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1. Introduction

Computers have become ubiquitous in our lives in the last few years, espe-
cially since the advent of smartphones and other portable devices. Natural
language processing (NLP) tasks have greatly improved and are commonly
used on said portable devices, creating the need for more functionalities, new
tasks and improved performance. These tasks do not only include the pro-
duction and recognition of speech, but also understanding and generation
of natural language. They enable us to communicate with computers using
only natural language. However, getting machines to understand human lan-
guage is very complex and creates a wide field of research for subtasks that
need to be explored such as parsing, sentiment analysis and named entity
recognition. While some of these subtasks build the foundation of multiple
NLP applications, such as parsing and morphological segmentation, others
use their results to produce more end-user centric systems such as sentiment
analysis and automatic summarization. One of the “higher tier” tasks, is the
automatic translation of natural language into another language. While the
translation of small sentences and simple phrases works well for some language
pairs, there is much work to be done improving overall translation quality.

Translation systems are usually built using a large bilingual dataset of sen-
tences in one language and their translation in another. Popular sources for
these datasets are professional translations of parlamentarial proceedings, for
example of the Canadian or the European Parliament (Koehn 2005). These
translations are then in a first step aligned on a sentence basis. This leaves us
with one-to-one sentence translations, that can then be word aligned using un-
supervised machine learning techniques (Brown et al. 1993). Now we have con-
nected the words that have co-occured most frequently and are therefore more
likely to be translations of each other. This alignment however is not a one-
to-one alignment, as one word in the source language may be translated into
two words in the target language. This alignment can be used for word-based
machine translation, but phrase-based machine translation (Koehn, Och, and
Marcu 2003), combining multiple words into a phrase, results in much bet-
ter translations. For syntax-based machine translation systems (Chiang and
Knight 2006) we need parse trees to work with, adding another step of data
preparation. Using syntactical structures in machine translation greatly im-
proves the translation quality in certain constructions and languages that are
characterized by more complex sentence structure, such as German compared
to English. In order to parse the data, i.e. create some grammatical structure,
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1. Introduction

the parser uses a set of rules. These rules are induced from a monolingual
dataset, that has been annotated with some grammatical structure, for exam-
ple of a constituency grammar (Marcus, Marcinkiewicz, and Santorini 1993).
This annotation however has to be done by experts manually, which is costly
both in time and resources. In order to save both, it is possible to induce
some grammatical structure using unsupervised machine learning techniques.

Unsupervised machine learning techniques need as input only the data,
that is to be structured. In contrast to this unsupervised approach, super-
vised and semi-supervised techniques need some reference data, which is used
to structure the input data, making unsupervised approaches particularly at-
tractive when there is no or only little pre-structured data. In the context of
syntax-based machine translation we hand over our bilingual corpus to the un-
supervised machine learning algorithm, which in turn outputs a grammatical
structure for each sentence, that is sensible in the machine translation con-
text. This means that we do not necessarily care about the structure itself, as
it is only a tool to produce a correct translation. Structuring the data using
syntactical theories of different languages makes sense in a monolingual task,
but they might hinder the translation, due the structures being too dissimilar.
Experiments on binarization have shown, that the rejection of regular syntac-
tic parse trees in favor of binarizing them produces better translation results
(Wang, Knight, and Marcu 2007). All this leads to finding a structure that
is observed in the data and suitable for translation. Whether this structure
is sensible in other language processing tasks is a wholly different story that
will hopefully be explored soon.

Earlier attempts at inducing grammars inductively did not bode well (Car-
roll and Charniak 1992), although later approaches proved to be more suc-
cessful (Klein and Manning 2002). The induction scheme used by (Carroll
and Charniak 1992) functions in five steps:

0. Divide the corpus into a rule extraction and a training corpus

1. Generate all rules which might be used to parse the sentences in the
rule corpus, according to a dependency grammar scheme with additional
constraints to reduce the search space

2. Estimate rule probabilities

3. Improve those estimates using the training corpus

4. Remove all rules with a probability less than some threshold

This approach is known as parameter search, because the search space is fixed
and the parameters are shifted around using optimization methods such as
expectation-maximization (EM). Due to the failures in parameter search based
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1. Introduction

approaches, grammar induction research focused more on structure search
approaches. Structure search induces trees using local heuristics, that then
greedily construct the grammar, which in turn defines the tree structure. This
approach looks at the context of word sequences, creates new categories, i.e.
nonterminals, according to these contexts and merges categories that are sim-
ilar1. The work of (Klein and Manning 2002) shows a structure search based
approach which additionally incorporates parameter search methods, produc-
ing parsing results comparable to supervised parsing.

In contrast to these monolingual induction approaches, my work focuses on
bilingual induction, centered on machine translation, although its results may
as well be applied to the monolingual sentence compression task (Yamangil
and Shieber 2010). My thesis focuses on the works of (Cohn and Blunsom
2009) and (Zhai et al. 2013) that have been published recently. Cohn and
Blunsom explore the induction of string-to-tree grammars, by sampling the
word alignment using a fixed tree structure. String-to-tree grammars do not
have tree structures on the input side, thereby translating from a simple string
of words into a tree structure. In contrast to this (Zhai et al. 2013) builds on
the ideas of (Cohn and Blunsom 2009) but instead uses a fixed word alignment,
and samples a binary tree structure, naming the nodes using part-of-speech
(POS) tags2. I will follow mostly the idea of (Zhai et al. 2013), creating new
trees using a given word alignment and part-of-speech tags in order to label
the nodes. However, I will use tree-to-tree translation instead of string-to-tree,
which uses tree structures both on the input and output side. This implies
that the binary tree structures need to be induced for both the input and the
output side at the same time. The grammar formalism connecting these trees
is in my case not a synchronous tree substitution grammar (STSG) (Eisner
2003), which was used in the two previous approaches, but rather a multi
bottom-up tree transducer (MBOT) (Engelfriet, Lilin, and Maletti 2009).
Using the MBOT formalism allows us to model discontinuities, which happen
frequently in some languages such as German (see Fig. 1.1). This benefit
over STSG even results in improved translation quality in the tree-to-tree
translation setting (Braune et al. 2013).

In order to provide a more step-by-step approach, which enables us to see
where difficulties in the induction of trees arise, I divided the experiments into
three scenarios. In the first scenario, a tree structure for the output side is
given, inducing binary trees only on the input side. While the second scenario
works the other way round, the third scenario uses no parse trees at all, in-
ducing binary tree structures on both the input and output side.

1An extensive overview on monolingual grammar induction can be found in Dan Klein’s
thesis (Klein 2005)

2POS tagging can be done unsupervised and may well be seen as a “solved” problem.
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Figure 1.1.: Example of an aligned sentence pair with constituent trees. The
red alignment marker, shows a one-to-many alignment relevant
for discontiguous rules.

The results obtained in my experiments suffer from one major drawback.
As the speed of the Gibbs sampler is very slow, the extracted trees are still
mostly random. However, a quantitative analysis already shows some prob-
lems with the parameter settings and general sampling behaviour, providing
suggestions for future research.

Next up is Chapter 2, serving as an extensive tutorial for the mathematical
background of Dirichlet Processes, as they form the basis of the unsupervised
machine learning model. Additionally our sampling technique, i.e. Gibbs sam-
pling (Resnik and Hardisty 2010), is shortly presented. Thereinafter the tree
transduction formalism used in the prior work and the more expressive for-
malism used in this work is established. This concludes the Preliminaries
chapter. In Chapter 3 I will then finally put the pieces together to construct
the model that is used for the unsupervised induction of trees. Additionally
this chapter presents the structure of the trees created and the three different
induction scenarios. Chapter 4 deals with the setup of the experiments that
were carried out for this thesis and presents their raw outcomes. A discussion
of these outcomes is given in the following Chapter 5, leading to a conclud-
ing Chapter 6, summarising what has been done and giving an outlook onto
future research possibilities.
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2. Preliminaries

This chapter will contain all the basic information needed to understand my
thesis. The first big part of this chapter will contain an introduction to the
machine learning part of this work. I will review the basic distributions I
will be using, explain Bayesian Inference, provide an intuition for Markov-
Chain Monte Carlo Methods in general and Gibbs Sampling in particular.
Subsequently I will introduce trees and two tree transduction formalisms.

2.1. Bayesian Inference

2.1.1. Quick Probability Review

The induction of trees relies on probability models. Therefore this chapter will
give a short introduction to the basic rules for computing with probabilities
and probability functions.
A probability is a measure of the likeliness that an event E will occur out
of a sample space of possible outcomes e ∈ S. We use a numerical measure
whose value is between 0 and 1, with 0 indicating impossibility of the event
and 1 indicating certainty. In order to have a well formed probability space
the probabilities for each of the possibilities have to sum to 1. A probability
function is therefore a mapping from the sample space S to the interval [0, 1]
including both 0 and 1.

p : S → [0, 1] (2.1)

with ∑
e∈S

p(e) = 1 (2.2)

To provide an intuition for probabilities we use a simple coin. A coin usu-
ally either lands heads (H) or tails (T ) (ignoring the unlikely probability of
the coin landing on the rim). If the coin is fair the probabilities of landing
on either side are even, i.e. 0.5. Doing one coin flip is seen as an experi-
ment with two outcomes e: heads or tails. These outcomes form the sample
space S = {H,T} for this experiment. However, doing more than one coin flip
counts as an experiment as well. Imagine an experiment where we toss the coin
twice. Our outcomes in this experiment are S = {HH,HT, TH, TT}. The
probabilities of each of those outcomes is, given a fair coin, 1

4
. Events serve as

more eloquent outcomes formed from a subset of outcomes E ⊆ S. The event
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2. Preliminaries 2.1. Bayesian Inference

of throwing heads at least once in two coin tosses is E = {HH,HT, TH}.
The probability of the event of at least once heads is the sum of its outcomes
p(E) =

∑
e∈E p(e) = 3

4
.

In order to ease notation by making formulas more general we use random
variables. A random variable X ∈ S represents the possible outcome of an
experiment. For an experiment that has yet to be performed this notion is
intuitive. We also use random variables for experiments that were already
performed, but whose outcomes are uncertain. Two important rules of prob-
ability are the sum rule and the product rule.

p(X) =
∑
Y

p(X, Y ) (2.3)

p(X, Y ) = p(Y |X)p(X) (2.4)

Here p(X, Y ) = p(X∩Y ) is the joint probability, the probability of the events
X and Y occurring together, i.e. the event X ∩ Y . The quantity p(X|Y ) is
the conditional probability, where the probability of event X is conditioned on
event Y occurring. The last term p(X) is known as the marginal probability.

The random variables can take on discrete or continuous values. In the
first case we use a probability mass function to denote how much probability
mass is assigned to each value of the random variable. In the latter case we
use probability density functions. Since they are defined over a continuous
space we do not compute the probability mass at one point, but at an interval.
This interval lies between a and b excluding both ends, denoted by the round
bracket.

p(x ∈ (a, b)) =

∫ b

a

p(x)dx (2.5)

Therefore the condition that the probabilities have to sum to 1 changes to:∫ ∞
−∞

p(x)dx = 1 (2.6)

Rule (2.3) changes to the following for x and y being real variables.

p(x) =

∫
p(x, y)dy (2.7)

When dealing with probabilities and values we regularly use two measures,
which represent the underlying probability distribution. The expected value
of a distribution is the value we expect to get under normal conditions. For a
function f : Z → R the expected value given a discrete variable z is

E[f(z)] =
∑
z∈Z

f(z)p(z) (2.8)

11



2. Preliminaries

with Z being the discrete set of values z can take and p being the probability
distribution over possible values for z. In the continuous case the sum changes
once again to an integral

E[f(z)] =

∫
f(z)p(z)dz (2.9)

The variance measures the spread of a variable. This means that for a smaller
variance the values will lie closer to the mean (expected value) and with 0
being identical to the mean. Larger values denote more spread of the variables
around the expected value.

Var[f(z)] =E[(f(z)− E[f(z)])2] (2.10)

=
∑
z∈Z

(f(z)− E[f(z)])2 · p(z)

The variance is defined as the squared deviation from f(z) of the mean. In
the continuous case we use, as always, an integral instead of a sum.

Var[f(z)] =

∫
(f(z)− E[f(z)])2p(z)dz (2.11)

2.1.2. Bayesian Theory

Bayesian inference is a common way to update the estimated probability of a
model or hypothesis given a growing amount of data using Bayes’ rule.

p(θ|X) =
p(X|θ)p(θ)
p(X)

(2.12)

The equation consists of the likelihood p(X|θ), modelling the probability
of the data X given the model θ, the prior p(θ), our belief in the model, a
normalization constant p(X) providing the probability of the data1 and our
updated belief in the model p(θ|X) known as the posterior. Bayes’ theorem
can be simply worded as

posterior ∝ likelihood× prior. (2.13)

The denominator p(X) is usually expressed using the numerator of the
expression and integrating over all possible values of the model. The term
below uses the sum and product rule introduced in (2.7) and (2.4).

p(X) =

∫
θ

p(X|θ)p(θ)dθ (2.14)

1In order for the expression to be well defined, we need p(X) > 0. If p(X) = 0 the
posterior is 0.

12



2. Preliminaries 2.1. Bayesian Inference

We however do not start out with a fixed model θ but sample this model
from some probability distribution. This distribution is governed by a so
called hyperparameter we that name α. The model2 is then conditioned on
this new hyperparameter changing Bayes’ rule to

p(θ|X, α) =
p(X|θ)p(θ|α)

p(X|α)
(2.15)

and the denominator to

p(X|α) =

∫
θ

p(X|θ)p(θ|α)dθ (2.16)

Using these formulas we can now predict a new datapoint x̃ given some
amount of already processed data. The prediction is not, in contrast to fre-
quentist statistics, a single point, but a probability distribution over points.
This new distribution is called posterior predictive distribution3.

p(x̃|X, α) =

∫
θ

p(x̃|θ)p(θ|X, α)dθ (2.17)

In order to ease up the level of mathematics when using Bayesian inference
we use so called conjugate priors. The posterior distribution p(θ|X) and the
prior p(θ) are conjugate when they are in the same family of distributions.
The prior is then called the conjugate prior for the likelihood function p(X|θ).
Using a conjugate prior for our likelihood function allows us to express the
posterior in a closed-form expression, sidestepping numerical integration. An
example will be given after the introduction of the distributions commonly
used in Bayesian inference.

2.1.3. Common Distributions

Next we recall and illustrate the distributions used in our approach.

Bernoulli & Categorical Distribution

The Bernoulli distribution is probably the easiest distribution used in this
paper. It simply denotes the distribution of the probability outcomes for a
binary experiment, such as a coin toss. The random variable in this case can
therefore only take on two values, i.e. 0 and 1. The probability of the random
variable being X = 1 is denoted by p1 and the probability of being X = 0 by
p0.

p1 = p(X = 1) = 1− p(X = 0) = 1− p0 (2.18)

2The joint probability p(X, θ, α) is defined as follows: p(X, θ, α) = p(X|θ)p(θ|α)p(α)
3Once again we use a particular joint probability: p(x̃, θ,X, α) =
p(x̃|θ)p(θ|X, α)p(X)p(α)

13



2. Preliminaries

Figure 2.1.: Plot for three different Bernoulli Distributions.

The probability mass function describes how much probability mass is lo-
cated at which random variable’s value. So for our coin example we have
to distribute the probability mass of the random variable X to X = 1 and
X = 0.
More formally we have the following function:

p(X; p1) =

{
p1 if X = 1

1− p1 if X = 0
(2.19)

Since flipping a coin is too simple for a professional gambler we replace the
coin with a regular k-sided die. Rolling this die has k possible outcomes, so
our random variable X can take on values 1, 2, . . . , k. The probabilities of
these outcomes naturally have to sum to 1 and lie in the interval [0, 1]. The
distribution for rolling such a die is called a categorical distribution and is
the natural extension of the Bernoulli distribution, being able to handle more
than just two results for the random variable.
Its probability mass function is most intuitively defined as follows:

p(X = i|p) = pi (2.20)

14



2. Preliminaries 2.1. Bayesian Inference

The variable pi represents an entry in the vector p and it is the probability of
the random variable X being i, for every i in the value space of X.

Binomial & Multinomial Distribution

Now we take a step back to gambling with our coin. Imagine throwing the
coin n times. If we now wanted to know how probable landing heads k times
would be, we could either sum up the probability of each possible combination
or use the binomial distribution.
Since the latter is easier we define the probability mass function of the bino-
mial distribution as follows:

Binom(k|n, p1) =

(
n

k

)
pk1(1− p1)n−k (2.21)

The first term of this equation is the number of ways of choosing k objects
out of n identical objects in total. The second and third terms correspond
to the product of probabilities of landing heads and tails respective to k and n.

Just as before when I introduced the categorical distribution for modelling
a die throw, I can extend the binomial to a multinomial distribution. The
multinomial distribution models the probability of throwing each side of the
die some number of times out of n total throws. Let x = (x1, x2, . . . , xk) be
the vector counting the times each side has been rolled, with

∑k
i=1 xi = n.

The multinomial then takes a form similar to the binomial

Mult(x|p, n) =

(
n

x1x2 · · ·xk

) k∏
i=1

pxii , (2.22)

where similar as before p denotes the vector of probabilities for each value
i the random variable can take. The normalization coefficient, i.e. the first
term, is the number of ways of partitioning n objects into k groups of size
x1, . . . , xk, which is defined as(

n

x1x2 · · ·xk

)
=

n!

x1!x2! · · ·xk!
. (2.23)

Beta & Dirichlet Distribution

Consider that we have some or no knowledge about the coin we are playing
with, in the sense that we do not know whether it is fair or not. The Beta
distribution helps us to model our belief in the fairness of the coin. It is
defined on the interval [0, 1] parametrized by two positive parameters α and
β. The interval on which the Beta distribution is defined, is the probability
that the coin lands heads and the parameters shift how much we believe in
these probabilities. It can therefore be seen as a probability distribution over

15



2. Preliminaries

Figure 2.2.: Plot of four different binomial distributions. Note the spikier
shape for the yellow curve compared to the green curve, due to the
same probability mass distributed onto fewer points. Furthermore
note the shift to left/right for the red/blue curve compared with
the yellow curve, due to smaller/greater success probability p.

probability distributions. The probability density function is defined using
the gamma function Γ(x) which is defined for positive integers as

Γ(x) = (x− 1)! (2.24)

.
The probability density function then is

Beta(x;α, β) =
xα−1(1− x)β−1∫ 1

0
yα−1(1− y)β−1dy

(2.25)

=
Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 (2.26)

The integral in the denominator of this equation serves as a normalization
constant which is handily defined using the Gamma function.
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2. Preliminaries 2.1. Bayesian Inference

Figure 2.3.: Plot of some characterizing beta distributions.

An intuition to interpret the parameters α and β is to view those as previ-
ous successes and failures respectively. Setting both to 1 results in ignoring
the input x by setting the exponents of the terms containing x to zero. This
results in a uniform density function, making no assumptions about the coin.
All equal values greater than one for the parameters result in a symmetric
bell curve centered at 0.5 which grows sharper with growing values for α and
β, since we have seen more evidence that the coin is indeed fair. Increasing
either α or β results in a shift of the curve towards 1 or 0 respectively.

The Dirichlet distribution is the multivariate extension of the Beta distri-
bution. Instead of two parameters for successes and failures we now have the
parameters α1, α2, . . . , αk for the k sides of our die. The probability density
function is therefore

Dir(x1, . . . , xk;α1, . . . , αk) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

k∏
i=1

xαi−1
i (2.27)
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with

x1, . . . , xk ∈ [0, 1] (2.28)

k∑
i=1

xi = 1 .

The parameters α1, . . . , αk behave similarly in shaping the Dirichlet func-
tions as α and β for the Beta distribution. High values lessen the variance
and preferences for some sides of the die are expressed using higher values for
its parameters. Expressing no knowledge about the die and setting the dis-
tribution uniformly is again achieved for the vector (α1, . . . , αn) = (1, . . . , 1).

Coin Example

In order to clarify what has been introduced we combine Bayes’ theory with
the probability distributions to produce an example showing how this can be
applied. In order to keep the formulas small we are going to use our previous
coin example.

We are going to model the belief in the fairness of our coin before and
after we have done some experiments. Our belief in the fairness of the coin
is modeled using the Beta distribution. Setting the parameters both to 2
expresses, that we believe the coin should be fair, although we do not trust
this too much therefore leaving room for variance. The probability that we
will see a certain kind of result in our experiment, i.e. a certain number of
heads and tails, is modeled using the binomial distribution. The posterior,
our updated belief in the coin, will be a Beta distribution as well, since the
Beta distribution serves as a conjugate prior for our likelihood modeled by
the binomial distribution. For our equation below we use n as the number of
trials, k as the number of successes, x as the probability of heads and α and β
as hyperparameters, θ as model, X as data as before.

p(θ|X) =
p(X|θ)p(θ)∫

θ
p(X|θ)p(θ)dθ

(2.29)

=

(
n
k

)
xk(1− x)n−k × Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1∫ 1

y=0

(
n
k

)
yk(1− y)n−k × Γ(α+β)

Γ(α)Γ(β)
yα−1(1− y)β−1dy

(2.30)

=
xk+α−1(1− x)n−k+β−1∫ 1

y=0
yk+α−1(1− y)n−k+β−1dy

(2.31)

=
Γ(α + β + k + n− k)

Γ(α + k)Γ(β + n− k)
xk+α−1(1− x)n−k+β−1 (2.32)

= Beta(x;α + k, β + n− k) (2.33)
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2. Preliminaries 2.1. Bayesian Inference

From the second to third step we pull the constant terms out of the integral
and cancel them out of the whole fraction. Due to the same bases we can
simplify the rest of the equation by adding the exponents. The rest of the
formula follows according to (2.26).
This equation is commonly known as the Beta-Binomial distribution. Simi-
larly to this one there also exists the Dirichlet-Multinomial distribution. With
the Beta-binomial distribution we can now compute the probability of a fair
coin, given a prior belief and some evidence.
Updating our belief after seeing new evidence is also possible using this equa-
tion. In this case we compute the posterior as our updated belief and use it
as prior belief in the next iteration of our belief update.

Geometric Distribution

Given a Bernoulli distribution we can use the Geometric distribution to model
the number of trials needed to get one success. Given a fair coin the probability
to throw heads in one trial is 0.5. Whereas in two or more trials the probability
is the product of the probabilities of failure times the probability of success,
which is in this case 0.25, 0.125 and so on. It is formalized using only the
success probability p1:

Geom(x; p1) = (1− p1)x−1p1 (2.34)

Poisson Distribution

The Poisson distribution is used to model the number of events occurring in a
fixed interval of time or space. These events occur with a known average rate
and are independent of previous events. This distribution can for example
be used to model the number of phonecalls received per day, assuming that
the phonecalls are independent of each other. The average number of events
serves both as the expectation and the variance of the Poisson distribution,
i.e. someone receiving a lot of phonecalls on average will have a much higher
fluctuation than someone receiving only a few calls on average.
The Poisson distribution takes as its sole parameter this average value denoted
by λ. Its formula uses Euler’s number (e = 2.718 . . . ) and reads as follows:

Pois(x;λ) =
λxe−λ

x!
(2.35)

2.1.4. Dirichlet & Pitman-Yor Processes

Using Dirichlet distributions we can sample probability distributions for a
fixed number of possible outcomes. However we may not always know how
many outcomes there are. This is the case when we are randomly sampling
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Figure 2.4.: Plot of three Geometric distributions. Having a high success prob-
ability results in a sharply falling curve, because we have such a
high probability of succeeding very early. In contrast the curve
barely falls for small values of p1, as the chance of success is nearly
equally low for the subsequent steps.

tree fragments. While it may be possible to list all valid tree fragments for a
tree substitution grammar (TSG), it is easier to assume an infinite amount of
fragments and sample using a Dirichlet Process.

A Dirichlet process (DP) is a way of assigning a probability distribution
over probability distributions. The domain of a Dirichlet process is a set of
probability distributions, while the value of the process is a probability dis-
tribution. The distributions are discrete and infinite dimensional. Although
specified over infinite dimensional distributions, the Dirichlet process uses
only finite resources. The following introduction is based mostly on (Teh
2010) and uses additional insight from (Phadia 2013), especially when intro-
ducing Pitman-Yor Processes.

We define the base distribution of the Dirichlet process as H, a distribution
over some probability space Θ. The parameter α is a positive real number
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2. Preliminaries 2.1. Bayesian Inference

Figure 2.5.: Plot of four Poisson distributions, showing its possible shapes
controlled by the expectation and variance parameter λ.

and G is a random distribution over Θ. For any finite measurable partition4

T1, . . . , Tr of Θ the vector (G(T1), . . . , G(Tr)) is random, since the distribution
G is random. This distribution G is Dirichlet process distributed with base
distribution H and concentration parameter α, written G ∼ DP(α,H), if

(G(T1), . . . , G(Tr)) ∼ Dir(αH(T1), . . . , αH(Tr)) (2.36)

for every finite measurable partition T1, . . . , Tr of the probability space Θ.
The two parameters can be interpreted intuitively. The base distribution
is for T ⊂ Θ the mean of the Dirichlet process E[G(T )] = H(T ). The
concentration parameter α serves as an inverse variance with V [G(T )] =
H(T )(1 − H(T ))/(α + 1). With larger values for α more probability mass
will be centered around the base distribution. Therefore with α→∞ we will
have G(T ) → H(T ) for any measurable set T ⊂ Θ. This does however not
lead to G→ H since the draw G from the Dirichlet process is discrete whereas

4In order to skip measure theory to properly explain measurable partitions we suggest the
reader to use the intuition of seeing Θ as the sample space and a partition on said space
as an event.
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the base distribution may be continuous.

Dirichlet Process Posterior

As before we take G ∼ DP(α,H) as a draw from a Dirichlet process. Since
G is itself a distribution we can perform a sequence of independent draws
θ1, . . . , θn ∼ G. These draws θi take values from the probability space Θ
since G is a distribution over said space. Similarly as with the coin example
(see Section 2.1.3), we are now going to define the posterior distribution of G
given some observed values θ1, . . . , θn. Again T1, . . . , Tr is a finite measurable
partition of Θ. The number of observed values in Tk is denoted by nk = #{i :
θi ∈ Tk}. Due to (2.36) and the conjugacy between the multinomial (here the
sequence of draws from G) and the Dirichlet distribution, we have

(G(T1), . . . , G(Tr))|θ1, . . . , θn ∼ Dir(αH(T1) + n1, . . . , αH(Tr) + nr) (2.37)

As (2.37) is true for all finite measurable partitions, the posterior distribu-
tion over G has to be a Dirichlet process as well. The updated concentra-
tion parameter then is α + n and the updated base distribution changes to
αH+

∑n
i=1 δθi (θ)

α+n
, with the delta function δx(T ).

δx(T ) =

{
0, x 6∈ T ;

1, x ∈ T.
(2.38)

Intuitively, this function serves as an indicator, whether an element is con-
tained in a set.5 The number of observed values is equally given by nk =∑n

i=1 δθi(Tk). The rewritten posterior Dirichlet process is:

G|θ1, . . . , θn ∼ DP(α + n,
α

α + n
H +

n

α + n

∑n
i=1 δθi(θ)

n
) (2.39)

The base distribution of the posterior is a weighted average between the

prior base distribution H and the empirical distribution
∑n
i=1 δθi (θ)

n
. While

the weight of the prior base distribution is proportional to the concentra-
tion parameter α, the weight associated with the empirical distribution is
proportional to the number of observations n. Taking α → 0 would lead
to ignoring the prior distribution only taking the empirical distribution into
account. When the number of observations is large enough, the posterior is
dominated by the empirical distribution. This means that we approach the
true distribution with growing evidence.
Having observed θ1, . . . , θn values we can now do a prediction for θn+1. This

5Note that this holds true for singleton sets as well such as {θ}. We will however not
explicitly write singleton sets as sets but leave them as is.
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new value is conditioned on the previous observations and with G marginal-
ized out as in equation (2.17) we have

p(θn+1 ∈ T |θ1, . . . , θn) = E[G(T )|θ1, . . . , θn] (2.40)

=
1

α + n
(αH(T ) +

n∑
i=1

δθi(T )) (2.41)

The new sample is then drawn from the following distribution

θn+1|θ1, . . . , θn ∼
1

α + n
(αH +

n∑
i=1

δθi(θ)) (2.42)

which is the same as the posterior base distribution given previous observa-
tions θ1, . . . , θn.

Urn Scheme

This can be visualized using an urn scheme. We start with an urn filled with
α black balls. Each time we draw a black ball from this urn we choose a colour
by drawing it from base distribution H which is defined over the colour space
Θ. We then proceed by adding a ball of the newly drawn color into the urn
and returning the black ball. Each time we draw a coloured ball from the urn
we add another ball of its colour. So after n draws we have added n balls
to the urn leaving us with a total of α + n balls. Drawing a black ball then
has the probability α

α+n
and drawing a coloured ball has probability n

α+n
. The

former case corresponds to θn+1 ∼ H, drawing from the base distribution, and

the latter to drawing from the empirical distribution
∑n
i=1 δθi (θ)

n
.

After our series of n draws we end up with K different colours in the urn.
These values are represented by θ∗1, . . . , θ

∗
K with K ≤ n. We have thus defined

a partition on θ1, . . . , θn into K clusters, with θi = θ∗k if i is in cluster k. The
predictive distribution can then be written as with nk denoting the number
of repeats of θ∗k:

θn+1|θ1, . . . , θn ∼
1

α + n
(αH +

K∑
k=1

nkδθ∗k(θ)) (2.43)

The value θ∗k will be repeated by the newly drawn value θn with a probability
proportional to the number of times it already has been observed. So larger
values of nk will result in even more growth of said value, known as a rich-
gets-richer phenomenon.
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Chinese Restaurant Process

The Chinese restaurant process is a metaphor which describes the distribution
over such partitions. In the Chinese restaurant process customers enter a
Chinese restaurant with an infinitely large number of tables and either sit,
with a probability proportional to the number of customers at that table, at an
occupied table or choose to open a new table with a probability proportional
to the concentration parameter. This construction process is inverse to the
urn scheme where we would first draw values inducing a clustering, whereas
the Chinese restaurant process first produces a clustering and subsequently
draws the values for each cluster θ∗k ∼ H. The number of clusters grows
logarithmically in the number of observations.

E[K|n] =
n∑
i=1

α

α + i− 1
∈ O(α logn) (2.44)

Each new observation takes on a new value θi with probability α
α+i−1

. This
equation directly shows the effect of the concentration parameter and as well
reflects the rich-gets-richer phenomenon as we assume a small number of large
clusters to be created.

Stick-Breaking Process

Another construction mechanism used to create Dirichlet processes is the
stick-breaking construction.

βk ∼ Beta(1, α) (2.45)

θ∗k ∼ H (2.46)

πk = βk

k−1∏
l=1

(1− βl) (2.47)

G =
∞∑
k=1

πkδθ∗k(θ) (2.48)

The construction of π is best explained metaphorically. We start with a stick
of length 1, breaking it at β1 and assign π1 to be the length of the stick we
just broke off. In order to obtain π2, π3 etc. we proceed recursively, break-
ing off the other portion of the stick. Each portion of the stick is assigned
a value θ∗ via the base distribution H. The sizes of the broken off portions
of the stick are controlled by the α. Higher values of this parameter result
in smaller values for the βi thus producing smaller portions to be broken off.
The probability mass function of the desired output function is then defined
as the infinite sum over the πk.
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Pitman-Yor Process

Pitman-Yor processes extend the regular Dirichlet processes by adding a third
parameter, namely the discount parameter. In contrast to the Dirichlet pro-
cess the Pitman-Yor process can be used to model power-law behaviour. These
distributions are fairly frequent in natural language processing and can be
found in e.g. word distributions, part-of-speech tag distributions and are
known as Zipf’s law. This extension to the exponential distributions created
by Dirichlet processes might come in handy, when creating synchronous tree
fragments.
The construction of Pitman-Yor processes can be done using the stick-breaking
construction. The discount parameter d is constrained such that 0 ≤ d < 1
and α > −d.

βk ∼ Beta(1− d, α + kd) (2.49)

Setting the discount parameter to 0 will return the regular Dirichlet process.
If the concentration parameter is set to 0 we end up with a random probability
whose weights are based on a stable law with index 0 < d < 1.

The urn scheme can as well be modified to return a Pitman-Yor process.
Similar to equation (2.43) we have:

θn+1|θ1, . . . , θn ∼
1

α + n
((α +Kd)H +

K∑
k=1

(nk − d)δθ∗k(θ)) (2.50)

These two modifications to the equations used in the Dirichlet process con-
struction schemes show that the Pitman-Yor process uses additional infor-
mation contained in the number of clusters K and the number of previous
observations n.

2.1.5. Gibbs Sampling

Some of the equations used in Bayesian inference use integrals. While they
may be relatively easy to solve in smaller dimensional spaces, they become
nearly unsolvable in high-dimensional spaces. In order to solve the integrals
we use a technique known as Gibbs sampling (S. Geman and D. Geman 1984)6.
The integral for the expected value (2.9) can be solved by drawing values z(t)

according to the probability distribution p(z), summing them and normalizing
them.

E[f(z)] = lim
N→∞

1

N

N∑
t=1

f(z(t)) (2.51)

6An introduction to Gibbs sampling can be found in (Resnik and Hardisty 2010).
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Instead of drawing an infinite number of values we can simplify the process
via drawing only T values, which gives us an approximation of the expected
value.

E[f(z)] ≈ 1

T

T∑
t=1

f(z(t)) (2.52)

The “weighting” of f(z) which was done via the probability distribution
p(z) survives invisibly in the above equation. We draw values according to
p(z), meaning that we end up with more values z which belong to the higher
probability regions and fewer values which belong to lower probability regions.

The same procedure works for computing an expected value for the posterior
predictive function (2.17) which uses an integral over all possible models.
Instead of computing the integral we draw models θ(t) from p(θ|X, α) and
compute the following sum

E[p(x̃|X, α)] ≈ 1

T

T∑
t=1

p(x̃|θ(t)) (2.53)

The question that remains is how we are going to draw samples from p(z).
There are a wide variety of sampling methods, such as rejection sampling,
importance sampling, Metropolis sampling and many more. We are going to
use Gibbs sampling which is a Markov Chain Monte Carlo (MCMC) method,
a class of methods using similar methods. Imagine walking around the value
space Z from z(0) to z(1) to z(2) and so forth. The likelihood of visiting any
point z should be proportional to p(z). The next point we are going to visit
is chosen via some function which makes probabilistic choices according to a
transition probability Ptrans(z

(t+1)|z(0), z(1), . . . , z(t)). The Monte Carlo part
of MCMC refers to this probabilistic choice reminding us of gambling. In the
Markov Chain model the transition probability only depends on the previous
state, which is known as the Markov property.

As stated before Gibbs sampling is an MCMC method which is applicable
if values z have more than one dimension. In Gibbs sampling we do not pick
the next state at once but pick it dimension after dimension. This can easily
be rewritten as a simple algorithm.

Algorithm 1 Gibbs Sampling

1: z(0) ← 〈z(0)
1 , . . . , z

(0)
k 〉

2: for t = 0 to T − 1 do
3: for i = 1 to k do
4: z

(t+1)
i ∼ P (Zi|z(t+1)

1 , . . . , z
(t+1)
i−1 , z

(t)
i+1, . . . , z

(t)
k )

5: end for
6: end for
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2. Preliminaries 2.2. Trees and transducers

Using this algorithm we can now substitute values zi with values for different
parameters of our model, providing us a way to sample a new model stepwise.
For our posterior predictive function this would mean that we sample the
parameters of the model θ, sample a new value x̃, and repeat.

2.2. Trees and transducers

The syntactic structure used in syntax-based statistical machine translation
is constructed using trees, which are also frequently used in computer science.
This chapter will serve as an introduction to trees in general, provide infor-
mation about binary trees in particular and introduce two tree transducer
formalisms that are used to translate one tree to another tree. I follow the
style of (Braune et al. 2013) in the formalization of trees and transducers.
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Figure 2.6.: Example of an aligned sentence pair with constituent trees. The
red alignment marker, shows a one-to-many alignment relevant
for discontiguous rules.

Trees used in computer science are directed acyclic graphs, where all but
one node have exactly one parent node and k ≥ 0 child nodes. The special
node called root node has no parents. While we label nodes, edges remain
unlabeled, but ordered. Thus we always talk about node labels, when we refer
to the labels of a tree. The trees we draw are directed from top to bottom,
making it possible to omit the direction of the edges. The root of the tree is
always at the top and its edges lead, via more nodes and edges, to the leaves
of a tree, which are the childless nodes.
We start off with an alphabet Σ of labels. The set TΣ denotes the set of all
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Σ-trees, i.e. trees that use elements of the alphabet Σ as their labels. It is
the smallest set T such that σ(t1, . . . , tk) ∈ T for all σ ∈ Σ, k ∈ N0 and
t1, . . . , tk ∈ T .7 A tree t consists of a labeled root node σ and a sequence of
children t1, . . . , tk, that are trees as well.
In order to address certain nodes inside the tree, we use their position. The
positions of a tree are sequences of positive integers iw with i ∈ N where i
addresses the ith child of its root and w the position in this subtree. The root
itself is addressed with the position ε, i.e. the empty word. We define the
positions pos(t) ⊆ N∗ of a tree t = σ(t1, . . . , tk) inductively.

pos(t) = {ε} ∪ pos(k)(t1, . . . , tk)

where

pos(k)(t1, . . . , tk) =
⋃

1≤i≤k

{iw | w ∈ pos(ti)} (2.54)

The label of a tree t ∈ TΣ at position w is t(w). The subtree rooted at said
position is t|w. The node w ∈ pos(t) is a leaf in tree t if w1 /∈ pos(t). The
leaves whose labels are from a certain subset N ⊆ Σ are

leafN(t) = {w ∈ pos(t) | t(w) ∈ N,w leaf in t} (2.55)

We will refer to this set later on as leaf nonterminals when N is the set of
nonterminals. The extension of this set to sequences t1, . . . , tk ∈ TΣ is

leaf
(k)
N (t1, . . . , tk) =

⋃
1≤i≤k

{iw | w ∈ leafN(ti)}. (2.56)

Given the pairwise prefix-incomparable positions w1, . . . , wn ∈ pos(t) and
t1, . . . , tn ∈ TΣ, we use t[wi ← ti]1≤i≤n to denote the tree that is obtained
from t by replacing in parallel the subtrees at wi by ti for every 1 ≤ i ≤ n.

Binary Trees

Binary trees are routinely used in computer science, e.g. as data structures,
and binarization is applied to nondeterministic devices (such as context-free
grammars (CFG)) to achieve greater efficiency. The CYK parsing algorithm
uses a grammar binarization approach, transforming its input CFG into Chom-
sky normal form (Hopcroft, Motwani, and Ullman 2003). In the context of
statistical machine translation (SMT) the binarization approach is used as
well providing not only better translation results (Wang, Knight, and Marcu
2007), but also better decoding efficiency (Zhang et al. 2006). Since binary
trees are not inferior to regular trees and additionally offer greater efficiency,

7We use N0 to denote the set of natural numbers containing zero in contrast to the set of
natural numbers N excluding zero.
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the tree induction I present in this thesis produces binary trees. In the in-
duction context we want to restrict the tree structure in order to restrict the
search space of sensible trees. In contrast to general trees, binary trees always
have two or no child nodes. This property allows us to compute the number of
possible binary tree structures, given a sequence of leaf nodes of length n+ 1,
using the Catalan number:

Cn =
1

n+ 1

(
2n

n

)
(2.57)

The binary trees used in this thesis have preterminal nodes, that have each one
child node. This however does not change the number of possible trees given
a sequence of leaves and their preterminals, simply adding an intermediate
layer.

2.2.1. Synchronous Tree Substitution Grammar

The synchronous tree substitution grammar (STSG) (Eisner 2003) 8 is the
most common formalism in syntax-based statistical machine translation. Its
rules are applied to an input tree resulting in a set of possible output trees,
that are usually weighted.
We use Σ and ∆ as the alphabets of input and output symbols, respectively,
and the set of nonterminals N ⊆ Σ ∪∆.

The set of rules will be denoted by R with ρ = l→ψ r ∈ R. Here l ∈ TΣ will
denote a tree fragment on the input side and r ∈ T∆ a tree fragment on the
output side. In order to ensure a connection, we use the alignment function
ψ : leafN(l)→ leafN(r). This mapping connects each leaf nonterminal on the
left-hand side with its counterpart on the right-hand side. Due to this feature,
the alignment function is required to be bijective. This results in a linear and
nondeleting behaviour, i.e. subtrees are neither copied nor dropped.
Additionally we use a mapping c : R → R that will determine the weight
of each rule. A rule ρ therefore consists of a left-hand side l, a right-hand
side r, an alignment ψ and a rule weight c(ρ). The successful application of
a sequence of rules to an input tree is called a derivation. We work with the
intuition that we begin constructing a tree pair with some elementary tree
pair and rewrite each aligned leaf nonterminal using some set of rules. We
therefore need a pre-translation 〈t, ψ, c(ρ), u〉, that represents the tree that
has already been created in an incomplete derivation.

8(Chiang and Knight 2006) offers a gentle introduction to synchronous grammars in gen-
eral.

29



2. Preliminaries

NP

NNP

Peter

→
NNP

Peter

IN

into
→

IN

in

DT

the
→

DT

das

NN

hole
→

NN

Loch

NP

DT NN
→

NP

DT NN

PP

IN NP
→

PP

IN NP

S

NP VP

VBD

fell

PP
→

S

NP

NNP

VAFIN

ist

VP

PP VVPP

gefallen

Figure 2.7.: Example of the extracted STSG rules for the tree pair in Fig. 2.6.
The dashed lines show the alignment used by the alignment func-
tion ψ.

Formally, we define a weighted STSG as a finite set R of rules together with
a mapping c : R→ R. The set of weighted pre-translations τ(R, c) of a STSG
(R, c) is the smallest set T subject to the following restrictions:

(i) Each rule ρ : l→ψ r ∈ R is a weighted pre-translation 〈l, ψ, c(ρ), r〉 ∈ T

(ii) If there exist:

• a rule ρ = l→ϕ r ∈ R
• a weighted pre-translation 〈t, ψ, c, u〉 ∈ T with

– a position w ∈ leafN(t) and

– a position v ∈ leafN(u)

– t(w) = l(ε)

– u(v) = r(ε)

– ψ(w) = v

then 〈t′, ψ′, c′, u′〉 ∈ T is a weighted pre-translation, where

• t′ = t[w ← l]

• c′ = c(ρ) · c
• u′ = u[v ← r]
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Rule application is done given a pre-translation, i.e. a pair of preliminary
input and output trees 〈t, ψ, c, u〉, replacing a nonterminal leaf on each side
at position w and v, with the rule’s left-hand side l and right-hand side r,
respectively. The weight of this newly gained pre-translation is obtained by
simply multiplying the pre-translation’s weight with the weight of the applied
rule. In order to obtain the weight for a tree transformation pair (t, u), we
take the pre-translation maximizing the weight c, from the set of all pre-
translations 〈t, ∅, c, u〉.

Combining a rule with a pre-translation:
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Figure 2.8.: Example of a STSG rule application using the rules of Fig. 2.7.

2.2.2. MBOT

The tree transducer we will be using in our experiments is the multi bottom-
up tree transducer (MBOT) (Engelfriet, Lilin, and Maletti 2009). In contrast
to STSG the MBOT works from bottom to top. Additionally the output
side of an MBOT rule can contain a sequence of trees. This extension pro-
vides the formalism with more power and the ability to model discontinuities.
These discontinuities are fairly common in German, where verbs consisting of
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a prefix and a core are split into two words at non-adjacent positions in the
sentence. Instead of a regular MBOT we use a variant called the local MBOT
(`MBOT) (Maletti 2011). This variant is a restricted version dropping the
general state behaviour of MBOT and replacing it by common locality tests,
similar to STSG. This means that its rules are as well linear and nondeleting.

NP

NNP

Peter

→
( NP

NNP

Peter

) IN

into
→
( IN

in

) DT

the
→
( DT

das

) NN

hole
→
( NN

Loch

)

VBD

fell
→
( VAFIN

ist
,

VVPP

gefallen

)

Figure 2.9.: Example of the extracted `MBOT terminal rules for the tree pair
in Fig. 2.6.

NP

DT NN
→
( NP

DT NN

) PP

IN NP
→
( PP

IN NP

)

VP

VBD PP
→
(

VAFIN ,
VP

PP VVPP

) S

NP VP
→
( S

NP VAFIN VP

)

Figure 2.10.: Example of the extracted `MBOT nonterminal rules for the tree
pair in Fig. 2.6. The dashed lines show the alignments used by
the alignment function ψ during the transduction process.

We formalize the `MBOT in parallel to the STSG. The input and output
alphabets are denoted by Σ and ∆ respectively and N ⊆ Σ ∪ ∆ is the set
of nonterminals. The set R consists of rules ρ = l →ψ (r1, . . . , rk), with
a sequence of trees (r1, . . . , rk) on the output side. The trees in the rule
are constructed on their respective alphabets, i.e. l ∈ TΣ and ri ∈ T∆ for
1 ≤ i ≤ k. Pre-translations for `MBOT provide the basis on which rules
are applied and therefore need to be adjusted to the `MBOT’s rules. They
consist of an input tree t ∈ TΣ and a sequence (u1, . . . , uk) ∈ T∆ of output
trees. The rank of such a pre-translation is k, the number of components
on the output side. The ith translation of t refers to the tree fragment ui
in the tree sequence. Since we work on a sequence of trees on the output
side, we need to introduce an alignment ψ. An alignment is an injective
mapping ψ : leaf

(k)
N (u1, . . . , uk) → leafN(t) × N such that if (w, i) ∈ ran(ψ),

then also (w, j) ∈ ran(ψ) for all 1 ≤ j ≤ i. This ensures that the translation
of a particular subtree is requested at most once, and if the ith translation
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Combining a rule with pre-translations:
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Figure 2.11.: Example of a simple `MBOT rule application, a rule with two
pre-translations, creating a new pre-translation.

is requested, all previous translations are requested as well. This causes the
`MBOT to be linear and nondeleting. Given a rule ρ = l →ψ (r1, . . . , rk) of
rank k and a leaf nonterminal w ∈ leafN(l) in the left-hand side, the w-rank
rk(ρ, w) of the rule ρ is

rk(ρ, w) = max{i ∈ N|(w, i) ∈ ran(ψ)} (2.58)

Using the w-rank we can denote the number of links between a nontermi-
nal leaf on the left-hand side and nonterminal leaves on the right-hand side.
Analogous to the definition of an STSG we define an `MBOT as a finite set
of rules R together with a mapping c : R → R. Now we have everything
together to define the set τ(R, c) of weighted pre-translations for an `MBOT.
It is the smallest set T subject to the following restriction:
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Combining a rule with pre-translations:
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Figure 2.12.: Example of a `MBOT rule application, combining three different
rules, creating a new pre-translation.

If there exist

• a rule ρ = l→ψ (r1, . . . , rk) ∈ R

• a weighted pre-translation 〈tw, cw, (uw1 , . . . , uwkw)〉 ∈ T for every w ∈
leafN(l) with

– rk(ρ, w) = kw

– l(w) = tw(ε)

• for every iw′ ∈ leaf
(k)
N (r1, . . . , rk) we have

ri(w
′) = uvj (ε) with ψ(iw′) = (v, j)

then 〈t, c, (u1, . . . , uk)〉 ∈ T is a weighted pre-translation, where

• t = l[w ← tw | w ∈ leafN(l)]

• c = c(ρ) ·
∏

w∈leafN (l) cw

• ui = ri[w
′ ← uvj | ψ(iw′) = (v, j)] for every 1 ≤ i ≤ k.

Rules that do not contain any nonterminal leaves are automatically weighted
pre-translations, since in them we do not need to replace any nonterminals
using other rules. They serve as the basis for a pre-translation. Rules contain-
ing a nonterminal leaf at position w in the left-hand side use the input tree
tw of a pre-translation 〈tw, cw, (uw1 , . . . , uwkw)〉 to replace the nonterminal leaf,
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whose root is labeled by the same nonterminal. The w-rank rk(ρ, w) of the re-
placed nonterminal has to match the number of components kw of the selected
pre-translation. Every leaf nonterminal on the output side is replaced with a
subtree of a pre-translation 〈tv, cv, (uv1, . . . , uvkv)〉 determined by the alignment
function ψ whose root label has to match with the leaf nonterminal’s label.
The new weight is computed as the product of the weight of the applied rule
and the weights of all pre-translations used in the process.
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After providing the necessary knowledge about Bayesian Inference, distribu-
tions and the tree transducer model, this chapter will finally put those parts
together to construct a theoretical model that can be used to induce bilingual
tree structures. This chapter’s first section will introduce the data, that is
needed and present the tree structures we want to obtain. The follow-up sec-
tion puts the math that was introduced together, creating a Bayesian model
that uses Dirichlet processes. Lastly, I will show how the tree structures are
changed during the sampling procedure.

3.1. Data and Structures

In order to induce trees using my model, I first of all need a sentence-aligned
bilingual corpus, where the sentences themselves also need to be word-aligned.
There are three scenarios for the tree translation presented forthwith. We have
some tree structure on either the source side, the target side, or on neither
side. If the tree structure is not given we need the sentence to be part-of-
speech (POS) tagged. The data is then initialized with random binary trees.
The labels for these trees are created using the POS-tags (see Fig. 3.1 for an
example). We have three different types of nodes: multi-word nodes, two-
word nodes and single-word nodes. Single-word nodes are preterminal nodes
simply taking the word’s POS-tag as label. Two-word nodes parent two child
nodes that are both single-word nodes. This nodetype’s label then consists
of his children’s labels joined using a plus sign ” + ”. The third nodetype
governs at least three leaves. Its label is created using the leftmost leaf’s
POS-tag/preterminal and the rightmost leaf’s POS-tag/preterminal, joining
them using two single dots ”..”. Using this labelling strategy we can read off
each node’s span of POS-tags.

3.2. Model

This section will introduce the Bayesian model that induces tree structures
using `MBOT. The model parameter θN denotes a probability distribution
p(ρ|N), following a multinomial distribution. This distribution will be used for
the likelihood in our Bayesian model and a Dirichlet process will be imposed
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NNP..NN
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Figure 3.1.: Example for an aligned random binary tree pair, using the la-
belling technique from (Zhai et al. 2013).

as its prior.

ρ|N ∼ Mult(θN) (3.1)

θN , αN , H ∼ DP(αN , H(·|N))

The base distribution H(·|N) is used to assign a prior belief in the `MBOT’s
production rules, where the left-hand sides are rooted in the nonterminal N .
The concentration parameter αN controls whether to reuse existing rules or
to create new rules, i.e. staying close to the empirical distribution or the base
distribution. The probabilities for specific rules ρi are computed using the
predictive-posterior distribution (2.43).

p(ρi|ρ−i, N, αN , H) =
n−iρi + αNH(ρi|N)

n−iN + αN
(3.2)

The variable ρ−i denotes all rules that were previously observed and n−iρi is
used to count the number of times rule ρi has been observed previously, i.e.
n−iρi =

∑
ρ∈ρ−i δρ(ρi). The second counter variable n−iN represents the total

number of rules rewriting root nonterminal N that have been previously ob-
served, i.e. n−iN =

∑
ρ∈ρ−i δroot(ρ)(N).

If Pitman-Yor Processes need to be applied, the discount parameter d and
the number of categories K have to be included (see Eq. (2.50)). We use dN
andKN as variables similar to αN to show dependence on the root nonterminal
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N . The category variable KN counts how many different rules with root
nonterminal N have been sampled so far.

p(ρi|ρ−i, N, αN , dN , H) =
n−iρi − dN + (αN + dNKN)H(ρi|N)

n−iN + αN
(3.3)

3.2.1. Base Distribution

The base distribution H is needed to assign a prior belief to the rules of the
`MBOT. Since transducer rules consist of a left-hand side and a right-hand
side, we are able to split the base distribution into two separate distributions
drawing inspiration from (Cohn and Blunsom 2009).

H(ρ|N) = p(l|N) · p((r1, r2, . . . , rn)|l) (3.4)

In order to compute these two probabilities I use generative stories. For
the left-hand side with a parse tree, I follow the idea of (Cohn and Blunsom
2009) and for the same side without a parse tree, I use (Zhai et al. 2013)’s
idea. For the right-hand side the generative story is more complicated, as we
need to fix the number of leaf-nonterminals on the right-hand side to be the
same as the sum of the w-ranks of the nonterminal leaves on the left-hand-
side

∑
w∈leafN (l) rk(ρ, w) = leaf

(n)
N ((r1, r2, . . . , rn)). These generative stories are

used to weigh the rules that are extracted, in order to decide which change
in the tree structure produces better rules. This means that we already have
extracted the rules when we are weighting them, implying that we are not
generating anything. These generative stories however provide us with the
notion of how likely it would have been to sample the given rule randomly.

Left-Hand Side

We start off with the generative story for trees with a parse tree, following
(Cohn and Blunsom 2009). A sampling example for regular left-hand sides is
given in Fig. 3.2. For each node we sample whether we want to expand it or
leave it as is using the Bernoulli distribution. The number of children is drawn
using a Geometric distribution. The label for each node, be it nonterminal
or terminal, is drawn uniformly from their respective alphabets. Exceptions
to this story are root nodes and preterminals. The root’s label is known,
since the distribution is conditioned on this label. Furthermore a root node
is always expanded. Preterminals always have one child and therefore a draw
from the Geometric distribution is not necessary in this case. In order to
condition the right-hand side on the left-hand side, the number of links for
each nonterminal leaf node is needed, as the sum of those links determines the
number of nonterminal leaves on the right-hand side. Therefore the number
of links can be drawn using the Geometric distribution, giving a preference
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PP

NP

NN

hole

DT

the

IN

into

Figure 3.2.: Example of sampling the input side of a regular tree rule. The
root node was chosen to be expanded into two child nodes, for
which the sampler decided to expand both. The left node is a
preterminal, removing the need for sampling the number of chil-
dren. The right node was sampled to have two children, that
were again chosen to be expanded. These are preterminals as
well, once again removing the need to further sample using the
Geometric distribution. The labels for the nodes were then sam-
pled uniformly according to their respective sets.

for singular links and greatly reducing the probability of more than two links.

If no parse tree is given, we are left with some binary tree with unary
branching preterminals, using a heuristic labelling. We therefore have the
same case as in (Zhai et al. 2013). Due to the three different nodetypes we
already have some extra information changing, what needs to be sampled.
Single-word nodes are preterminals and thus, if an expansion was sampled,
the terminal can then be sampled directly thereafter. The label of a single-
word node does not need to be sampled, as its parent already carries this
information. A two-word node always parents two single-word nodes, taking
away the need to sample its children’s labels and nodetypes. For a multi-
word node, however, we need to sample its children’s nodetypes. If one of
the children is a single-word node, its label can be taken from its parent. For
multi-word or two-word nodes we take one half of the label from the parent
node, combine it with the nodetype sign, and sample the second POS-tag
uniformly. This way part of the information of the governed span is inherited
to its children. A concrete example showing the sampling process is presented
in Fig. 3.3.

Right-Hand Side

As I have stated previously, the problem for the generative story on the right-
hand side is the need to fix the number of nonterminal leaves. This leads us to
a generative story, that works bottom-up. In order to visualize these sampling
approaches, concrete examples can be found in Fig. 3.4 and Fig. 3.5. Since the
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IN..NN

DT+NN

NN

hole

DT

the

IN

into

Figure 3.3.: Example of sampling the input side of a binary tree rule. Simi-
lar sampling procedure as in Fig. 3.2. However, the nonterminal
nodes were not sampled uniformly, but followed the above de-
scribed sampling procedure. Additionally the number of children
was not drawn from the Geometric distribution, but set to two.

generative stories for trees with a parse tree differ from the generative story
with a binary tree only in one addition, I will start with the simpler binary
trees.

Conditioning the right-hand side on the left-hand side leads to the fixed
number of nonterminal leaves based on the sum of the links of leaf nontermi-
nals. The `MBOT right-hand sides consist of multiple components, that are
trees with nonterminal and terminal leaves. The first step in the right-hand
side generation is sampling the number of terminals using the Poisson distribu-
tion and their labels using a uniform distribution. The labels of the nontermi-
nals are as well sampled uniformly, sampling the POS-tags and the nodetype
separately. The number of components is sampled using the Geometric distri-
bution, allowing us to model a strong preference for one-component rules and
a sharply falling preference for multi-word component rules. The ordering of
the nonterminal and terminal leaves into the components is sampled using a
uniform distribution once again. In order to compute the number of possible
orderings of k = |leaf(n)((r1, r2, . . . , rn))| objects into n categories we use the
unsigned Lah number, which is the Stirling number of the third kind.

L(n, k) =

(
n− 1

k − 1

)
n!

k!
(3.5)

Given the number of leaves for each component, we can now sample the bi-
nary tree structure uniformly using the Catalan number (2.57) to compute the
number of possible trees. If a node in this newly created tree is a preterminal
node, we need to sample its label, which we do using a uniform distribution
once again. The rest of the labels for nodes higher up in the tree can be
derived from the nodetypes of their children and their labels.

In order to get from binary trees to regular trees, we collapse nodes, destroy-
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VAFIN ,
IN..VVPP

VVPPIN..NN

Figure 3.4.: Example for sampling the output side of a binary tree rule. The
number of leaf nonterminals was given, the number of components
was sampled to be two and the number of leaf terminals zero. The
ordering was sampled uniformly using the Lah number and the
tree structures per component using the Catalan number (just
one possible tree per component).

ing them and reattaching their children to their grandparent. This collapsing
procedure is done bottom-up after we have sampled a binary tree. Since the
labels of our regular parse trees cannot be derived bottom-up as was the case
with our binary trees, the labels are now drawn uniformly for each node.

S

X

VPVAFIN

NP →

S

VPVAFINNP

Figure 3.5.: Example for sampling the output side of a regular tree rule. The
number of nonterminal leaves was once again given. The number
of components was sampled to be 1, and the number of leaf ter-
minals was sampled to be 0. Ordering and the binary structure
on the left were sampled uniformly. The preliminary node X was
sampled to collapse, resulting in the tree on the right side. The
node labels were sampled afterwards using a uniform distribution.
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3.3. Model Training

This section introduces the training procedure of the Bayesian model that
uses Gibbs sampling, which samples a binary change in the tree structure,
leading to trees that are more likely in the model.

NNP..VVPP
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Figure 3.6.: Example of a rotation operation. The bold nodes are both s-
nodes, the rotation operation is performed on. The boxed node
is the sister node that gets pushed down, when rotating from the
left to the right tree performing a left-rotation. The labels of the
newly created nodes are constructed using the naming heuristic
presented in Section 3.1.

The operation that is used to change the tree structure, is a binary rotation.
For each node that governs at least three words and is not a root node, such
an operation is possible. I will refer to these nodes as s-nodes. If the node that
is to be rotated is the left child of the parent, a right-rotation is applied and
vice versa. I will explain the change using the right-rotation as an example.
The s-node itself is destroyed during the procedure and its left child becomes
the left child of its grandparent, thereby replacing its parent. The s-node’s
parent severs its right child and creates a new substitute, that will parent the
previously severed node as its right child and the right child of the destroyed
s-node as left child. Applying a left-rotation to this new s-node reverts the
change. In order to see which tree is more beneficial for the model, we extract
rules for both rotation states. The weights for the rules are computed using the
generative stories from the previous section. The weights are then normalized
in order to do a Bernoulli experiment using these normalized weights.

Fig. 3.7 shows some extracted right-hand sides for the trees shown in Fig. 3.6.
We intuitively prefer the right tree in Fig. 3.6, as the phrase in das Loch is
governed by one node, instead of two as in the left tree. The extracted rules
of the left tree are less probable, given the weighting scheme, because we use
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IN+DT

DTIN

, NN

VAFIN..VVPP

IN..VVPP

NN+VVPP

VVPPNN

IN+DT

VAFIN

IN..NN

NNIN+DT

DTIN

VAFIN..VVPP

IN..VVPP

VVPPIN..NN

VAFIN

Figure 3.7.: Extracted right-hand sides from the trees in Fig. 3.6. Tree frag-
ments on the left side correspond to the tree on the left side
in Fig. 3.6 and fragments on the right side to the right tree in
Fig. 3.6.

a multi component rule and have a tree of height four in a second rule. The
rules on the right do not use multiple components and are both only of height
three, making them more probable.
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In this chapter, the setup for my experiments along with the results will be
explained. The first section will go into detail about which data was used,
how it was prepared and which tools were used. The three following sections
report the results for the three different scenarios in a semi-realistic machine
translation setting and frequencies for specific extracted rules.

4.1. Setup

In total 18 different experiments were conducted. The two language pairs that
were used, were English-French and English-German, translating from English
to German and French. The data for both experiments was taken from the
European Parliament Corpus (Koehn 2005). The sentences were tokenized
using the tokenizer included within the machine translation framework Moses
(Koehn, Hoang, et al. 2007), and parsed using the Berkeley Parser’s (Petrov
et al. 2006) pre-trained grammars for English, German and French. The word
alignment was carried out with the IBM alignment model implementation
Giza++ (Och and Ney 2000). As the whole dataset would be too large for
my experiments, the last 1, 000 sentence pairs were utilized. In order to re-
main with a similar tagset for the binary trees as with the regular parsed
trees, no separate POS-tagger was employed. Instead the preterminals from
the parse trees were taken. This simplifies a subsequent analysis and reduces
the need for additional tools.

Using this prepared data it is now possible to conduct experiments on the
three different scenarios (which parse tree is given), using a regular Dirichlet
process with two different parameter settings and once using the Pitman-Yor
process. The implementation of the model was done using Python, and in-
corporates the rule extraction for MBOTs (Maletti 2011) as a subprocess in
the Python program. Due to the poor sampling speed, a second version was
implemented, which did not rely on an external rule extraction application.

The translation experiment itself was done using the MBOT tree-to-tree
translation system (Braune et al. 2013) implemented in Moses. In order to
evaluate the resulting grammars, a MBOT tree-to-tree translation system was
trained using parse trees on both sides, using the same sentences that were
used in the induction experiments. The tuning of the translation system was
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done on the newstest2013 set provided by the WMT 2014 translation task,
using minimum error rate training (MERT) (Och 2003) tuning via the imple-
mentation included in Moses (Bertoldi, Haddow, and Fouet 2009). Test sets
were as well taken from the WMT 2014 translation task, i.e. the filtered test
sets newstest2014. In order to have test and tuning sets in sizes comparable
to the size of my training set, they were once again each cut down, taking the
last 100 sentences. Translation results were then scored using BLEU (Pap-
ineni et al. 2002).

The parameter of the Geometric distribution controlling the number of
children was set to 0.5. The Bernoulli distribution deciding whether a binary
node is flattened, creating a non-binary tree, used a success probability of
0.2. The geometric distribution controlling the number of components used
a success probability of 0.9 and the Poisson distribution controlling the num-
ber of terminals on the right-hand side used an average number of 2 terminals.

4.2. Results

In order to give a thorough comprehension of the results, we not only look
at simple BLEU scores from the translation outputs, but also at the amount
and types of rules that have been extracted, the failures that occured during
the translation process and runtime. In order to quickly refer to the different
experiments, I use a simple naming convention. The bin fragment in a name
denotes the sampled binary side and the reg fragment a regular tree side,
using first portion for the input side, the second for the output side and the
third (if present) for the model parameter. For the first parameter setting
(α = 0.5) no extra fragment is used, other is used for the second Dirichlet
process setting (α = 0.1) and pyp is used for the Pitman-Yor process experi-
ment (α = 0.5, d = 0.25).

4.2.1. Translation Results

Since the overall goal of my thesis is to produce a working translation system,
the BLEU scores serve as the most crucial evaluation tool. Tables 4.1 and 4.2
show the naked results for the French and German translation experiments
and their respective baseline systems. Unfortunately, the translation systems
using sampled rules suffered under not only translation failures, but also under
decoder and parsing failures. The amount of these errors is presented in
Fig. 4.1 and Fig. 4.2. In order to provide a levelled playing field for the
evaluation using BLEU scores, each translation output was directly compared
to the baseline system removing all sentences that contained errors, in both
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α = 0.5, d = 0 α = 0.1, d = 0 α = 0.5, d = 0.25
bin-bin 3.95 3.99 4.19
bin-reg 1.45 4.83 5.43
reg-bin 3.99 3.77 4.15

Baseline 7.86

Table 4.1.: BLEU Scores French

the experimental and comparative system. Visualizations of these scores are
given in Fig. 4.3 and Fig. 4.4.

Figure 4.1.: Amount and types of errors for the systems using French on the
output side.
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α = 0.5, d = 0 α = 0.1, d = 0 α = 0.5, d = 0.25
bin-bin 3.71 3.42 3.21
bin-reg 3.99 4.09 4.32
reg-bin 4.96 4.96 4.93

Baseline 5.27

Table 4.2.: BLEU Scores German

Figure 4.2.: Amount and types of errors for the systems using German on the
output side.
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Figure 4.3.: BLEU scores for the systems using French on the output side.

Figure 4.4.: BLEU scores for the systems using German on the output side.

48



4. Experiments 4.2. Results

1 2 3 4 5+ total
bin-bin 10,154 5,774 3,718 2,145 3,228 25,019
bin-bin-other 10,107 5,776 3,790 2,140 3,110 24,923
bin-bin-pyp 10,038 5,836 3,804 2,096 3,327 25,101
bin-reg 9,124 4,322 3,336 2,189 5,382 24,353
bin-reg-other 9,124 4,321 3,301 2,195 5,463 24,404
bin-reg-pyp 8,998 4,122 3,062 2,079 6,402 24,663
reg-bin 9,125 3,550 2,556 1,894 3,268 20,393
reg-bin-other 9,103 3,618 2,535 1,846 3,310 20,412
reg-bin-pyp 8,886 3,222 1,892 1,417 4,741 20,158

Baseline 10,013 3,123 1,824 1,087 2,060 18,107

Table 4.3.: Number of rule types (one component and multi component rules)
for the English to French experiments.

4.2.2. Rule Counts

The usage of binary trees and sampling to create rulesets leads to rules that
not only look different, but also appear in different amounts. The amount
of extracted rules differs not only in their total size from each other and the
baseline but also, and more importantly, in the number of components used
in a rule. These results are shown in Tables 4.3 and 4.4 and are visualized for
an easier overview in Fig. 4.5 and Fig. 4.6.

Figure 4.5.: Number of rules per number of components for the English to
French experiments.
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1 2 3 4 5+ total
bin-bin 9,882 4,992 3,157 1,795 2,758 22,543
bin-bin-other 9,803 4,982 3,094 1,800 2,758 22,437
bin-bin-pyp 9,846 4,925 3,193 1,798 2,795 22,557
bin-reg 8,664 4,020 2,857 1,837 4,314 21,692
bin-reg-other 8,697 3,999 2,906 1,888 4,191 21,681
bin-reg-pyp 8,656 3,816 2,666 1,710 4,757 21,605
reg-bin 8,907 3,021 2,286 1,538 2,847 18,599
reg-bin-other 8,974 3,007 2,206 1,515 2,898 18,600
reg-bin-pyp 8,765 2,654 1,769 1,279 3,958 18,425

Baseline 9,323 2,767 1,744 1,148 2,065 17,047

Table 4.4.: Number of rule type (one component and multi component rules)
for the English to German experiments.

Figure 4.6.: Number of rules per number of components for the English to
German experiments.

50



4. Experiments 4.2. Results

4.2.3. Sampling Behaviour

After seeing how many and what kind of rules have been extracted a look
onto the effectiveness of the sampling procedure is necessary. The next three
figures display the number of distinct rules extracted after each iteration of
the sampling process. To ease the comparison between the two language
pairs and the parameter settings, the results were grouped together creating
three plots for each experiment type (Fig. 4.7, Fig. 4.8 and Fig. 4.9). The
initialization of the random binary trees is already combined with the Gibbs
sampling, producing different counts for the 0th iteration, thereby actually
being the first iteration.

Figure 4.7.: Number of rules per iteration for the experiments using binary
trees on the input and output side.
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Figure 4.8.: Number of rules per iteration for the experiments using binary
trees only on the input side.

Figure 4.9.: Number of rules per iteration for the experiments using binary
trees only on the output side.
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5. Discussion

5.1. Translation Results

The results presented in the previous section have to be handled with care.
The size of the test set (100 sentence pairs) is relatively small, making it dif-
ficult to point out real trends of the evaluated translation systems. While the
results for the German experiments are somewhat close to their baseline sys-
tem, the results for the English to French translation systems are much worse.
The BLEU scores for the baseline systems themselves are considerably lower
than MBOT systems using larger amounts of data, with (Braune et al. 2013)
reporting a BLEU score of 13.06 points for German. An English to French
translation system would score even higher than that, due to the similarity of
these languages. Given the small number of sentence pairs that were used to
extract the rules, producing any translation at all will nearly score as highly
as the German baseline system. Here the difference of one BLEU point would
translate into a significantly higher disparity when using bigger training sets.
This disparity already shows in the results for the experiments using French
as target language. Here the baseline system scores at 7.86 BLEU points,
scoring 2.5 points higher than the German system. The results for the French
experiments score lower than their German counterparts, which might be sur-
prising considering the results of regular systems.

As Fig. 4.1 shows, the amount of errors is very high, much higher than in
the German experiments (see Fig. 4.2). A large portion of these errors was
produced by the decoder itself, which may be due to the structure of the rules,
but may as well be a simple software error. The second error source originates
from the parser being unable to parse some sentences. Given the incoherent
structure of the sampled trees, which had to be used as training set for the
parser and their small size, this is not surprising. These two points indicate
a major problem of sampling the input side tree structures for a translation
system. Filtering out failed translations, the BLEU scores for the French
translations are overall higher than the German translation scores, except
for the three sampling experiments using regular trees on the input side. A
significant difference between the three parameter settings can not be found,
although the Pitman-Yor process seems to produce slightly better results.
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5.2. Rule Counts

Looking at the number of rules extracted using sampled trees, three main
trends occur:

• the total amount of rules is significantly higher

• the amount of single component rules is generally much lower

• the amount of very high (5+) component rules is significantly higher

The first observation is not surprising, as the sampling approach uses a more
diverse set of nonterminal labels and trees of bigger height due to their binary
nature (a binary tree with three leaves has a minimum height of three, whereas
a regular tree can be of height two). The second and third point however are
of greater interest. The smaller amount of single component rules may point
to a poorly chosen parameter setting, governing the amount of components
per output side, but might as well be due to mostly random tree structures.
Especially the high number of very high component rules points to a rather
random tree structuring, as multi-word phrases can be placed in completely
different subtrees. This behaviour is especially obvious at the Pitman-Yor
process based sampling experiments.

5.3. Sampling Behaviour

Although the previous sections suggest that the usage of sampled trees does
not produce reliable translation systems, this section will try to mitigate this
notion. When looking at Figures 4.7, 4.8 and 4.9 one major flaw of the ex-
periments can quickly be found by looking at the x-axis of the graphs. The
number of iterations for the experiments is incredibly small considering what
we are trying to achive. In comparison to my experiments, (Zhai et al. 2013)
run 1, 000 iterations of their Gibbs sampler. My implementation of the Gibbs
sampler is on average only able to handle 450 sentence pairs per day, when
both sides are sampled, 1, 000 when the input side is sampled, and 500 when
the output side is sampled. The difference between sampling the input and
output side is connected to the languages used, as German sentences tend to
have less tokens than French sentences and more than English sentences. In
order to tackle this rather crippling problem, I reimplemented the Gibbs sam-
pler using a second rule extraction application written in Python, allowing
the sampler to directly connect to it, instead of calling an outside applica-
tion. This proved to be somewhat faster handling 590 instead of 360 sentence
pairs per day in the French bin-bin-pyp experiment. This, unfortunately,
did not serve as enough of an improvement to produce more iterations. This
runtime problem is not that surprising, because the rule extraction has to be
called for each node in the tree. A binary tree with l leaves has n = 2l − 1
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nodes, and given an average sentence length of 25, the rule extraction has to
be called 49 times per sentence. Due to this small number of iterations, we
are left with trees that are mostly random. These random trees cause the
poor performance of the translation systems using these trees as training sets.
But the sampling behaviour in these first few iterations already shows some
trends, that point to more successful future experiments.

The bin-bin experiments (Fig. 4.7) show an increase in the number of ex-
tracted rules, changing the tree structures to primarily produce smaller rules,
as the model intends to do, not yet taking multiples of a rule into account.
The curves show the same behaviour for the two different language pairs, with
bin-bin-other, in both cases producing fewer rules.

The second set of experiments (Fig. 4.9) shows a similar behaviour as be-
fore, but with bin-reg-pyp producing significantly more rules at a quicker
rate of increase. This behaviour comes from the model’s belief, that the right
amount of rules should be roughly between 24, 000 and 25, 000 rules for French
and 21, 500 and 22, 500 for German. This coincides with the number of rules
from the bin-bin experiments, which already starts out close to this number,
having no urgent need to produce more rules. A second reason for this quicker
growth in the bin-reg experiments may lie within the model’s preference for
smaller rules, trying to separate larger output trees by creating multiple tree
fragments on the input side, that force the rule extraction algorithm to split
sensible output tree fragments.

The experiments using regular trees on the input side show a different be-
haviour than the previous two. Here the sampler reduces the number of rules
slightly in the two Dirichlet process experiments and quite heavily in the
Pitman-Yor process experiment. This behaviour produces a smaller amount
of rules with fewer components in turn for more rules with an unnecessarily
large number of components. This strongly suggests a problematic setting
of the parameters, especially regarding the Geometric distribution regulating
the number of components in the right-hand side of a rule.

5.4. Qualitative Ananlysis

Comparing the shape of the extracted rules using sampled tree structures
with regularly parsed trees, given a machine translation background, would
be especially interesting in regard to different language pairs. Language pairs
that tend to be more similar should then produce similar tree structures, as the
rules used for translation have similar needs. In order to show a difference in
tree structures, the language pairs English-French and English-German were
chosen, as English and French are more related than English and German,
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showing notably in the need of discontiguous rules in German. However, as
the number of iterations is much too small, we end up with trees, that are
still mostly random. This becomes painfully obvious, when looking at some
simple rules, for example translating an article and a noun that are next to
each other, into a two component rule, as their next common ancestor is much
higher in the tree. These simple two component rules are as well the main
reason for higher frequency of two component rules in the sampled rule sets.
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6. Conclusion

The goal of my thesis was to use Dirichlet processes to sample tree structures
for statistical machine translation, in order to produce a working translation
system. Looking at the achieved BLEU scores suggests that this was a success
as they are not much lower than the scores of the comparative MBOT system.
However, as pointed out before, these results are difficult to assess, as the reg-
ular system already produces very low scores, thereby any translation at all
might produce comparable scores. Filtering out failed translations already
shows a bigger difference, especially when looking at the English to French
translation systems. A quantitative analysis of the rules shows, that the ex-
tracted rules use too many discontiguous right-hand sides, which additionally
point to non-structured trees. A retake on these experiments is therefore nec-
essary, using a faster implementation of the Gibbs sampler, to produce more
iterations. Whether the parameter settings used would be sufficient for cre-
ating sensible tree structures is not clear, but these early iterations already
show some behaviour that suggests a different setting. This new setting should
aim to punish discontiguous rules more strongly, in turn allowing tree frag-
ments to be bigger, as they are more probable than highly discontiguous rules.

A second major problem is the sampling of tree structures for the input
side. These tree structures have to be used to create a grammar for the parser
which structures the input for the machine translation system. Given that
the training sets have to be relatively small, due to the complexity of the
sampling problem, creating working parsers out of these sets is unlikely. A
retake should therefore not use tree structures on the input side, but turn to
string to tree translation formalisms.

Although the results presented herewith do not look promising, the pre-
sented sampling approaches can still be used. As binary tree structures tend
to produce better results in statistical machine translation, the sampling ap-
proach can be used to transform regularly parsed trees into binary trees fit for
machine translation. Such an approach could use the naming scheme of the
binary trees in my thesis and the regular tree structures as initialization, to
produce binary trees. The Gibbs sampler would then use these semi-random
binary trees to optimize their structures in regard to their extracted rules,
using the same techniques as presented in Section 3.2. These optimized tree
structures can then be utilized to provide the basis for the sampling of new
tree structures in an out of domain training set, for which tree structures ob-
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tained via a treebank are not suitable. This would make extending rule sets
with out of domain rules easier, as their structures will most likely be more
similar.

Whether the presented sampling approach is useful for machine translation
remains unclear, although some minor points show clearer directions for future
experiments. The possibility to be independent of treebanks however remains
an attractive motivation for future research. Furthermore, this approach can
be used to access out of domain data, for which no annotated training sets
exist.
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A. Appendix

The main implementation was done in Python using object oriented program-
ming, implementing the trees and rules separately from the Gibbs sampler.
The difference between the two implemented Gibbs samplers lies in what rule
extraction they call. The first implementation called a separate application,
whereas the second used another Python module. Disregarding the slower
implementation we have the following files:

• experiment-new.py the Gibbs sampler

• trees.py the tree package

• rules.py the rule package

• mbot re2.py Daniel Quernheim’s rule extraction

Before running the Gibbs sampler, the input data has to be reformatted,
using the preprocess.perl script, changing the bracketing structure and
special characters. The Gibbs sampler takes as input six arguments, the
working directory, parsed target and source sentences, alignment, which sides
are to be sampled and a process name. It then writes its output in the
working directory creating a pickled rule count file after the first and last
iteration, and writes the current source and target trees in pickled format
after every tenth iteration. In order to read the pickled tree files, the Python
script read pickled trees.py was created reading a pickled tree file as input,
writing to standard out. These trees were then used for the rule extraction,
after postprocessing using a sed script named postprocess.sed. In order to
train a grammar for the Berkeley parser, the trees, then had to be transformed
into another format using tree revert.perl.
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