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ABSTRACT
Federations of RDF data sources provide great potential when

queried for answers and insights that cannot be obtained from

one data source alone. A challenge for planning the execution of

queries over such a federation is that the federation may be het-

erogeneous in terms of the types of data access interfaces provided

by the federation members. This challenge has not received much

attention in the literature. This paper provides a solid formal foun-

dation for future approaches that aim to address this challenge. Our

main conceptual contribution is a formal language for representing

query execution plans; additionally, we identify a fragment of this

language that can be used to capture the result of selecting rele-

vant data sources for different parts of a given query. As technical

contributions, we show that this fragment is more expressive than

what is supported by existing source selection approaches, which

effectively highlights an inherent limitation of these approaches.

Moreover, we show that the source selection problem is NP-hard

and in ΣP
2
, and we provide a comprehensive set of rewriting rules

that can be used as a basis for query optimization.

CCS CONCEPTS
• Information systems → Federated databases; Query plan-
ning; Mediators and data integration;Web interfaces.
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1 INTRODUCTION
Existing research on querying federations of RDF data sources fo-

cuses on federations that are homogeneous in terms of the type

of interface via which each of the federation members can be ac-

cessed. In particular, the majority of work in this context assumes

that all federation members provide the SPARQL endpoint inter-

face (e.g., [3, 7, 22, 23, 25, 28]), whereas another line of research

focuses solely on URI lookups (e.g., [13, 17, 26]). However, there

exist other types of Web interfaces to access an RDF data source,

including the Triple Pattern Fragment (TPF) interface [27], the

Bindings-Restricted TPF (brTPF) interface [14], the SaGe inter-

face [18], and the smart-KG interface [4]. Given the fact that each
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type of interface has particular properties and makes different trade-

offs [4, 14, 15, 18, 27] (and the same will hold for other types of such

interfaces proposed in the future), any provider of an RDF data

source may choose to offer a different type of interface, which leads

to federations that are heterogeneous in terms of these interfaces.

Such a heterogeneity poses extra challenges for query federa-

tion engines—especially during query planning—because different

interfaces may require (or enable!) the engine to leverage specific

physical operators, and not all forms of subqueries can be answered

directly by every interface. To the best of our knowledge, there does

not exist any research on systematic approaches to tackle these

challenges. This paper provides a starting point for such research.

We argue that any principled approach to query such heteroge-

neous federations of RDF data sources has to be based on a solid

formal foundation. This foundation should provide not only a for-

mal data model that captures this notion of federations, including

a corresponding query semantics, but also formal concepts to pre-

cisely define the artifacts produced by the various steps of query

planning. There are typically three main types of such artifacts

in a query federation engine: the results of the query decomposi-

tion & source selection step [28], logical query plans, and physical

query plans. We observe that, so far, such artifacts have been treated

very informally in the literature on query engines for (homoge-

neous) federations of RDF data. That is, the authors talk about

query plans only in terms of examples, where these examples are

typically informal illustrations that visually represent some form of

a tree in which the leaf nodes are one or more triple patterns with

various annotations and the internal nodes are operators from the

SPARQL algebra (sometimes in combination with some additional,

informally-introduced operators [25]). The lack of approaches to

describe query plans formally is the focus of our work in this paper.

Contributions and organization of the paper: After introduc-
ing a suitable formal data model and a corresponding query se-

mantics for using the query language SPARQL (cf. Section 3), we

make our main conceptual contribution: We define a language,

called FedQPL, that can be used to describe logical query plans

formally (cf. Section 4). This language can be applied both to define

query planning and optimization approaches in a more precise man-

ner and to actually represent the logical plans in a query engine.

FedQPL features operators to explicitly capture the intention to

execute a particular subquery at a specific federation member and

to distinguish whether such an access to a federation member is

meant to be based solely on the given subquery or also on inter-

mediate results obtained for other subqueries. We argue that such
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features are paramount for any principled approach to query plan-

ning in heterogeneous federations where the characteristics and

limitations of different data access interfaces have to be taken into

account (and, certainly, these features can also be leveraged when

defining new approaches that focus on homogeneous federations).

Given the full definition of FedQPL, we then study a specific

fragment of this language that can be used to describe which fed-

eration members have to be contacted for which part of a given

query (cf. Section 5). Hence, this language fragment provides a

formal tool that is needed to develop well-defined source selection

approaches. Moreover, in practice, this language fragment can be

used to represent the results of such approaches directly as initial
logical query plans that can then be optimized in subsequent query

planning steps. As technical contributions regarding this language

fragment we show that the corresponding source selection problem

is NP-hard and in ΣP
2
. Additionally, we show that the language frag-

ment cannot only capture any possible output of existing source

selection approaches for homogeneous federations but, even when

used only for such federations, it can express solutions to the source

selection problem that these approaches are not able to produce.

Finally, as another technical contribution, we show a compre-

hensive set of equivalences for FedQPL expressions that can be

used as query rewriting rules for query optimization (cf. Section 6).

Limitations: It is not the purpose of this paper to develop concrete
approaches or techniques for source selection, query planning, or

query optimization. Instead, we focus on providing a solid theoret-

ical foundation for such work in the future. A specific limitation

regarding our contributions in this paper is that the given defini-

tion of FedQPL covers only the join-union fragment of SPARQL.

However, the formalism can easily be extended with additional

operators, which is part of our future work.

2 PRELIMINARIES
This section provides a brief introduction of the concepts of RDF

and SPARQL that are relevant for our work in this paper. Due to

space limitations, we focus on notation and relevant symbols, and

refer to the literature for the detailed formal definitions [12, 20]. It

is important to note that, in this paper, we focus on the set-based

semantics of SPARQL as introduced by Pérez et al. [20].

We assume pairwise disjoint, countably infinite sets:U (URIs),

B (blank nodes), L (literals), andV (variables). An RDF triple is a
tuple (s,p,o) ∈ (U ∪B) ×U × (U ∪B ∪ L). A set of such triples

is called an RDF graph.
The fundamental building block of SPARQL queries is the notion

of a basic graph pattern (BGP) [12]; each such BGP is a nonempty

set of so-called triple patterns where every triple pattern is a tuple in
(V∪U )× (V∪U )× (V∪U∪L).1 Other types of graph patterns

for SPARQL queries can be constructed by combining BGPs using

various operators (e.g., UNION, FILTER, OPTIONAL) [12].

The result of evaluating any such graph pattern P over an RDF

graph G is a set—typically denoted by [[P]]G [20]—that consists of

so-called solution mappings, where a solution mapping is a partial

function µ : V → U ∪ B ∪ L.

1
For the sake of simplicity we do not permit blank nodes in triple patterns. In practice,

each blank node in a SPARQL query can be replaced by a new variable.

For the case that P is a BGP B, [[P]]G consists of every solution

mapping µ for which dom(µ ) = vars(B) and µ[B] ⊆ G, where
vars(B) is the set of all variables in B and µ[B] denotes the BGP
that we obtain by replacing the variables in B according to µ; notice
that µ[B] is a set of RDF triples if vars(B) ⊆ dom(µ ). For any triple

pattern tp, we write [[tp]]G as a shorthand notation for [[{tp}]]G .
For any more complex graph pattern P , [[P]]G is defined based

on an algebra [20]. This algebra—which we call the SPARQL al-
gebra—consists of several operators over sets of solution map-

pings, including Z (join) and ∪ (union) [20]. For instance, the

join of two sets of solution mappings, Ω1 and Ω2, is defined as

Ω1 Z Ω2
:= {µ1 ∪ µ2 | µ1 ∈ Ω1, µ2 ∈ Ω2, and µ1 ∼ µ2}, where

we write µ1 ∼ µ2 if µ1 (?v ) = µ2 (?v ) for every variable ?v in

dom(µ1) ∩ dom(µ2); in this case, the combination of µ1 and µ2, de-
noted by µ1 ∪ µ2, is also a solution mapping. It is not difficult to see

that, for two BGPsB1 andB2, it holds that [[B1]]G Z [[B2]]G = [[B]]G
where B = B1∪B2 [20]. Since the operators Z and ∪ are associative

and commutative [20, 24], we can avoid parenthesis when combin-

ing more than two sets of solution mappings using either of these

operators; e.g., (Ω1 Z Ω2) Z Ω3 = Ω1 Z Ω2 Z Ω3.

3 DATA MODEL
This section introduces a data model that captures the notion of a

federation of RDF data sources that is heterogeneous in terms of

the types of data access interfaces of the federation members. The

model includes a query semantics that defines the expected result

of executing a SPARQL query over such a federation.

A key concept of the data model is that of an interface, which we

abstract by two components: a language for expressing data access

requests and a function that, given an RDF graph, turns any expres-

sion in the language of the interface into a set of solution mappings.

Definition 1. An RDF data access interface (interface) I is a
tuple (Lreq, ϱ) where Lreq denotes a language and ϱ is a function

that maps every pair (ρ,G ), consisting of an expression ρ in Lreq
and an RDF graph G, to a set of solution mappings.

The following three examples illustrate how any concrete inter-

face can be defined in the context of our formalization.

Example 1. The SPARQL endpoint interface [8] enables clients to re-
quest the result for any SPARQL query over the server-side dataset.

Hence, a server that provides this interface executes each requested

SPARQL query over its dataset and, then, returns the result to the

client. We may abstract this functionality by defining an interface

Isparql = (Lsparqlreq, ϱsparql) where the expressions in Lsparqlreq are

all SPARQL graph patterns and ϱsparql is defined for every graph

pattern P and every RDF graph G such that ϱsparql (P ,G ) := [[P]]G .

Example 2. While a SPARQL endpoint server enables clients to

query its dataset by using the full expressive power of SPARQL,

providing such a comparably complex functionality may easily

overload such servers [6]. To address this issue, several more re-

stricted types of interfaces have been proposed with the goal to shift

some of the query execution effort from the server to the clients.

The first of these alternatives has been the Triple Pattern Fragment
(TPF) interface [27] that allows clients only to send triple pattern

queries to the server. More specifically, via this interface, clients can

request the triples from the server-side dataset that match a given
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triple pattern. In terms of our model, we abstract this functionality

by an interface ITPF = (LTPF-req, ϱTPF) where the expressions in

LTPF-req are all triple patterns and ϱTPF is defined for every triple

pattern tp and every RDF graph G such that ϱTPF (tp,G ) := [[tp]]G .

Example 3. The Bindings-Restricted TPF (brTPF) interface [14] ex-
tends the TPF interface by allowing clients to optionally attach

intermediate results to triple pattern requests. The response to such

a request is expected to contain only those matching triples that are

guaranteed to contribute in a join with the given intermediate result.

We define a corresponding interface IbrTPF = (LbrTPF-req, ϱbrTPF)
where the expressions in LbrTPF-req are i) all triple patterns and

ii) all pairs consisting of a triple pattern and a set of solution map-

pings, and ϱbrTPF is defined for every triple pattern tp, every set Ω
of solution mappings, and every RDF graph G such that

ϱbrTPF
(
tp,G

)
:= [[tp]]G , and

ϱbrTPF
(
(tp,Ω),G

)
:=




[[tp]]G if Ω = ∅,

{µ ∈ [[tp]]G | ∃µ
′ ∈ Ω : µ ∼ µ ′} else.

Given the notion of an interface, we can now define our notion

of a federation.

Definition 2. A federation member fm is a pair (G, I ) that con-
sists of an RDF graph G and an interface I . A federation F is a

finite and nonempty set of federation members such that every

member fm = (G, I ) in F uses a disjoint set of blank nodes; i.e.,

bnodes(G ) ∩ bnodes(G ′) = ∅ for every other fm′= (G ′, I ′) in F .

Example 4. As a running example for this paper, we consider

a simple federation Fex = {fm1
, fm

2
, fm

3
} with three members:

fm
1
= (G1, IbrTPF), fm2

= (G2, ITPF), and fm
3
= (G3, Isparql). The

data in these members are the following RDF graphs.

G1 = {(a, foaf:knows, c)} G2 = {(c, foaf:name, "Lee"),
(d, foaf:name, "Alice")}

G3 = {(a, foaf:knows, b), (b, foaf:name, "Peter")}

Informally, the result of a SPARQL query over such a federation

should be the same as if the query was executed over the union of

all the RDF data available in all the federation members. Formally,

this query semantics is defined as follows.

Definition 3. The evaluation of a SPARQL graph pattern P over

a federation F , denoted by [[P]]F , is a set of solution mappings that

is defined as: [[P]]F := [[P]]Gunion
whereGunion =

⋃
(G, I )∈F G (and

[[P]]Gunion
is as in Section 2).

Example 5. Consider a BGP Bex = {tp1, tp2} with the two triple

patterns tp1 = (?x , foaf:knows, ?y) and tp2 = (?y, foaf:name, ?z).
When evaluating Bex over our example federation Fex in Example 4,

we obtain [[Bex]]Fex = {µ1, µ2} with

µ1 = {?x→a, ?y→c, ?z→"Lee"}, and

µ2 = {?x→a, ?y→b, ?z→"Peter"}.

For any interface I = (Lreq, ϱ), we say that I supports triple pat-
tern requests if we can write every triple pattern tp as a request ρ in

Lreq such that for every RDF graphG we have that ϱ (ρ,G ) = [[tp]]G .
Similarly, I supports BGP requests if every BGP B can be written

as a request ρ in Lreq such that for every RDF graph G we have

that ϱ (ρ,G ) = [[B]]G . Then, out of the three aforementioned in-

terfaces (cf. Examples 1–3), only the SPARQL endpoint interface

supports BGP requests, but all three support triple pattern requests.

The notion of support for triple pattern requests (resp. BGP

requests) can be carried over to federation members; e.g., if the

interface I of a federation member fm = (G, I ) supports triple
pattern requests, we also say that fm supports triple pattern requests.

Finally, we say that a federation is triple pattern accessible if all
of its members support triple pattern requests. For the complexity

results in this paper (cf. Section 5.6) we assume that such federations

can be encoded on the tape of a Turing Machine such that all triples

that match a given triple pattern can be found in polynomial time.

4 QUERY PLAN LANGUAGE
Now we introduce our language, FedQPL, to describe logical plans

for executing queries over heterogeneous federations of RDF data.

A logical plan is a tree of algebraic operators that capture a declar-

ative notion of how their output is related to their input (rather than

a concrete algorithm of how the output will be produced, which is

the focus of physical plans). Additionally, a logical plan typically

also indicates an order in which the operators will be evaluated.

As mentioned in the introduction, such plans are presented only

informally in existing work on query engines for federations of RDF

data. In contrast to these informal representations, we define both

the syntax and the semantics of FedQPL formally. In comparison

to the standard SPARQL algebra, the main innovations of FedQPL

are that it contains operators to make explicit which federation

member is accessed in each part of a query plan and to distinguish

different ways of accessing a federation member.

We begin by defining the syntax of FedQPL.

Definition 4. A FedQPL expression is an expression φ that can

be constructed from the following grammar, in which req, tpAdd,
bgpAdd, join, union, mj, mu, (, and ) are terminal symbols, ρ is an

expression in the request language Lreq of some interface, fm is

a federation member, tp is a triple pattern, B is a BGP, and Φ is a

nonempty set of FedQPL expressions.

φ ::= req ρfm | tpAdd tpfm (φ) | bgpAdd Bfm (φ) |

join(φ,φ) | union(φ,φ) | mjΦ | muΦ

Before we present the formal semantics of FedQPL expressions,

we provide an intuition of the different operators of the language.

4.1 Informal Overview and Intended Use
The first operator, req, captures the intention to retrieve the result

of a given (sub)query from a given federation member, where the

(sub)query is expressed in the request language of the interface

provided by the federation member.

Example 6. For BGP Bex = {tp1, tp2} in Example 5 we observe

that member fm
1
of our example federation Fex (cf. Example 4) can

contribute a solution mapping for tp1, whereas fm2
can contribute

two solution mappings for tp2. The intention to retrieve these solu-

tion mappings from these federation members can be represented

in a logical plan by the operators req tp1fm
1

and req tp2fm
2

, respectively.

Example 7. We also observe that, by accessing federation mem-

ber fm
3
∈ Fex, we may retrieve a nonempty result for the example
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BGP Bex as a whole. The intention to do so can be represented by the

operator req {tp1,tp2 }fm
3

. Notice that such a request with a BGP (rather

than with a single triple pattern) is possible only because the inter-

face of fm
3
is the SPARQL endpoint interface Isparql (cf. Example 4)

which supports BGP requests.

The second operator, tpAdd, captures the intention to access a

federation member to obtain solution mappings for a single triple

pattern that need to be compatible with (and are to be joined with)

solution mappings in a given intermediate query result.

Example 8. Continuing with our example BGP (cf. Example 5)

over our example federation Fex (cf. Example 4), we observe that

the solution mapping for tp1 from fm
1
can be joined with only one

of the solution mappings for tp2 from fm
2
. To produce the join be-

tween the two sets of solution mappings (i.e., between [[tp1]]G1
and

[[tp2]]G2
) we may use the set [[tp1]]G1

as input to retrieve only those

solution mappings for tp2 from fm
2
that can actually be joined with

the solution mapping in [[tp1]]G1
. The plan to do so can be repre-

sented by combining a tpAdd operator with the req operator that
retrieves [[tp1]]G1

, which gives us the following FedQPL expression.

tpAdd tp2fm
2

(
req tp1fm

1

)
While the third operator, bgpAdd, represents a BGP-based vari-

ation of tpAdd, the remaining operators (join, union, mj, and mu)
lift the standard SPARQL algebra operators join and union into

the FedQPL language. In particular, join is a binary operator that

joins two inputs whereas mj represents a multiway variation of a

join that can combine an arbitrary number of inputs. In contrast to

tpAdd and bgpAdd, the operators join and mj capture the intention
to obtain the input sets of solution mappings independently and,

then, join them only in the query federation engine alone. The

operators union and mu are the union-based counterparts of join
and mj. Our language contains both the binary and the multiway

variations of these operators to allow for query plans in which

the intention to apply a multiway algorithm can be distinguished

explicitly from the intention to use some algorithm designed for

the binary case; additionally, the operators mj and mu can be used

during early stages of query planning when the order in which

multiple intermediate results will be combined is not decided yet.

Example 9. By executing the operator req {tp1,tp2 }fm
3

as discussed

in Example 7, we can obtain a solution mapping that is part of the

query result for our example BGP Bex (cf. Example 5). Another such

part of this result may be obtained based on the FedQPL expression

in Example 8. These partial results can then be combined by using

the union operator as follows.

union
(
req {tp1,tp2 }fm

3

, tpAdd tp2fm
2

(
req tp1fm

1

) )
To further elaborate on the distinction between the join oper-

ator (as well as its multiway counterpart mj) and the operators

tpAdd and bgpAddwe emphasize that the latter can be used in cases

in which the processing power of a federation member can be ex-

ploited to join an input set of solution mappings with the result of

evaluating a triple pattern (or a BGP) over the data of that federation

member. Specific algorithms that can be used as implementations

of tpAdd (or bgpAdd) in such cases are RDF-specific variations of

the semijoin [5] and the bind join [11]. Concrete examples of such

algorithms can be found in the SPARQL endpoint federation en-

gines FedX [25], SemaGrow [7], and CostFed [22], as well as in the

brTPF client [14]. Such algorithms rely on a data access interface in

which the given input solution mappings can be captured as part

of the requests. However, for less expressive interfaces (such as the

TPF interface), the tpAdd operator can also be implemented using a

variation of an index nested-loops join in which a separate request

is created for each input solution mapping [21, 27, 29]. In contrast,

a standard (local) nested-loops join—which has also been proposed

in the literature on SPARQL federation engines [21]—would be an

implementation of the join operator. Further examples of join algo-

rithms that have been proposed for such engines and that would be

implementations of the join operator are a group join [29], a simple

hash join [3, 10], a symmetric hash join [3, 22], and a merge join [7].

4.2 Validity
While the various FedQPL operators can be combined arbitrarily

as per the grammar in Definition 4, not every operator can be used

arbitrarily for every federation member. In contrast, as already

indicated in Example 7, depending on their interface, federation

members may not be capable to be accessed in the way as required

by a particular operator. This observation leads to a notion of va-

lidity of FedQPL expressions that we define recursively as follows.

Definition 5. Let F be a federation. A FedQPL expression φ is
valid for F if it has the following properties:

(1) if φ is of the form req ρfm where fm = (G, I ) with I = (Lreq, ϱ),

then fm ∈ F and ρ is an expression in Lreq;

(2) if φ is of the form tpAdd tpfm (φ ′), then fm ∈ F , fm supports

triple pattern requests, and φ ′ is valid;

(3) if φ is of the form bgpAdd Bfm (φ ′), then fm ∈ F , fm supports

BGP requests, and φ ′ is valid;

(4) if φ is of the form join(φ1,φ2), then φ1 and φ2 are valid;

(5) if φ is of the form union(φ1,φ2), then φ1 and φ2 are valid;

(6) if φ is of the form mjΦ, then every φ ′ ∈ Φ is valid;

(7) if φ is of the form muΦ, then every φ ′ ∈ Φ is valid.

Example 10. All FedQPL expressions presented in the previous

examples are valid for our example federation Fex in Example 4.

Example 11. An expression that is not valid for Fex is req
{tp1,tp2 }
fm

1

.

The issue with this expression—and with every other expression

that contains it as a subexpression—is that it assumes that federation

member fm
1
supports BGP requests, which is not the case because

the interface of fm
1
is IbrTPF. For the same reason, fm

1
cannot be

used in the bgpAdd operator, which makes expressions such as

bgpAdd {tp1,tp2 }fm
2

(φ) to be invalid as well (for any subexpression φ).

In the remainder of this paper we assume FedQPL expressions

that are valid for the federation for which they have been created.
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4.3 Semantics
Now we are ready to define a formal semantics of FedQPL. To this

end, we introduce a function that defines for each (valid) FedQPL

expression, the set of solution mappings that is expected as the

result of evaluating the expression.

Definition 6. Let φ be a FedQPL expression that is valid for a

federation F . The solution mappings obtained with φ, denoted
by sols(φ), is a set of solution mappings that is defined recursively:

(1) if φ is of the form req ρfm where fm = (G, I ) with I = (Lreq, ϱ),

then sols(φ) := ϱ (ρ,G );

(2) ifφ is tpAdd tpfm (φ ′) where fm = (G, I ) with I = (Lreq, ϱ), then

sols(φ) := sols(φ ′) Z ϱ (tp,G );

(3) if φ is bgpAdd Bfm (φ ′) where fm = (G, I ) with I = (Lreq, ϱ),

then sols(φ) := sols(φ ′) Z ϱ (B,G );

(4) if φ is join(φ1,φ2), then sols(φ) := sols(φ1) Z sols(φ2);

(5) if φ is union(φ1,φ2), then sols(φ) := sols(φ1) ∪ sols(φ2);

(6) if φ is of the form mjΦ where Φ = {φ1,φ2, ... ,φn }, then
sols(φ) := sols(φ1) Z sols(φ2) Z ... Z sols(φn );

(7) if φ is of the form muΦ where Φ = {φ1,φ2, ... ,φn }, then
sols(φ) := sols(φ1) ∪ sols(φ2) ∪ ... ∪ sols(φn ).

Example 12. Given our example federation Fex (cf. Example 4),

for the FedQPL expressions in Examples 7 and 8 we have that

sols(req {tp1,tp2 }fm
3

) = {µ2} and sols(tpAdd tp2fm
2

(
req tp1fm

1

)
) = {µ1},

where the solution mappings µ1 and µ2 are as given in Example 5.

Consequently, for the expression in Example 9 we thus have that

sols( union
(
req {tp1,tp2 }fm

3

, tpAdd tp2fm
2

(
req tp1fm

1

))
) = {µ1, µ2}.

4.4 Correctness
Given that FedQPL expressions are meant to represent (logical)

query execution plans to produce the result of a given BGP over

a given federation, we also introduce a correctness property to

indicate whether a FedQPL expression correctly captures a given

BGP for a given federation. Informally, a FedQPL expression has this

correctness property if the set of solution mappings obtained with

the expression is the result expected for the BGP over the federation.

Definition 7. Let B be a BGP and F be a federation. A FedQPL

expression φ is correct for B over F if φ is valid for F and it holds

that sols(φ) = [[B]]F .

Example 13. Based on Examples 5 and 12, we can see that the

FedQPL expression in Example 9 is correct for our example BGP Bex
over our example federation Fex.

This completes the definition of FedQPL. In the remainder of the

paper we first focus on a fragment of the language that can be used

to capture the output of the query decomposition & source selection

step. Thereafter, we show equivalences for FedQPL expressions,

which provide a formal foundation for logical query optimization.

5 SOURCE SELECTION AND INITIAL PLANS
An important aspect and one of the first steps of planning the

execution of queries over a federation is to identify which federation

members have to be contacted for which part of a given query. The

key tasks of this step are referred to as query decomposition and

source selection [2, 9, 19, 28]. In this section, we identify a fragment of

FedQPL that can be used to capture the output of this step formally.

We call the expressions in this fragment source assignments. After
defining them, we study their expressive power as well as the

complexity of finding minimal source assignments.

We emphasize that this source assignments fragment of FedQPL

provides a foundation to define query decomposition and source

selection approaches formally, and to compare such approaches

systematically. Moreover, and perhaps more importantly from a

practical perspective, if the output of such an approach is described

in the form of a source assignment, it can readily be used as an

initial logical plan that can then be rewritten and refined during

the subsequent query optimization steps.

5.1 Source Assignments
The goal of query decomposition is to split a given BGP into smaller

components, called subqueries, which may be subsets of the BGP

or even individual triple patterns. The goal of source selection

is to assign to each such subquery the federation members from

which we may retrieve a nonempty result for the subquery. We may

capture such an assignment of a federation member to a subquery

by the FedQPL operator req for which we only have to consider

requests in the form of a BGP or a triple pattern. Additionally, it

needs to be specified how these individual assignments belong

together such that the intermediate results that may be obtained

from them can be combined correctly into the complete result of

the given BGP. To this end, we may use the operators mu (for

intermediate results that cover the same subqueries) and mj (for
intermediate results of different subqueries). We emphasize that we

select the multiway versions of union and join on purpose; they do

not prescribe any order over their input operators, which captures

more accurately the output of the query decomposition and source

selection step (deciding on such an order is not part of this step, but

of the subsequent query optimization steps). With this, we have all

parts of the language fragment needed for source assignments.

Definition 8. A source assignment is a FedQPL expression that

uses only the operators req, mj and mu, and for each subexpression

of the form req ρfm it holds that ρ is a triple pattern or a BGP.

Example 14. From the running example we recall that members

fm
1
and fm

3
of our example federation Fex can contribute matching

triples for tp1 of the example BGP Bex (cf. Example 5), whereas tp2
can be matched only in the data of fm

2
and fm

3
. Hence, we may

use the following source assignment aex for Bex over Fex.

mj
{
mu{req tp1fm

1

, req tp1fm
3

} , mu{req tp2fm
2

, req tp2fm
3

}
}

However, the matching triple for tp1 in fm
1
can be combined only

with the triple for tp2 in fm
2
and, similarly, the triple for tp1 in fm

3

can be combined only with the triple for tp2 in fm
3
. Hence, a more

sophisticated query decomposition & source selection approach

may prune one access to fm
3
by combining tp1 and tp2 for a single
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access to fm
3
, which gives us the following source assignment a′ex.

mu
{
mj{req tp1fm

1

, req tp2fm
2

} , req {tp1,tp2 }fm
3

}

It can be easily verified that both of these source assignments, aex
and a′ex, are correct for Bex over Fex.

5.2 Exhaustive Source Assignments
In the previous example (Example 14) we assume to have detailed

knowledge of the data available at all the federation members. In

practice, however, this knowledge may be much more limited and is

captured in some form of pre-populated data catalog with metadata

about the federation members [2, 9, 19]. The particular types of

metadata vary for each source selection approach that relies on

such a catalog. On the other hand, there are also source selection

approaches that do not use a pre-populated data catalog at all

but, instead, aim to obtain some information about the data of the

federation members during the source selection process itself [1,

25, 28].

A straightforward approach that does not require any such infor-

mation is to create a source assignment that requests every triple

pattern of the BGP separately at each federation member. Then,

the results of these requests can be unioned per triple pattern and,

finally, all the triple pattern specific unions can be joined. We call a

source assignment that captures this approach exhaustive.

Definition 9. Let F = {fm
1
, fm

2
, ... , fmm } be a federation that is

triple pattern accessible, and let B = {tp1, tp2, ... , tpn } be a BGP.

The exhaustive source assignment for B over F is the following

source assignment.

mj
{
mu{req tp1fm

1

, ... , req tp1fmm
} , ... , mu{req tpnfm

1

, ... , req tpnfmm
}
}

The following result follows readily from Definitions 3, 6, 7, 9.

Proposition 1. Let B be a BGP and F be a federation that is triple

pattern accessible. The exhaustive source assignment for B over F
is correct for B over F .

Corollary 1. By Proposition 1, it follows trivially that for every

BGP B and every triple pattern accessible federation F , there exists
a source assignment that is correct for B over F .

5.3 Cost and Minimality
While exhaustive source assignments are correct, for many cases

there are other source assignments that are also correct but have

a smaller number of req operators. Smaller numbers are desirable

from a performance perspective because each such operator repre-

sents the intention to access a given federation member regarding

a particular subquery. Hence, we may use this number as a sim-

ple cost function to compare source assignments and, ultimately,

to compare different query decomposition & source selection ap-

proaches.

Definition 10. The source access cost (sa-cost) of a source as-
signment a, denoted by sa-cost(a), is the number of subexpressions

of the form req ρfm that are contained (recursively) within a.

Notice that, for the exhaustive source assignment a for a BGP B
over a triple pattern accessible federation F : sa-cost(a) = |B | · |F |.
For other source assignments, the sa-cost may be smaller.

Example 15. The exhaustive source assignment for our exam-

ple BGP Bex (cf. Example 5) over federation Fex (cf. Example 4)

would have an sa-cost of 6. In contrast, the sa-cost of the source

assignments aex and a
′
ex in Example 14 is 4 and 3, respectively.

Based on our notion of sa-cost, we can also introduce a notion

of minimality for source assignments.

Definition 11. Let B be a BGP and F be a federation that is triple

pattern accessible. A source assignment a that is correct for B over F
isminimal for B over F if there is no other source assignment a′

such that a′ is correct for B over F and sa-cost(a) > sa-cost(a′).

Example 16. By comparing the sa-costs of aex and a
′
ex in Exam-

ple 15, we see that aex is not minimal for Bex over Fex. Moreover, it

is not difficult to check that a′ex is minimal for Bex over Fex.

Finding minimal source assignments is a problem that resembles

the typical optimization problem that existing query decomposi-

tion & source selection approaches aim to solve for homogeneous

federations (e.g., [1, 3, 7, 22, 25, 28]). Before we study the complexity

of this problem for our more general case of heterogeneous federa-

tions, we demonstrate the suitability of source assignments as a for-

mal foundation to capture the output of these existing approaches,

which also allows us to show limitations of these approaches.

5.4 Application to Existing Approaches
This section illustrates how our notion of source assignments can

be applied to describe the output of several existing source selec-

tion approaches. To this end, we consider the query LS6 from the

FedBench benchmark [23], which consists of a BGP with five triple

patterns, BLS6 = {tp1, tp2, tp3, tp4, tp5} (cf. Listing 1).

SELECT ?drug ?title WHERE {
?drug db:drugCategory dbc:micronutrient . # tp1
?drug db:casRegistryNumber ?id . # tp2
?keggDrug rdf:type kegg:Drug . # tp3
?keggDrug bio2rdf:xRef ?id . # tp4
?keggDrug purl:title ?title } # tp5

Listing 1: FedBench query LS6 (prefix declarations omitted)

The FedBench benchmark specifies a federation consisting of sev-

eral members that all provide a SPARQL endpoint interface, where

only some of these members are potentially relevant for query LS6.

Hence, in terms of our data model, we have a federation FFedBench
that, among others, contains the following four members:

fmdrb = (DrugBank, Isparql) ∈ FFedBench,

fmkegg = (KEGG, Isparql) ∈ FFedBench,

fmdbp = (DBPedia, Isparql) ∈ FFedBench,

fmchebi = (ChEBI , Isparql) ∈ FFedBench.

FedBench query LS6 is interesting for our purpose because dif-

ferent authors have used it as an example to describe their query

decomposition & source selection approaches [7, 22, 25]. Hence, the

output of these approaches for this query is well documented; yet,

the authors present these outputs only informally within a textual

description or in figures. Given our notion of source assignments,

we now can provide a precise formal description.
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federation engine source assignment sa-cost

FedX [25] mj
{
req {tp1,tp2 }fmdrb

, req {tp3,tp4 }fmkegg
, mu{req tp5fmdrb

, req tp5fmkegg
, req tp5fmdbp

}
}

5

SemaGrow [7] mj
{
req {tp1,tp2 }fmdrb

, req tp3fmkegg
, mu{req tp4fmkegg

, req tp4fmchebi
} , mu{req tp5fmkegg

, req tp5fmchebi
}
}

6

CostFed [22] mj
{
req {tp1,tp2 }fmdrb

, req {tp3,tp4,tp5 }fmkegg

}
2

Table 1: Source assignments for FedBench query LS6 by different federation engines.

Hence, based on the informal descriptions provided by the au-

thors, we have reconstructed the respective source assignments

that the corresponding SPARQL federation engines would produce

for BGP BLS6 over the federation FFedBench. Table 1 presents these
source assignments. We emphasize that all these source assign-

ments are correct for BLS6 over FFedBench. Yet, they are syntacti-

cally different and have different sa-costs, as also detailed in the

table. The source assignment with the lowest sa-cost is found by

CostFed, whereas the source assignment of SemaGrow has the

highest sa-cost (in this particular case).

5.5 Expressive Power of Source Assignments
While the source assignments of the different approaches in the

previous section differ from one another (cf. Table 1), we observe

that they are all of the same general form. A related concept that

resembles this specific form of source assignments is Vidal et al.’s

notion of a “SPARQL query decomposition” [28]. These observations
raise the following questions: how does Vidal at el.’s notion compare

to our notion of source assignments and, ultimately, what is the
expressive power of the form of source assignments that it resembles?

To address these questions we define Vidal et al.’s notion in terms

of the source assignments fragment of FedQPL. To this end, we first

notice that a more restricted version of the grammar is sufficient.

Definition 12. The joins-over-unions class of source assign-

ments, denoted by SZ(∪) , consists of every source assignment a that

can be constructed from the following grammar, wheremj,mu, and
req are terminal symbols, ρ is a triple pattern or a BGP, fm is a fed-

eration member, Φu is a nonempty set of source assignments that

can be formed by the construction au , and Φb is a nonempty set of

source assignments that can be formed by the construction ab .

a ::= au | mjΦu

au ::= ab | muΦb

ab ::= req ρfm

In addition to restricting the grammar, we need to introduce

further syntactic restrictions to accurately capture Vidal et al.’s

concept of a SPARQL query decomposition. Namely, in terms of

our language, this concept is limited to source assignments in SZ(∪)

for which it holds that, within any subexpression of the form

mu
{
req ρ1fm

1

, ... , req ρnfmn

}
,

all ρ1, ... , ρn are the same triple pattern or BGP; additionally, for

source assignments of the form mj{a1, ... ,an }, there cannot be any
triple pattern that occurs in more than one of the subexpressions.

For the following formal definition of these additional restric-

tions we introduce the recursive function subexprs that maps every

source assignment a to a set of all (sub)expressions contained in a,

subexprs(a) :=




{a} if a is of the form req ρfm,

{a} ∪
⋃

1≤i≤nsubexprs(ai ) if a is of the form

mu{a1, ... ,an },

{a} ∪
⋃

1≤i≤nsubexprs(ai ) if a is of the form

mj{a1, ... ,an }.

Now we are ready to define the restricted joins-over-unions class

that captures Vidal et al.’s concept of a “SPARQL query decomposi-

tion” accurately.

Definition 13. The restricted joins-over-unions class of source
assignments, denoted by S∗Z(∪)

, consists of every source assign-

ment a that is in SZ(∪) and that has the following two properties.

(1) for every expression of the formmu
{
req ρ1fm

1

, ... , req ρnfmn

}
that

is in subexprs(a), it holds that ρi = ρ j for all i, j ∈ {1, ... ,n};

(2) if a is of the form mj{a1, ... ,an }, then tps(ai ) ∩ tps(aj ) = ∅
for all i, j ∈ {1, ... ,n}, where tps(ak ) denotes to the set of

all the triple patterns mentioned in subexpression ak for all

k ∈ {1, ... ,n}, i.e.,

tps(ak ) := {tp ∈ ρ | a
′ ∈ subexprs(ak ) such that a′ is of
the form req ρfm where ρ is a BGP }

∪ {ρ | a′ ∈ subexprs(ak ) such that a′ is of the
form req ρfm where ρ is a triple pattern }.

Notice that all exhaustive source assignments (cf. Definition 9)

are in the class S∗Z(∪)
, and so are the source assignments of Table 1.

More generally, to the best of our knowledge, this class encom-

passes all types of source assignments that the query decomposi-

tion & source selection approaches proposed in the literature can

produce. A natural question at this point is: does their restriction to
consider only source assignments in S∗Z(∪)

present an actual limitation
in the sense that these approaches are inherently unable to find a
minimal source assignment in specific cases?

The following result shows that this is indeed the case.

Proposition 2. There exists a BGP B and a triple pattern accessible

federation F such that all source assignments that are both correct

and minimal for B over F are not in S∗Z(∪)
.

We prove Proposition 2 by showing the following claim, which

is even stronger than the claim in Proposition 2.

Lemma 1. There exists a BGP B, a triple pattern accessible federa-

tion F , and a source assignment a that is correct for B over F , such
that sa-cost(a) < sa-cost(a′) for every source assignment a′ that
is in S∗Z(∪)

and that is also correct for B over F .
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Sketch. Lemma 1 can be shown based on our example source

assignment a′ex (Example 14) which is not in S∗Z(∪)
and has an sa-cost

that is smaller than the sa-cost of any relevant source assignment

in S∗Z(∪)
. (For a detailed discussion of this and the other proofs in

this section, which we have only sketched due to space limitations,

refer to the appendix on page 11.) □

As a final remark, we emphasize that the same limitation exists

even if we consider the less restricted class SZ(∪) (instead of S∗Z(∪)
).

Lemma 2. There exists a BGP B, a triple pattern accessible federa-

tion F , and a source assignment a that is correct for B over F , such
that sa-cost(a) < sa-cost(a′) for every source assignment a′ that
is in SZ(∪) and that is also correct for B over F .

Sketch. The proof of Lemma 1 also proves Lemma 2 because

the source assignment a′ex is also not in SZ(∪) . □

5.6 Complexity of Source Selection
For a version of the source selection problem that is defined based

on their notion of a “SPARQL query decomposition,” Vidal et al.

show that this problem is NP-hard [28]. Since we know from the

previous section that this notion does not provide the full expressive

power of our notion of source assignments and, furthermore, Vidal

et al.’s work focuses only on homogeneous federations (of SPARQL

endpoints), it is interesting to study the complexity of source se-

lection for our more general case. To this end, we formulate the

following decision problem.

Definition 14. Given a BGP B, a triple pattern accessible federa-

tion F , and a positive integer c , the source selection problem is

to decide whether there exists a source assignment a such that a is

correct for B over F and sa-cost(a) ≤ c .

Unfortunately, it can be shown that this problem is also NP-hard.

Theorem 1. The source selection problem is NP-hard.

Sketch. We show the NP-hardness by a reduction from the node

cover problem (also called vertex cover problem), which is known to

be NP-hard [16]. The detailed proof is in the appendix (page 11). □

The following theorem also gives an upper bound for the com-

plexity of the source selection problem in Definition 14 (note that

Vidal et al. do not show such a result for their version of the source

selection problem [28]).

Theorem 2. The source selection problem is in ΣP
2
.

Sketch. For this proof we assume a nondeterministic Turing

machine that guesses a source assignment a and, then, checks that a
is correct for B over F and that sa-cost(a) ≤ c . While sa-cost(a) ≤ c
can be checked in polynomial time by scanning a, for the correct-
ness check, the machine uses an NP oracle (see the appendix). □

6 EQUIVALENCES
While initial logical plans resulting from the query decomposition &

source selection step can produce the correct query results, they

may not be efficient in many cases. A query optimizer can con-

vert such plans into more efficient ones by systematically replacing

subexpressions by other subexpressions that are semantically equiv-

alent (i.e., that are guaranteed to produce the same result). This

section provides a solid formal foundation for such optimizations

by showing a comprehensive set of such equivalences for FedQPL.

Before we begin, we need to define the notion of semantic equiv-
alence for FedQPL expressions which is federation dependent.

Definition 15. Let F be a federation. Two FedQPL expressions

φ and φ ′ that are valid for F are semantically equivalent for F ,
denoted by φ

F
≡ φ ′, if it holds that sols(φ) = sols(φ ′).

Now, the first equivalences cover expressions that focus on a

single federation member with an interface that supports triple
patterns requests (recall from Section 3 that, among others, this

includes the SPARQL endpoint interface, the TPF interface, and the

brTPF interface). These equivalences follow from Definition 6.

Proposition 3. Let fm = (G, I ) be a member in a federation F
such that I = (Lreq, ϱ) is some interface that supports triple pat-

tern requests; let tp be a triple pattern, and φ and φ ′ be FedQPL
expressions that are valid for F . It holds that:

(1) join
(
req tpfm , φ

) F
≡ tpAdd tpfm (φ);

(2) join
(
req tpfm , join(φ,φ

′)
) F
≡ join

(
tpAdd tpfm (φ) , φ ′

)
.

Sketch. Since all equivalences in this section can be shown

in a similar manner by applying Definition 6, we illustrate the

proof only for Equivalence (1) and leave the rest as an exercise

for the reader. To prove Equivalence (1), we have to show that

sols(join(req tpfm ,φ)) = sols(tpAdd tpfm (φ)), which we do based on

Definition 6 as follows (where we can assume that tp ∈ Lreq):

sols(join(req tpfm ,φ)) = sols(req tpfm ) Z sols(φ) by Def. 6, Case (4)

= ϱ (ρ,G ) Z sols(φ) by Def. 6, Case (1)

= sols(φ) Z ϱ (ρ,G ) by the commuta-
tivity of Z [20]

= sols(tpAdd tpfm (φ)) by Def. 6, Case (2). □

Example 17. By applying Equivalence (1) (cf. Proposition 3), we

may rewrite the FedQPL expression in Example 8 into the following

expression which is semantically equivalent for Fex.

join(req tp2fm
2

, req tp1fm
1

)

The following equivalences focus on expressions with a federa-

tion member that supports BGP requests. These equivalences follow
from the definition of BGPs (cf. Section 2), in combination with

Definition 6. Notice that the first two of these equivalences are the

BGP-specific counterparts of the equivalences in Proposition 3.

Proposition 4. Let fm = (G, I ) be a member in a federation F such

that I is some interface that supports BGP requests; let B, B1, B2,
and B′ be BGPs such that B′ = B1 ∪ B2, and φ and φ ′ be FedQPL
expressions that are valid for F . It holds that:

(3) join
(
req Bfm , φ

) F
≡ bgpAdd Bfm(φ);

(4) join
(
req Bfm , join(φ,φ

′)
) F
≡ join

(
bgpAdd Bfm(φ) , φ

′
)
;

(5) join
(
req B1

fm , req
B2

fm

) F
≡ req B

′

fm ;
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(6) bgpAdd B1

fm

(
req B2

fm

) F
≡ req B

′

fm ;

(7) bgpAdd B1

fm

(
bgpAdd B2

fm (φ)
) F
≡ bgpAdd B

′

fm (φ).

The following equivalences focus on expressions with a federa-

tion member whose interface supports both, triple patterns requests
and BGP requests. These equivalences follow from the definition of

BGPs, in combination with Definition 6.

Proposition 5. Let fm = (G, I ) be a member in a federation F such

that I is some interface that supports triple pattern requests as well

as BGP requests; let tp be a triple pattern, B = {tp1, tp2, ... , tpn } be
a BGP, and φ be a FedQPL expression that is valid for F . It holds
that:

(8) req tpfm
F
≡ req B

′

fm , where B′ = {tp};

(9) req Bfm
F
≡ join

(
join
(
. . . join

(
req tp1fm , req

tp2
fm

)
, . . .

)
, req tpnfm

)
;

(10) req Bfm
F
≡ tpAdd tpnfm (. . . (tpAdd tp2fm (req tp1fm )) . . .);

(11) bgpAdd Bfm (φ)
F
≡ tpAdd tpnfm (. . . (tpAdd tp2fm (tpAdd tp1fm (φ))) . . .);

(12) bgpAdd Bfm(req
tp
fm )

F
≡ req B

′

fm , where B′= B ∪ {tp};

(13) tpAdd tpfm (req Bfm)
F
≡ req B

′

fm , where B′= B ∪ {tp};

(14) tpAdd tpfm
(
bgpAdd Bfm(φ)

) F
≡ bgpAdd B

′

fm (φ), where B′= B∪{tp}.

The following equivalences focus on expressions with a feder-

ation member that provides the brTPF interface (cf. Example 3).

Consequently, these equivalences follow from the definition of that

interface, in combination with Definition 6.

Proposition 6. Let fm = (G, IbrTPF) be a member in a federation F
such that IbrTPF is the brTPF interface; let tp be a triple pattern,

Ω be a set of solution mappings, and φ be a FedQPL expression that

is valid for F . It holds that:

(15) join
(
req tpfm , φ

) F
≡ req (tp,Ω)

fm , where Ω = sols(φ);

(16) tpAdd tpfm (φ)
F
≡ req (tp,Ω)

fm , where Ω = sols(φ).

The following equivalences focus on expressions with federation

members that provide the SPARQL endpoint interface (cf. Example 1).

They follow from the definition of SPARQL graph patterns [12, 20],

in combination with Definition 6.

Proposition 7. Let fm = (G, Isparql) be a member in a federation F
where Isparql is the SPARQL endpoint interface; let tp be a triple

pattern, B be a BGP, and P , P1 and P2 be graph patterns. It holds that:

(17) req P1fm
F
≡ req P2fm if P1 and P2 are semantically equivalent [20];

(18) union
(
req P1fm , req

P2
fm

) F
≡ req (P1 UNION P2 )

fm ;

(19) join
(
req P1fm , req

P2
fm

) F
≡ req (P1 AND P2 )

fm ;

(20) tpAdd tpfm (req Pfm)
F
≡ req (P AND tp )

fm ;

(21) bgpAdd Bfm (req Pfm)
F
≡ req (P AND B )

fm ;

The following equivalences cover expressions with multiple fed-
eration members. These equivalences follow from Definition 6.

Proposition 8. Let fm
1
= (G, I1), fm2

= (G, I2), fm3
= (G, I3), and

fm
4
= (G, I4) be members in a federation F (not necessarily different

ones) such that interfaces I1 and I2 support triple pattern requests

and interfaces I3 and I4 support BGP requests. Let tp, tp1 and tp2 be
triple patterns, B, B1 and B2 be BGPs, and φ be a FedQPL expression

that is valid for F . It holds that:

(22) tpAdd tp1fm
1

(
tpAdd tp2fm

2

(φ)
) F
≡ tpAdd tp2fm

2

(
tpAdd tp1fm

1

(φ)
)
;

(23) tpAdd tpfm
1

(
bgpAdd Bfm

3

(φ)
) F
≡ bgpAdd Bfm

3

(
tpAdd tpfm

1

(φ)
)
;

(24) bgpAdd B1

fm
3

(
bgpAdd B2

fm
4

(φ)
) F
≡ bgpAdd B2

fm
4

(
bgpAdd B1

fm
3

(φ)
)
.

The following equivalences are independent of interface types

and focus on the relationships between the two multiway opera-

tors (mj and mu) and their respective binary counterparts.

Proposition 9. Let F be a federation, and let Φ, ΦJ, and ΦU be sets

of FedQPL expressions that are valid for F such that |Φ | > 1, there

exists join(φ1,φ2) ∈ ΦJ and union(φ1,φ2) ∈ ΦU. It holds that:

(25) mjΦ
F
≡ join(mjΦ′, φ), where φ ∈ Φ and Φ′ = Φ − {φ};

(26) muΦ
F
≡ union(muΦ′, φ), where φ ∈ Φ and Φ′ = Φ − {φ};

(27) mjΦJ
F
≡ mjΦ′, where Φ′= (ΦJ − {join(φ1,φ2)}) ∪ {φ1,φ2};

(28) muΦU
F
≡ muΦ′, whereΦ′= (ΦU−{union(φ1,φ2)})∪{φ1,φ2}.

The following equivalences are also independent of interface

types and focus only on the two multiway operators.

Proposition 10. Let F be a federation; letφ be a FedQPL expression

that is valid for F , and let ΦJ and ΦU be sets of FedQPL expressions

that are valid for F such that there existsmjΦ′J ∈ ΦJ andmuΦ′U ∈ ΦU.

It holds that:

(29) mjΦJ
F
≡ mjΦ′′J , where Φ′′J = (ΦJ − {mjΦ′J }) ∪ Φ′J ;

(30) muΦU
F
≡ muΦ′′U , where Φ′′U = (ΦU − {muΦ′U}) ∪ Φ′U;

(31) mu{φ}
F
≡ φ;

(32) mj{φ}
F
≡ φ.

Lastly, the following equivalences are also independent of inter-

face types; they follow from Definition 6 and the corresponding

equivalences for the SPARQL algebra [20, 24].

Proposition 11. Let F be a federation and let φ1, φ2, and φ3 be
FedQPL expressions that are valid for F . It holds that:

(33) join(φ1,φ2)
F
≡ join(φ2,φ1);

(34) union(φ1,φ2)
F
≡ union(φ2,φ1);

(35) union(φ1,φ1)
F
≡ φ1;

(36) join
(
φ1, join(φ2,φ3)

) F
≡ join

(
join(φ1,φ2),φ3

)
;

(37) union
(
φ1, union(φ2,φ3)

) F
≡ union

(
union(φ1,φ2),φ3

)
;

(38) join
(
φ1, union(φ2,φ3)

) F
≡ union

(
join(φ1,φ2), join(φ1,φ3)

)
.

Example 18. By applying Equivalence (33) (cf. Proposition 11),

we may swap the two subexpressions in the FedQPL expression in

Example 17, which results in the following expression.

join(req tp1fm
1

, req tp2fm
2

)
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We may now rewrite this expression into the following one by

applying Equivalence (1) (cf. Proposition 3) again.

tpAdd tp1fm
1

(
req tp2fm

2

)
Observe that the latter expression is, thus, semantically equiva-

lent (for Fex) not only to the previous expression, but also to the

expressions in Examples 17 and 8, respectively.

Example 19. The previous example highlights that an alternative

to the plan captured by the FedQPL expression tpAdd tp2fm
2

(
req tp1fm

1

)
in Example 8 would be—among others—the plan represented by

the expression tpAdd tp1fm
1

(
req tp2fm

2

)
. Considering that the interface of

federation member fm
1
is a brTPF interface whereas fm

2
has a TPF

interface (cf. Example 4), we may prefer the latter plan because it

provides for a greater number of algorithms to choose from during

physical query optimization (e.g., implementing tpAdd over brTPF
may be done by using a bind join algorithm [14], which is impossible

with TPF). On the other hand, a query optimizer may estimate a

significantly smaller result size for req tp1fm
1

than for req tp2fm
2

, which

could justify choosing the plan of Example 8.

7 CONCLUDING REMARKS
In this paper, in addition to proving several important results regard-

ing the query plan language that we propose, we have demonstrated

initial ideas for applying this language.

For instance, we have shown that our source assignments can

represent the output of existing query decomposition & source

selection approaches (cf. Section 5.4), and that these approaches are

inherently limited (cf. Proposition 2). Hence, there is still an oppor-

tunity for future work on better source selection approaches even

in the context of homogeneous federations of SPARQL endpoints.

Moreover, we have not only demonstrated that the language can

be used to represent logical query plans (cf. Examples 6–9 and 13),

but also that it is suitable both as a basis for logical query optimiza-

tion (cf. Examples 17–18) and as a starting point for physical query

optimization (cf. Example 19). As future work regarding FedQPL, we

are planning to extend the language with additional operators that

can be used to represent query plans for more expressive fragments

of SPARQL, and we aim to also provide a multiset semantics.

However, the ultimate next step is to develop effective optimiza-

tion approaches for queries over federations with heterogeneous

interfaces. FedQPL provides a formal foundation for such work.
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Appendix
PROOF OF LEMMA 1
Lemma 1. There exists a BGP B, a triple pattern accessible federa-

tion F , and a source assignment a that is correct for B over F , such
that sa-cost(a) < sa-cost(a′) for every source assignment a′ that
is in S∗Z(∪)

and that is also correct for B over F .

Proof. Recall our example source assignment a′ex for BGP Bex
over our example federation Fex (cf. Example 14). Fex is triple pattern
accessible (cf. Example 4) and a′ex is correct for Bex over Fex (cf.

Example 14). Note also that a′ex is clearly not in S∗Z(∪)
. Now, we

may enumerate every source assignment a′ in S∗Z(∪)
that is valid for

Bex over Fex and that has an sa-cost smaller or equivalent to 3, i.e.,

sa-cost(a′) ≤ sa-cost(a′ex). For each of these source assignments

we will find that it is not correct. □

PROOF OF LEMMA 2
Lemma 2. There exists a BGP B, a triple pattern accessible federa-

tion F , and a source assignment a that is correct for B over F , such
that sa-cost(a) < sa-cost(a′) for every source assignment a′ that
is in SZ(∪) and that is also correct for B over F .

Proof. We can use the same proof as for Lemma 1 because the

source assignment a′ex as used in that proof is also not in SZ(∪) . □

PROOF OF THEOREM 1
Theorem 1. The source selection problem is NP-hard.

Proof. We show the NP-hardness by a reduction from the node

cover problem (also called vertex cover problem), which is known

to be NP-hard [16].

The node cover problem is defined as follows: Given a positive

integer k and an undirected graphG = (V ,E), decide whether there
exists a setV ′⊆ V such

��V ′�� ≤ k and every edge in E is incident on

some vertex in V ′ (i.e., for every undirected edge {u,v} ∈ E it holds

that u ∈ V ′ or v ∈ V ′).
For our reduction we introduce the following function f that

maps every instance of the node cover problem (i.e., every G =
(V ,E) and k) to an instance of the source selection problem (i.e.,

a BGP B, a triple pattern accessible federation F , and a positive

integer c). Given G = (V ,E) and k , function f maps the undirected

graph G to a federation F that consists of one member per vertex

in V . Hence, we define F such that |F | = |V | and there exists

a bijection fmemb : V → F . Then, for every vertex v ∈ V , the
corresponding federation member fmemb (v ) = (Gv , Iv ) is defined
as follows: The interface Iv is the TPF interface (cf. Example 2), or

any other interface that supports triple pattern requests, and for

the RDF graph Gv we have that

Gv =
{(
uri(e ), rdf :type, ex :Edge

) ���� e is an edge in E

that is incident on v
}
,

where uri : E → U is a bijection that maps every edge in E to a

distinct URI.

In addition to mapping the input graph G to the federation F ,
function f maps the integer k directly to c (i.e., c = k), and the

BGP B returned by f is the same for every instance of the node

cover problem; this BGP consists of a single triple pattern: B = {tp}

where tp =
(
?x , rdf :type, ex :Edge

)
. It is not difficult to see that

our mapping function f can be computed in polynomial time.

Then, the reduction is based on the following claim: For any

possible input G = (V ,E) and k , and the corresponding output

(B, F , c ) = f (G,k ), there exists a set V ′ ⊆ V such
��V ′�� ≤ k and

every edge in E is incident on some vertex in V ′ if and only if

there exists a source assignment a such that a is correct for B
over F and sa-cost(a) ≤ c . This claim is easily verified based on

two observations:

(1) For every edge e = {u,v} in E, there are exactly two federa-

tion members that contain the RDF triple(
uri(e ), rdf :type, ex :Edge

)
,

namely, the members created for the vertexes v and u, that
is, fmemb (v ) and fmemb (u).

(2) For at least one of these two members, say fm, a subex-

pression of the form req ρfm must be part of every source

assignment that is correct for B over F .

Hence, the node cover problem can be reduced to our source

selection problem, and since it is NP-hard [16], the source selection

problem must be NP-hard as well. □

PROOF OF THEOREM 2
Before we present the proof of Theorem 2, we show two auxiliary

results which we shall then use to prove the theorem.

Lemma 3. Given a BGP B, a triple pattern accessible federation F ,
and a solution mapping µ, the problem to decide whether µ ∈ [[B]]F
can be solved in time O ( |F |2 + |B | · |F |).

Proof. To check whether µ ∈ [[B]]F we actually have to check

whether µ ∈ [[B]]Gunion
whereGunion=

⋃
(G, I )∈F G (cf. Definition 3).

To this end, we first materialize the RDF graphGunion, which is pos-

sible in timeO ( |F |2) (note that the complexity is quadratic because

of the need to eliminate duplicates when materializing Gunion).

Thereafter, checking whether µ ∈ [[B]]Gunion
is know as the evalu-

ation problem of SPARQL, which has been shown to be solvable

in time O ( |B | · |Gunion |) for BGPs [20]. Since |F | = |Gunion | + k for

some constant k , the algorithm has an overall time complexity of

O ( |F |2 + |B | · |F |). □

Lemma 4. Given a BGP B, a triple pattern accessible federation F ,
a source assignment a that is valid for B over F , and a solution

mapping µ, the problem of deciding whether µ ∈ sols(a) can be

solved in time O ( |a | · |F | + |a | · |µ |).

Proof. We proof the lemma by induction over the structure of a.

Base case: If a is of the form req ρfm, we can use Algorithm 1 to

check whether µ ∈ sols(a). By Definition 8, we know that ρ is a

triple pattern or a BGP. W.l.o.g., we assume it is a BGP B′. In the

algorithm, wewrite vars(a) to denote the set of variables mentioned

in the BGPs within the source assignment a. Formally, this set is

defined recursively as follows: If a is of the form req ρfm where ρ

is a triple pattern or a BGP, then vars(a) = vars(ρ). If a is of the

form mu{a1, ... ,an } or of the form mj{a1, ... ,an }, then vars(a) =⋃
i ∈{1, ...,n } vars(ai ).
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Algorithm 3 Check whether µ ∈ sols(a) for a = mj{a1, ... ,an }

1: if dom(µ ) , vars(a) then
2: return false // µ has to be defined for the variables in a
3: end if
4: for all i ∈ {1, ... , n } do
5: let µi be the restriction of µ to the variables in vars(ai )
6: if µi < sols(ai ) then
7: return false
8: end if
9: end for
10: return true

Algorithm 1 Check whether µ ∈ sols(a) for a = req B
′

fm with fm =
(G, I )

1: if dom(µ ) , vars(a) then
2: return false // µ has to be defined for the variables in a
3: end if
4: let G′ := µ[B′] // substitute all variables in B′ according to µ
5: for all t ∈ G′ do
6: if t < G then
7: return false // search the data of fm for every triple in G′

8: end if
9: end for
10: return true

Algorithm 2 Check whether µ ∈ sols(a) for a = mu{a1, ... ,an }

1: for all i ∈ {1, ... , n } do
2: if µ ∈ sols(ai ) then
3: return true
4: end if
5: end for
6: return false

The first step of the algorithm (lines 1–3) checks that µ is actually
defined for the variables in a, which can be done in timeO ( |a | · |µ |).
The next step is to replace all variables in B′ according to µ (cf.

line 4), which results in a setG ′ of RDF triples. The time complexity

of this step is again O ( |a | · |µ |) (we assume here that |a | = |B′ | + k
for some constant k). Finally, the algorithm checks that every triple

in G ′ exists in the data G of federation member fm (lines 5–9). The

actual check for each triple (i.e., line 6) can be done in time O ( |F |)
(we use that |G | < |F |) and, thus, the time complexity of the whole

for loop (lines 5–9) isO ( |a | · |F |). Therefore, the time complexity of

the whole algorithm is O ( |a | · |µ | + |a | · |F |).

Induction step: In the induction step we consider the remaining two

cases of a.
Case 1) If a is of the form mu{a1, ... ,an }, we can check whether

µ ∈ sols(a) by using Algorithm 2. The algorithm tries to find a

sub-expression ai inside a such that we have µ ∈ sols(ai ). By the

induction hypothesis, the corresponding check in line 2 can be done

in timeO ( |ai |·|µ |+|ai |·|F |) for every i ∈ {1, ...,n}. Consequently, for
the whole loop (lines 1–5), and thus the whole algorithm, we have a

time complexity ofO
(
( |a1 |+ ...+ |an |) · |µ |+ ( |a1 |+ ...+ |an |) · |F |

)
,

which is O ( |a | · |µ | + |a | · |F |).

Case 2) If a is of the form mj{a1, ... ,an }, we can check whether

µ ∈ sols(a) by using Algorithm 3. The first step (lines 1–3) is to

check that µ is actually defined for the variables in a, which can be

done in timeO ( |a | · |µ |). Thereafter, the algorithm iterates over the

subexpressions a1 to an .
For each such subexpression ai , the algorithm first takes the

restriction of µ to the variables in vars(ai ), denoted by µi (line 5); i.e.,
µi is a solutionmapping such that dom(µi ) = dom(µ )∩vars(ai ) and
µi (?v ) = µ (?v ) for every variable ?v ∈ dom(µ )∩vars(ai ). For every
ai , this steps can be done in time O ( |ai | · |µ |). Next, the algorithm
checks whether µi < sols(ai ) (line 6), in which case µ cannot be in

sols(a). By the induction hypothesis, for every i ∈ {1, ... ,n}, this
check can be done in time O ( |ai | · |µi | + |ai | · |F |), which we may

generalize toO ( |ai | · |µ | + |ai | · |F |) because |µ | = |µi | +ki for some

constant ki .
Then, the time complexity of the whole for loop (lines 4–9)

is O
(
( |a1 | + ... + |an |) · |µ | + ( |a1 | + ... + |an |) · |F |

)
, which is

O ( |a | · |µ | + |a | · |F |). When combined with the complexity of the

first step (lines 1–3, see above), the time complexity of Algorithm 3

is also O ( |a | · |µ | + |a | · |F |). □

Now we are ready to prove the theorem.

Theorem 2. The source selection problem is in ΣP
2
.

Proof. We assume a nondeterministic Turing machine (NTM)

that is equipped with the following oracle. For every BGP B, ev-
ery triple pattern accessible federation F , and every source assign-

ment a, the oracle returns true if and only if a is not correct for B
over F . Then, the NTM decides the source selection problem for any

given input B, F , and c as follows: First, the NTM guesses a source

assignment a such that the size of a is polynomial in the size of B
and F (by Proposition 1 we know that such polynomial-sized source

assignments exist and are correct for B over F ). Then, the NTM has

to check that a is correct for B over F and that sa-cost(a) ≤ c . The
latter property, i.e., sa-cost(a) ≤ c , can be checked in polynomial

time by scanning a and counting all subexpressions of the form

req ρfm. To check the correctness of a the NTM uses its oracle (and

inverts the response of the oracle; i.e., a is correct for B over F if

and only if the oracle returns false).

Now, to show that the source selection problem is in ΣP
2
it remains

to show that checking whether a is not correct for B over F (i.e., the

decision problem solved by the oracle) is in NP. To this end, we use

the following nondeterministic program: First, we test whether a is

valid for B over F , which is a precondition for the correctness (cf.

Definition 7) and can be checked in polynomial time if we assume

that the encoding of F on the tape of a Turing Machine includes

an indication of the type of interface that each member in F has.

Next, we guess a solution mapping µ where the intuition is that

µ ∈ [[B]]F but µ < sols(a), which shows that a is not correct for

B over F . Hence, the program has to check these two properties

of µ, which can be done in polynomial time as we have shown in

Lemmas 3 and 4. □
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