

CP 2.5 Acyclic relationship traversal that
visits objects repeatedly

X X X X X X X

Ordering and Paging
CP 3.1 Paging without o�set X X

CP 3.2 Paging with o�set X

CP 3.3 Ordering X X

Searching and Filtering
CP 4.1 String matching X X X

CP 4.2 Date matching X

CP 4.3 Subquery-based �ltering X X X

CP 4.4 Subquery-based search X

CP 4.5 Multiple �lter conditions X

Aggregation
CP 5.1 Calculation-based aggregation X

CP 5.2 Counting X

Choke Points Related to Ordering and Paging: Since an exhaustive traver-
sal of a sequence of 1:N relationships may easily result in reaching a prohibitively
large number of objects, providers of GraphQL APIs aim to protect their servers
from queries that cause such resource-intensive traversals. A common solution in
this context is to enforce clients to use paging when accessing 1:N relationships,
which essentially establishes an upper bound on the maximum possible fan-out
at every level of the traversal. A feature related to paging is to allow users to
specify a particular order over the objects visited by traversing a 1:N relationship.
This class of choke points focuses on implementing these features e�ciently.

Choke Points Related to Searching and Filtering: Field arguments in
GraphQL queries are powerful not only because they can be used as a �exible
approach to expose paging and ordering features. Another use case, which is
perhaps even more interesting from a data retrieval point of view, is to expose
arbitrarily complex search and �ltering functionality. The choke points in this
class capture di�erent challenges related to this use case.

Choke Points Related to Aggregation: Another advanced feature that
GraphQL APIs may provide is to execute aggregation functions over the queried
data. Challenges in this context are to compute aggregations e�ciently (CP 5.1)�
e.g., by pushing their computation into the underlying data source�and to rec-



ognize that for counting, the corresponding objects/values may not actually have
to be retrieved from the underlying data source (CP 5.2).

4 Elements of the Benchmark

4.1 Data Schema

The data schema of the benchmark4 consists of i) a database schema for synthetic
datasets that can be generated in the form of an SQL database or an RDF graph
database, ii) rules for generating such datasets in di�erent sizes, iii) a GraphQL
schema for a GraphQL server that may provide access to any version of the
benchmark dataset, and iv) a schema mapping that de�nes how the elements of
the GraphQL schema map to the database schema.

Datasets. Instead of creating a new dataset generator from scratch, LinGBM
reuses the dataset generator of the Lehigh University Benchmark (LUBM) [9].
LUBM is a popular benchmark in the Semantic Web community for evaluating
the performance of storage and reasoning systems for RDF data. The generated
datasets capture a �ctitious scenario of universities with departments, di�erent
types of faculty (lecturers, assistant professors, etc.), students, courses, research
publications, and other related types of entities as well as corresponding relation-
ships between them. It is easy to imagine di�erent Web or mobile applications in
such a scenario that enable students or researchers to browse and interact with
the data, where these applications access the data via a GraphQL API. Hence,
these datasets are a suitable starting point for a GraphQL benchmark.

In order �to make the data[sets] as realistic as possible,� the dataset gen-
erator applies �restrictions [that] are [...] based on common sense and domain
investigation� [9]. For instance, each university has 15�25 departments, each de-
partment has 7�10 full professors, and the undergraduate student/faculty ratio
per department is between 8 and 14, whereas the graduate student/faculty ratio
is between 3 and 4.5 The actual cardinalities are selected from these ranges uni-
formly at random. Similarly, when generating relationships between generated
entities, the entities to be connected are selected uniformly at random from the
corresponding pool of possible entities. Depending on the type of relationship,
this pool of possible entities is either context speci�c (e.g., students may take
courses only from their department) or global (e.g., grad students may have their
undergraduate degree from any university). The advantage of using uniform dis-
tributions for the data is that di�erent queries of the same query template have
the same predictable performance footprint; that is, they are roughly the same
in terms of properties such as intermediate result sizes and overall result sizes.

In addition to being su�ciently realistic and diverse in terms of di�erent
types of relationships, another important property for our purposes is that these
datasets can be generated at di�erent sizes where the number of universities
to be created serves as the scale factor. That is, the smallest dataset, at scale

4 https://github.com/LiUGraphQL/LinGBM/wiki/Data-Schema-of-the-Benchmark
5 http://swat.cse.lehigh.edu/projects/lubm/profile.htm
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factor 1, consist of the data about one university. Yet another important property
is that the data generation process is both deterministic and monotonic; hence,
all data that is generated at a smaller scale factor is guaranteed to be contained
in every dataset generated with the same random seed at a greater scale factor.
Due to these properties, we consider the LUBM datasets as a suitable basis for
our benchmark. The fact that LUBM has been designed for a di�erent purpose
is not an issue in this context because its focus on reasoning systems is re�ected
mainly in the queries de�ned for LUBM, not in its datasets.

The only relevant limitation of the LUBM datasets is that they can be created
only as RDF data. For LinGBM we wanted to also support SQL databases as un-
derlying data sources for the tested GraphQL servers. Therefore, we have de�ned
a relational database schema6 that resembles the concepts and relationships of
the LUBM ontology, and we have developed a mapping from the generated RDF
graphs to SQL databases that are instances of our database schema.

GraphQL schema. In addition to the benchmark datasets, LinGBM introduces
a GraphQL schema for exposing any version of these datasets as a GraphQL
API. Essentially, this schema contains an object type for each type of entities in
the benchmark dataset (universities, departments, graduate students, etc). The
�elds of each such object type match both the attributes of the corresponding
entity type and its relationships to other entity types. For example, the ob-
ject type GraduateStudent in the LinGBM GraphQL schema has �elds such as
emailAddress and memberOf where the former is for the email-address attribute of
each graduate student in the generated datasets and the latter is for the relation-
ship that such students have to the department they belong to. Hence, the value
type of this memberOf �eld is the object type Department which, in turn, contains a
�eld called graduateStudents, with a GraduateStudent list as value type, to allow
for GraphQL queries that traverse the relationship in the reverse direction.

In addition to the object types that we created by this straightforward trans-
lation of the database schema into a GraphQL schema, we added a few more
�elds and types to the GraphQL schema in order to cover all the aforementioned
choke points of the benchmark. For example, some �elds were extended with ar-
guments to express �lter conditions or requirements for sorting and paging. The
complete LinGBM GraphQL schema can be found online7, and we also provide
a de�nition of the mapping8 between this GraphQL schema and the schema
of the benchmark datasets. Notice that this GraphQL schema is relevant only
for Scenario 1 of the benchmark (cf. Section 3.1). GraphQL schemas as used in
Scenario 2 are auto-generated by the corresponding systems under test.

Table 3: Dataset sizes at di�erent scale factors.
sf = 1 sf = 10 sf = 100 sf = 150

�le size 12 MB 161 MB 1.66 GB 2.60 GB
overall rows 43,319 542,467 5,707,958 8,490,274
overall objects 17,195 207,426 2,179,766 3,243,523

Statistics. The size of each
LinGBM dataset depends on
the corresponding scale fac-
tor. Table 3 presents these
statistics for scale factors 1,
10, 100, and 150, using three

6 https://github.com/LiUGraphQL/LinGBM/wiki/Datasets
7 https://github.com/LiUGraphQL/LinGBM/tree/master/artifacts
8 https://github.com/LiUGraphQL/LinGBM/wiki/Schema-Mapping
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di�erent metrics: i) the �le size of the generated SQL import scripts, ii) the
sum of the number of rows across all tables of the generated SQL database,
and iii) the sum of the overall number of objects for all types of the LinGBM
GraphQL schema. As can be observed from these numbers, for each of the three
metrics, the dataset size increases linearly with the scale factor.

4.2 Query Templates

As a basis for creating query workloads, we have hand-crafted a mix of 16 tem-
plates of GraphQL queries such that, on one hand, these queries cover the choke
points identi�ed in the initial design phase of our benchmark (cf. Section 3.2).
At the same time, given the university scenario represented by the benchmark
datasets, the queries capture data retrieval requests that may be issued by Web
or mobile applications built for such a scenario. We emphasize that these queries
are completely independent of the queries considered by the aforementioned
LUBM benchmark. Although we adopt (and extend) the dataset generator of
LUBM, the queries of that benchmark are irrelevant for our purpose because
they have been created with a focus on testing RDF stores and reasoners. In
contrast, the mix of query templates that we have created for LinGBM focuses
on GraphQL servers and their speci�c choke points. Table 2 illustrates the cov-
erage of these choke points by our LinGBM query templates.

Table 4: Number of query instances
at di�erent scale factors.

sf = 1 sf = 10 sf = 20
QT1 540 6,843 14,457

QT2 1,000 1,000 1,000

QT3 224 2,827 6,032

QT4 93 1,128 2,399

QT5 15 189 402

QT6 1,000 1,000 1,000

QT7 48,950 493,250 989,250

QT8 15,000 15,000 15,000

QT9 2,000 2,000 2,000

QT10 27,077 344,750 728,208

QT11 1,000 1,000 1,000

QT12 14,685 1,864,485 7,953,570

QT13 899,701 113,921,020 480,241,305

QT14 6,297,907 797,447,140 3,361,689,135

QT15 1,000 1,000 1,000

QT16 1,000 1,000 1,000

Each such template is a GraphQL
query that contains at least one place-
holder for speci�c values that exist in the
generated benchmark datasets. To instan-
tiate such a template into an actual query,
every placeholder has to be substituted by
one of the possible values. For some place-
holders, the number of possible values
depends on the scale factor (bigger ver-
sions of the benchmark datasets may con-
tain more possible values), whereas other
placeholders are independent of the scale
factor. For query templates with a place-
holder of the former type, the number of
possible instances of the template increases with the scale factor. Table 4 lists
these numbers for each template at di�erent scale factors.

While all 16 templates can be found online9, including a detailed description
of each of them10, in the following, we describe one of them as an example.

Figure 1 presents query template QT5, which is a typical example of queries
that traverse relationships in cycles and that, thus, may come back to the same
objects multiple times. In the particular case of QT5, the traversal starts from a

9 https://github.com/LiUGraphQL/LinGBM/blob/master/artifacts/

queryTemplates
10 https://github.com/LiUGraphQL/LinGBM/wiki/Query-Templates
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given department, retrieves the university of this department, then proceeds to
retrieve all graduate students with an undergraduate degree from this university,

query qt5($departmentID:ID) {
department(nr:$departmentID) {
id
subOrganizationOf {

id
undergraduateDegreeObtainedBystudent {

id
emailAddress
memberOf {

id
subOrganizationOf {

id
undergraduateDegreeObtainedBystudent {

id
emailAddress
memberOf { id }

} } } } } } }

Fig. 1: Query template QT5.

and then to the departments
that these students are mem-
bers of. This cycle is repeated
two times. Hence, QT5 covers
choke point CP 2.4. Addition-
ally, by requesting the students'
email addresses along the way,
the template also covers choke
point CP 2.3. Furthermore, the
template covers CP 2.1 (because
of the traversal from a univer-
sity to graduate students) and
CP 2.2 (because of the traversal
from departments to their respec-

tive university, as well as from each graduate student to their department). The
placeholder of this query template is $departmentID, which is used to select a
department based on its number as a starting point for the traversal. Hence, for
any benchmark dataset, all department numbers in this dataset can be used to
instantiate QT5 in order to obtain queries that can be used for the dataset, as
well as for all datasets generated with scale factors greater than the given dataset.

4.3 Performance Metrics

The performance metrics considered by LinGBM are de�ned based on the follow-
ing two notions: i) Query execution time (QET ) is the amount of time that passes
from the begin of sending a given query request to the GraphQL server under
test until the complete query result has been received in return. ii) Throughput
is the number of queries that are processed completely by a GraphQL-based
client-server system within a speci�ed time interval, where a query is considered
to be processed completely after its complete result has been received by the
client that requested the execution of the query.

Then, for single queries, we de�ne the metric aQETq as the average of
the QETs measured when executing an individual query multiple times with
the GraphQL server under test. When reporting this metric, the corresponding
standard deviation has to be reported as well.

For whole query templates, we de�ne the following two metrics: i) QETt is
the distribution of the individual QETs measured for multiple queries of the same
template and ii) aTPt is the average of the throughput measured when running
the same query workload multiple times, where the queries in the workload are
all from the same template.

For mixed workloads with queries from multiple templates, i) aTPw is
the average of the throughput measured when running the same mixed query
workload multiple times and ii) aTPm is the average of the throughput measured
for multiple mixed workloads, where each such workload is run once.



4.4 Tools

To enable users to perform experiments with the benchmark we have developed
a number of tools, including a dataset generator, a query generator, and test
drivers for both throughput and QET experiments. For more information about
them refer to the github repository of the benchmark.11

5 Application of the Benchmark

In this section we demonstrate the applicability of LinGBM for two di�erent
microbenchmarking use cases and present corresponding experimental results.

5.1 General Experiments Setup

All experiments described in the following have been performed on a server
machine with two 8-core Intel Xeon E5-2667 v3@3.20GHz CPUs and 256 GB
of RAM. The machine runs a 64-bit Debian GNU/Linux 10 server operation
system. On this machine, we use Docker (v9.03.6) to run all components of the
experiment setups in a separate, virtual environment (e.g., the GraphQL server
under test, the database server used as data source, and the LinGBM test driver).

All GraphQL servers that we implemented manually for the experiments
are node.js (v10.21.0) applications that use the Apollo Server package (v2.17.0)
and, for database access, the knex.js package (v0.20.15). As database server we
use PostgreSQL (v12.1, default con�guration options), given as a public Docker
image, for which we limit the available resources to two vCPUs and 1 GB RAM.
To obtain the relevant measurements we used the LinGBM test drivers.

Based on preliminary tests, we selected the following default parameters for
the experiments. Unless speci�ed otherwise, we use scale factor 100 and, to con-
nect to the database server, the manually-implemented GraphQL servers use
connection pooling with up to 10 parallel connections. Most experiments focus
on average throughput per template (aTPt, cf. Section 4.3) with one client, for
which we always do six runs of 60 secs where the �rst run is regarded as warm-up
and the number of successfully completed queries per each of the other �ve runs
are averaged. To have a su�ciently high number of distinct queries for these
throughput runs, we generated 5000 queries for every template for which this is
possible at scale factor 10 (which is the smallest scale factor used in our experi-
ments), and for the other templates we used the maximum possible (cf. Table 4).

5.2 Evaluation of Optimization Techniques

The aim of our �rst use case is to evaluate the e�ectiveness of two prominent
optimization techniques used in GraphQL servers, and to show which choke
points each of these techniques can address. The techniques are called server-side

11 https://github.com/LiUGraphQL/LinGBM/tree/master/tools
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caching and batching.12 The idea of server-side caching is to cache the response
to every request that the resolver functions in the GraphQL server make to the
underlying data source, and if the exact same request is made again within the
scope of executing a given GraphQL query, then use the response from the cache
instead of accessing the data source again. The idea of batching is to combine
multiple similar requests to the underlying data source into a single request.
Typically, this can be done for the requests issued by the same resolver function
based on di�erent inputs. A popular tool to implement this form of server-side
request batching is called DataLoader13 which also supports server-side caching.

For this evaluation we have developed a GraphQL server for Scenario 1 of
the benchmark by using a straightforward implementation in which resolver
functions for the elements of the GraphQL schema issue SQL queries to fetch
the relevant data from the underlying database. This GraphQL server imple-
mentation represents the baseline for the evaluation and we call it the naive
server. Thereafter, we have extended this server in three di�erent ways to obtain
three additional test servers: As a �rst variation, we have integrated server-side
caching using memoization. For the second variation, we have replaced the naive
resolvers by resolvers that use DataLoader to implement both server-side caching
and batching. The third variation is a version of the second with caching disabled
in DataLoader (i.e., it uses only batching). The source code for these four test
servers (the naive one plus the three extended variations) is available online.14

Initial macro-level comparison. We begin by comparing the test servers
based on the aTPm metric using six di�erent mixed workloads. Each of them is
a randomly sorted sequence of 100 queries from each template (i.e., 1600 queries
per workload in total). We have measured aTPm with one client and a runtime
of 600 seconds per workload.15 For each tested server, the �rst workload was
used as a warm-up and the throughputs achieved for the other �ve workloads
were averaged to calculate aTPm. In this experiment, naive server achieved an
average throughput of 200 queries; for the server with caching, it is 312; with
batching, 729; and with both batching and caching together, 735. These numbers
show that i) both optimization techniques improve upon the baseline of the naive
server, ii) batching is signi�cantly more e�ective than caching, and iii) adding
caching to batching does not lead to a signi�cant improvement over batching
alone. While this experiment, with its diverse mix of queries, gives us a general
idea of the e�ectiveness of the two optimization techniques, it does not allow
us to derive more detailed insights about them. To gain such insights we can
leverage the template-specific and query-specific metrics of LinGBM as follows.

Experiments. As a �rst microbenchmarking experiment, we have measured
the aTPt that the four test servers achieve for each of the 16 query templates
at scale factor 100 with one client. Figure 2a illustrates these measurements (er-

12 https://graphql.org/learn/best-practices/#server-side-batching-caching
13 https://github.com/graphql/dataloader
14 https://github.com/LiUGraphQL/LinGBM-OptimizationTechniquesExperiments
15 We use a longer duration for these runs (600s rather than 60s) to ensure that the

tested servers have to process a greater selection of queries from each template.

https://graphql.org/learn/best-practices/#server-side-batching-caching
https://github.com/graphql/dataloader
https://github.com/LiUGraphQL/LinGBM-OptimizationTechniquesExperiments


(a) aTPt (one client) for each query template as achieved with di�erent optimizations

(b) QETt (in ms) for QT5 (c) QETt (in ms) for QT9

Fig. 2: Comparison of GraphQL server implementations with di�erent optimiza-
tion techniques, in terms of average throughput with one client (a) and execution
times of 100 queries of template QT5 (b) and QT9 (c), at scale factor 100.

ror bars represent one standard deviation). Thereafter, we have measured the
corresponding QETt required by the test servers for a single run with 100 ran-
domly selected queries per template. The box plots in Figures 2b�2c illustrate
these measurements for templates QT5 and QT9, respectively.16 As a last exper-
iment, we have increased the scale factor from 100 to 125, and then to 150, and
measured aQETq for �ve randomly selected queries per template, as illustrated
in Figure 3 for �ve queries of QT5.

General observations. A �rst, expected observation is that smaller query ex-
ecution times result in a greater throughput, as can be seen in Figure 2 by
comparing the aTPt and the corresponding QETt that each test server achieves
for QT5 and QT9. We also observe that, for the queries of some query templates,
the execution times increase signi�cantly at increasing scale factors (e.g., QT5,
cf. Figure 3), whereas for other templates the changes are less substantial. We
explain these di�erences by di�erences in how the respective query result sizes
increase at greater scale factors (i.e., for some templates the result sizes increase
more than for others).

Server-side caching. In our experiment, server-side caching has a major impact
only for QT5. The reason why executions of QT5 queries can leverage caching
is because the template captures choke point CP 2.4 (traversal of relationships
that form cycles). More precisely, these queries retrieve data about particular

16 The complete set of QETt charts for all templates can be found in a companion
document in the aforementioned github repository with the four test servers.



Fig. 3: aQETq (in ms) for individual queries of QT5 at increasing scale factors.

graduate students once, and then come back to these graduate students later in
a subquery; additionally, for these graduate students, the queries retrieve data
about the students' departments and multiple students belong to the same de-
partment. Server-side caching enables the GraphQL server to avoid fetching the
same data for these students and departments multiple times from the database.
Server-side batching. The idea to combine multiple requests to the underly-
ing database helps to increase the throughput for queries of QT2, QT4�QT7,
and QT9 (cf. Figure 2a). The choke point that is common to these query tem-
plates is CP 2.1 which captures traversals of 1:N relationship types. The execu-
tion of such queries involves at least two resolvers where the �rst one returns an
array of objects and then, for each of these objects, the second resolver is invoked
once. If this second resolver performs an SQL request in the context of the given
input object, these requests for the di�erent input objects from the array can be
batched, and that is exactly the case for the aforementioned templates.

While the same is true also for templates QT12�QT14, batching has no e�ect
for queries of these templates. The reason is that these templates contain �lter
conditions regarding the objects in the corresponding array, and only few objects
satisfy this condition. As a result, the number of SQL requests that are batched
in these cases is just too small to make a di�erence.

A question that remains is why QT1 is not a�ected by batching although
it covers CP 2.1 as well. The reason is that, in this case, none of the resolvers
that are invoked multiple times issues any SQL requests (the data they use has
already been fetched by parent resolvers). Hence, we conclude that batching
addresses CP 2.1 for queries in which any subquery that follows a traversal of a
1:N relationship requires further requests to the underlying data source.

5.3 Evaluation of Connection Pooling

With the second use case we aim to demonstrate that LinGBM can be em-
ployed to evaluate the e�ectiveness of approaches to achieve read scalability of a



(a) QT3 (10 connections) (b) QT5 (10 connections) (c) QT5 (server w. batching)

Fig. 4: Average throughput (aTPt, sf =100) for multiple concurrent clients, where
the test servers in (a)�(b) use a max of 10 connections to the underlying DB.

GraphQL server. While there is a wide range of options to this end, we consider
a simple option for demonstrating this use case, namely, the option to vary the
number of connections between the GraphQL server to the database server.

Experiments. As a �rst experiment, to understand how the number of clients
a�ects the performance of our manually-implemented GraphQL servers, we have
repeated the earlier throughput experiment with an increasing number of clients
that issue sequences of GraphQL queries concurrently (�rst two clients, then
three, four, �ve, ten, 15, 20, 30, 40, and 50). Figures 4a�4b illustrate these
measurements for both the naive server and the server with batching, for the
queries of QT3 and QT5, respectively. Thereafter, for the server with batching,
we have repeated this experiment with di�erent values for the maximum number
of database connections. Figure 4c illustrates these measurements for the queries
of QT5 (note that the x-axis in this chart is stretched to better see the measure-
ments for smaller numbers of clients). For these experiments we used a smaller
dataset (sf =10) because, in some cases for the bigger dataset, the test servers
became overloaded when serving multiple clients; in particular, this was the case
for queries that have much bigger results at greater scale factors (e.g., QT5).

Observations. For QT3, and both server variants, we observe that the through-
put increases when going from one to two clients, but then it does not increase
further when adding more clients. We explain this behavior as follows: QT3
queries traverse along three N:1 relationship types and, thus, have results that
consist of a single leaf node, and batching cannot be leveraged for these queries.
During the execution of each such query, the GraphQL server issues four SQL
requests to the database server, one after the other. Hence, with the default
connection pool size of 10, the queries of two clients can be served concurrently
without any interference. However, when aiming to serve three clients or more,
the executions of the concurrent queries are competing for the available database
connections and, thus, the throughput stagnates.

For QT5, without batching, the naive test server issues several hundred
SQL requests per GraphQL query. In this case, the limited number of available
database connections becomes a bottleneck already for one client. In contrast,



when using batching, the test server needs only three SQL requests for each QT5
query and, thus, the throughput starts to increase when serving more than one
client concurrently. In comparison to QT3, however, for QT5 queries, fetching
data from the database is not the only major task of the test server but, instead,
the fetched data also needs to be combined into larger result trees. As a conse-
quence, even if concurrent query executions compete for the available database
connections, the overall throughput increases up to �ve clients. However, when
increasing the number of concurrent clients beyond �ve, the throughput starts
to drop slightly. At this point, since each of the batched SQL requests fetches
more data, constantly switching between requests for di�erent concurrent queries
means that the waiting times of each concurrent query execution are a�ected
more and more as the number of concurrent query executions increases.

If we now consider the option to vary the connection pool size (cf. Figure 4c),
we make two observations in our setting for QT5: First, a connection pool size
that is smaller than the default value of 10 causes the throughput to drop already
for smaller numbers of clients, which is not unexpected of course. Second, how-
ever, increasing the connection pool size does not help to improve the throughput
anymore. At this point, the database server becomes the bottleneck.

6 Concluding Remarks

This paper introduces LinGBM, a benchmark to evaluate the performance that
can be achieved by various approaches to build a GraphQL server over an ex-
isting database. LinGBM captures key technical challenges (�choke points�) to
be addressed when building such server. After introducing LinGBM, we have
demonstrated its applicability for two di�erent microbenchmarking use cases.

We emphasize, however, that these are not the only types of use cases for
which LinGBM can be employed. For instance, our experiments may be extended
to setups in which multiple machines are used (e.g., to study the e�ect of remote
database servers or to analyze di�erent load-balancing approaches for GraphQL
servers). Moreover, given that the benchmark datasets can also be generated
in the form of RDF graphs, approaches to provide GraphQL-based access to
such RDF data�and to graph databases in general�can be tested with the
benchmark. Further use cases may focus on stress testing of systems by using
mixed workloads from multiple selected templates (e.g., all templates that cover a
particular choke point). In fact, the de�nition of mixed workloads may go beyond
considering only an equal and uniform distribution of queries from di�erent
templates (as done in Section 5.2). LinGBM provides everything needed to design
and run experiments with a speci�c mix of queries that is typical in a particular
application scenario (where some types of queries are more frequent than others).

One of our future work tasks is to de�ne and evaluate such workloads for
selected application scenarios. Another task will be to extend the benchmark
with update operations and possible read-write workloads.
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