
Towards Query Processing over
Heterogeneous Federations of RDF Data Sources

Sijin Cheng1[0000−0003−4363−0654] and Olaf Hartig1[0000−0002−1741−2090]

Linköping University, Linköping, Sweden
{sijin.cheng, olaf.hartig}@liu.se

Abstract A federation of RDF data sources offers enormous potential
when answers or insights of queries are unavailable via a single data
source. As various interfaces for accessing RDF data are proposed, one
challenge for querying such a federation is that the federation members
are heterogeneous in terms of the type of data access interfaces. There
does not exist any research on systematic approaches to tackle this chal-
lenge. To provide a formal foundation for future approaches that aim to
address this challenge, we have introduced a language, called FedQPL,
that can be used for representing query execution plans in this setting.
With a poster in the conference we generally want to outline the vision
for the next generation of query engines for such federations and, in this
context, we want to raise awareness in the Semantic Web community
for our language. In this extended abstract, we first discuss challenges
in query processing over such heterogeneous federations; thereafter, we
briefly introduce our proposed language, which we have extended with a
few new features that we did not have in the version published originally.

Keywords: Heterogeneous Federations · Query Plan Language

1 Motivation and Challenges

Efficiently processing queries over federation members that provide the same
type of interface (i.e., SPARQL endpoint) has been explored extensively [2]. How-
ever, as different types of interfaces are proposed to publish RDF data sources,
such as Triple Pattern Fragment (TPF) interface [16], Bindings-Restricted TPF
(brTPF) interface [8], Star Pattern Fragments (SPF) [3], SaGe interface [11],
smart-KG interface [5], and WiseKG [4], providers of RDF data sources may
choose to publish their RDF data via a different type of interface depending on
the properties of these interfaces [9,12]. As a result, federations of RDF data
sources may become heterogeneous in terms of access interfaces. Due to this
heterogeneity, query processing over such federations faces extra challenges, in-
volving the key sub-tasks of federated query processing, such as source selection,
query decomposition, planning and optimization, and query execution.

Example 1 As a motivating example, consider a federation Fex with two mem-
bers: Federation member fm1 provides a SPARQL endpoint interface for the RDF
graph G1 = {(a, foaf:knows, c), (c, foaf:knows, d)}, whereas fm2 provides a TPF in-
terface for the RDF graph G2 = {(c, foaf:name, "Alice"), (c, foaf:age, 21)}.

2 Sijin Cheng and Olaf Hartig

Example 2 Consider a basic graph pattern (BGP) Bex = {tp1, tp2, tp3} with the
three triple patterns tp1 = (?x, foaf:knows, ?y), tp2 = (?y, foaf:name, ?z) and tp3 =
(?y, foaf:age, ?g). When evaluating Bex over the example federation Fex, we expect
to obtain one solution mapping: µ1 = {?x→a, ?y→c, ?z→"Alice", ?g→21}.

In order to devise an efficient solution for answering the BGP Bex, the proper-
ties and constraints of each member’s interface must be considered. In terms of
source selection, existing engines [14,1,6,13] generally rely on a set of SPARQL
ASK queries or on metadata about federation members to determine which fed-
eration member(s) can evaluate each triple pattern. Due to the fact that the
TPF interface, however, cannot answer such SPARQL ASK queries, it is neces-
sary to consider the type of interface during source selection in heterogeneous
federations. In addition, we are unable to apply an existing query decomposition
approach easily since not all forms of subqueries can be answered directly by ev-
ery interface. For instance, FedX [14] would group the triple patterns tp2 and tp3
into a subquery as they can be evaluated exclusively at federation member fm2.
While such an exclusive group is beneficial for, e.g., a SPARQL endpoint, the
TPF interface provided by fm2 cannot answer such a group pattern directly. Fur-
thermore, some works leverage information and metadata about the federation
member for query planning and optimization, such as estimating join cardinality
or pruning data sources that do not contribute to the final results. This process
should consider the properties of each interface as different interfaces provide
different types of metadata and support exploring of different information.

When it comes to physical plans, different interfaces may require the engine
to leverage specific physical operators. For instance, possible algorithms for the
implementation of a join operator are a standard (local) nested-loops join, or
RDF-specific variations of the semijoin and the bind join [2]. The latter algo-
rithms rely on a data access interface in which the given input solution mappings
can be captured as part of the requests. If the interface is more expressive (e.g.,
a SPARQL endpoint), concrete examples of such algorithms can be found in the
SPARQL endpoint federation engines [14,6]. However, for less expressive inter-
faces (such as the TPF interface), the algorithm can be implemented using a
variation of an index nested-loops join in which a separate request is created for
each input solution mapping [16].

Therefore, for the next generation of federation engines, it is not sufficient to
merely combine and integrate existing solutions as the features and constraints
of each interface must be thoroughly considered in the context of heterogeneous
federations. Some work has been done on dealing with query processing for het-
erogeneous interfaces. Comunica [15] is a modular engine that can be used to
run queries on heterogeneous data sources, however it simply handles query exe-
cution at the triple pattern level, without considering features and optimization
options for heterogeneous federations. We believe that any principled approach
to querying heterogeneous federations of such RDF data sources must be based
on a solid formal foundation. In recent work, Heling and Acosta [10] introduce
interface-aware approaches for query decomposition and query planning. Simi-
lar to our work, they also formalize the concept of federations. We argue that

Query Processing over Heterogeneous Federations of RDF Data Sources 3

the formal foundation should provide not only a formal data model capturing
the federation concepts, including the corresponding query semantics, but also
formal concepts that precisely define the artifacts produced by the various steps
of query processing, including source selection, query decomposition, planning
and optimization, and query execution.

2 FedQPL: A Language for Query Plans over Federations

We have defined FedQPL [7], a language for formally specifying logical query
plans. This language can be applied to more precisely define query planning
and optimization approaches, as well as to represent the logical plans in a query
engine. The key innovations of this language over the standard SPARQL alge-
bra are that it contains operators to make explicit which federation member is
accessed in each part of a query plan and to distinguish different ways of ac-
cessing a federation member. FedQPL features operators that explicitly capture
the intention to execute a certain subquery at a specific federation member, as
well as explicitly distinguish whether such access is meant to be based solely on
the given subquery or also on intermediate results obtained for other subqueries.
While approaches that focus on homogeneous federations can also benefit from
these features, we argue that such features are essential for any principled ap-
proach to query planning in heterogeneous federations where the properties and
the limitations of different data access interfaces must be considered.

To give an intuition of what FedQPL provides, we briefly go through the
syntax of FedQPL expressions in this poster paper. Note that we have extended
FedQPL with four additional operators that we did not have in the original
paper. With this extension, FedQPL can now capture plans for the complete
version 1.0 fragment of SPARQL. In our original paper, we also provide an
extensive set of equivalences for FedQPL expressions that can be used as query
rewriting rules for query optimization.

Definition 1. A FedQPL expression ϕ can be constructed from the following
grammar, in which req, tpAdd, bgpAdd, join, union, mj, mu, (,), filter, leftJoin,
tpOptAdd, and bgpOptAdd are terminal symbols.1 ρ is an expression in the request
language Lreq of some interface [7], fm is a federation member, tp is a triple
pattern, B is a BGP, F is a SPARQL filter expression, and Φ is a nonempty
set of FedQPL expressions.

ϕ ::= req ρfm | tpAdd tpfm(ϕ) | tpOptAdd tpfm(ϕ) | bgpAddBfm(ϕ) | bgpOptAddBfm(ϕ) |

join(ϕ,ϕ) | leftjoin(ϕ,ϕ) | union(ϕ,ϕ) | mjΦ | muΦ | filterF(ϕ)

While these operators are generally independent of the type of interface provided
by the corresponding federation member fm, some operators can be used only
for federation members with an interface that has specific properties.

1 The operators captured by the last four symbols are the ones that we have added.

4 Sijin Cheng and Olaf Hartig

The first operator, req, captures the intention to retrieve the result of a certain
(sub)query ρ from a given federation member. For instance, the aim to retrieve
solution mappings for tp1 (of Bex in Example 2) from the member fm1 (of Fex in
Example 1) can be represented as req tp1fm1

. The forms of the (sub)queries ρ that
can be used for this operator depend on the interface provided by the federation
member, which our formalization abstracts by the notion of request languages [7].
For instance, with req we can represent a request with a whole BGP, but only
for interfaces that support BGP requests.

The unary operator tpAdd captures the intention to access a federation mem-
ber to obtain solution mappings for a single triple pattern that must be com-
patible with solution mappings obtained from the plan represented by the given
subexpression. For instance, in our running example we observe that only one
of the solution mappings for tp1 from fm1 can be joined with solution mappings
for tp2 from fm2. To produce the join between the two sets of solution map-
pings we may use the output of req tp1fm1

as input to retrieve only the compatible
solution mappings for tp2 from fm2, which can be represented as the following
FedQPL expression: tpAdd tp2fm2

(
req tp1fm1

)
. The operator bgpAdd is a BGP-based vari-

ation of tpAdd. In contrast to these operators, join is a binary operator that joins
two inputs, capturing the intention to get the input sets of solution mappings
independently, and then join them in the query federation engine.

The operator leftjoin is binary operator that captures the intention to extend
information using an optional part. If the optional part (right input) has no
matching solution mappings, no bindings are created but it does not eliminate
the solutions. Consider query pattern Popt as a variation of the example BGP Bex

where {tp2, tp3} are optional. Federation member fm1 contributes two solution
mappings for tp1. Although ?y → d is not compatible with solution mappings
in the optional part, querying the federation Fex (cf. Example 1) results in two
solution mappings for Popt as the non-optional information is returned anyway.
Similar to the difference between join and tpAdd (respectively bgpAdd), tpOptAdd
and bgpOptAdd are unary variations of leftjoin that access a federation member
to obtain bindings for a given triple pattern, respectively a BGP, to optionally
extend the solution mappings of a given intermediate query result.

The operator filter captures the intention to impose a constraint on the solu-
tion mappings obtained from the plan represented by the given subexpression.
Continuing with the example BGP Bex, if adding a filter condition (?g < 20) on
the solutions, the query engine will return no solution mapping.

As for the remaining operators, union lifts the standard SPARQL algebra
operator union into the FedQPL language, whereas mj and mu are multiway
variations of join and union to capture the intention to apply a multiway algorithm
that can combine an arbitrary number of inputs.

3 Future Work

So far we have focused on providing the formal foundations of query processing
approaches over heterogeneous federations. We believe that establishing these

Query Processing over Heterogeneous Federations of RDF Data Sources 5

foundations is a necessary prerequisite for a systematic study of the next gen-
eration of federation engines. Consequently, we first plan to investigate what
adaptations are needed in source selection approaches and query decomposition
in the scenario of heterogeneous interfaces. Secondly, we plan to design effective
and efficient query planning and optimization approaches for queries over het-
erogeneous federations. We will implement these approaches in a new federation
engine for federated query processing over heterogeneous interfaces.

References

1. Abdelaziz, I., Mansour, E., Ouzzani, M., Aboulnaga, A., Kalnis, P.: Lusail: A
System for Querying Linked Data at Scale. Proc. of the VLDB Endowment (2017)

2. Acosta, M., Hartig, O., Sequeda, J.F.: Federated RDF Query Processing. In: En-
cyclopedia of Big Data Technologies. (2019)

3. Aebeloe, C., Keles, I., Montoya, G., Hose, K.: Star Pattern Fragments: Accessing
Knowledge Graphs through Star Patterns. arXiv preprint arXiv:2002.09172 (2020)

4. Azzam, A., Aebeloe, C., Montoya, G., Keles, I., Polleres, A., Hose, K.: WiseKG:
Balanced Access to Web Knowledge Graphs. In: Proc. of the Web Conf. (2021)

5. Azzam, A., Fernández, J.D., Acosta, M., Beno, M., Polleres, A.: SMART-KG:
Hybrid Shipping for SPARQL Querying on the Web. In: Proceedings of The Web
Conference (WWW) (2020)

6. Charalambidis, A., Troumpoukis, A., Konstantopoulos, S.: SemaGrow: Optimizing
Federated SPARQL Queries. In: Proceedings of the 11th International Conference
on Semantic Systems (SEMANTICS) (2015)

7. Cheng, S., Hartig, O.: FedQPL: A Language for Logical Query Plans over Hetero-
geneous Federations of RDF Data Sources. In: Proc. of the 22nd Int. Conference
on Information Integration and Web-based Applications & Services (2020)

8. Hartig, O., Buil-Aranda, C.: Bindings-Restricted Triple Pattern Fragments. In:
Proceedings of the 15th International Conference on Ontologies, Databases, and
Applications of Semantics (ODBASE) (2016)

9. Hartig, O., Letter, I., Pérez, J.: A Formal Framework for Comparing Linked Data
Fragments. In: Proc. of the 16th Int. Semantic Web Conference (ISWC) (2017)

10. Heling, L., Acosta, M.: Federated SPARQL Query Processing over Heterogeneous
Linked Data Fragments. In: Proceedings of The Web Conference (WWW) (2022)

11. Minier, T., Skaf-Molli, H., Molli, P.: SaGe: Web Preemption for Public SPARQL
Query Services. In: Proceedings of the Web Conference (WWW) (2019)

12. Montoya, G., Aebeloe, C., Hose, K.: Towards Efficient Query Processing over Het-
erogeneous RDF Interfaces. In: 2nd Workshop on Decentralizing the Semantic Web
(DeSemWeb) (2018)

13. Saleem, M., Ngonga Ngomo, A.C.: Hibiscus: Hypergraph-based Source Selection for
SPARQL Endpoint Federation. In: European semantic web Conf.Ṡpringer (2014)

14. Schwarte, A., Haase, P., Hose, K., Schenkel, R., Schmidt, M.: FedX: Optimization
Techniques for Federated Query Processing on Linked Data. In: Proceedings of the
10th International Semantic Web Conference (ISWC) (2011)

15. Taelman, R., Herwegen, J.V., Sande, M.V., Verborgh, R.: Comunica: a Modular
SPARQL Query Engine for the Web. In: Int. Semantic Web Conf. (ISWC) (2018)

16. Verborgh, R., Vander Sande, M., Hartig, O., Van Herwegen, J., De Vocht, L.,
De Meester, B., Haesendonck, G., Colpaert, P.: Triple Pattern Fragments: A Low-
Cost Knowledge Graph Interface for the Web. Journal of Web Semantics (2016)

	Towards Query Processing over Heterogeneous Federations of RDF Data Sources
	Motivation and Challenges
	FedQPL: A Language for Query Plans over Federations
	Future Work

