
The Interplay Between Loss Functions and
Structural Constraints in Dependency Parsing

Robin Kurtz, Marco Kuhlmann

Linköping University
Department of Computer and Information Science
robin.kurtz@liu.se, marco.kuhlmann@liu.se

September 16, 2019

Abstract

Dependency parsing can be cast as a combinatorial optimization problem with
the objective to find the highest-scoring graph, where edge scores are learnt from
data. Several of the decoding algorithms that have been applied to this task employ
structural restrictions on candidate solutions, such as the restriction to projective
dependency trees in syntactic parsing, or the restriction to noncrossing graphs in
semantic parsing. In this paper we study the interplay between structural restrictions
and a common loss function in neural dependency parsing, the structural hinge
loss. We show how structural constraints can make networks trained under this loss
function diverge and propose a modified loss function that solves this problem. Our
experimental evaluation shows that the modified loss function can yield improved
parsing accuracy, compared to the unmodified baseline.

1 Introduction

Dependency parsing is the task of mapping a sentence into a formal representation of its
syntactic or semantic structure in the form of a bilexical directed graph, where arcs are
drawn between pairs of words. Syntactic dependency graphs are commonly restricted to
tree structures, whereas semantic dependency graphs can take the form of general acyclic
graphs.

There are two main approaches to dependency parsing: transition-based and graph-
based parsing (Kübler et al., 2009). Transition-based dependency parsers learn to map the
input sentence to a sequence of actions for a shift-reduce-type automaton that constructs
the output graph. Graph-based parsers cast dependency parsing as a combinatorial
optimization problem with the objective to find a highest-scoring graph in a set of
candidate graphs for the input sentence. The scores of the transitions and the candidate
graphs are learnt from training data with the help of some machine learning algorithm.
While there are some differences with regard to efficiency, both transition-based and
graph-based parsing have been shown to perform similarly well.

1



As it comes to the specific machine learning algorithms used in dependency parsing,
recent years have seen a shift from traditional feature-based approaches to neural net-
works (NNs). Even before the global shift to NNs, Mayberry III and Miikkulainen (1999)
experimented using NNs in transition-based parsing. Others used neural network struc-
tures that are far less common in current natural language processing (NLP) applications,
such as Incremental Sigmoid Belief Networks (Titov and Henderson, 2007), Temporal
Restricted Boltzmann Machines (Garg and Henderson, 2011), and Simple Synchrony
Networks (Henderson, 2004). Following up on the parser of Stenetorp (2013), who used
recursive neural networks, Chen and Manning (2014) implemented a state-of-the-art
architecture for transition-based syntactic parsing using feedforward NNs and distributed
word representations. The approach of Chen and Manning (2014) uses feature templates
made up of word, label and part-of-speech tag embeddings, similar to perceptron-style
parsers, but uses distributed embeddings instead of one-hot encodings.

Kiperwasser and Goldberg (2016) used recurrent neural networks (RNNs) to encode
contextual information into the network for both transition-based and graph-based depen-
dency parsing. Instead of having to select which contextual features would be relevant for
the parser, the RNN creates contextual embeddings for every token of the input sequence.
Their network structure has been adopted and extended, and produced state-of-the-art
results, not only for syntactic dependency parsing (Dozat and Manning, 2017) but also
for semantic dependency parsing (Dozat and Manning, 2018). One difference between the
parser of Kiperwasser and Goldberg (2016) and Dozat and Manning (2017) is in the loss
function that is used to provide a signal for how far off the predictions of the network
are relative to the gold-standard prediction, and which parameters should be updated to
move it closer to that target value. More specifically, Dozat and Manning (2017) use a
cross-entropy objective, whereas Kiperwasser and Goldberg (2016) use a hinge loss which
is computed on the complete predicted output graph.

Several of the parsing algorithms in the graph-based paradigm restrict the search
space to a subset of all possible dependency graphs for the input sentence by imposing
structural constraints. Perhaps the most well-known such constraints are projectivity in
syntactic parsing (Eisner and Satta, 1999), the closely related noncrossing constraint in
semantic parsing (Schluter, 2014; Kuhlmann and Jonsson, 2015), and the one-endpoint-
crossing property, which has been imposed on both trees (Pitler et al., 2013) and graphs
(Kummerfeld and Klein, 2017; Cao et al., 2017; Kurtz and Kuhlmann, 2017). Regarding
unrestricted algorithms for finding highest-scoring candidate graphs, it is worth mentioning
that this can be done in polynomial time only for trees (Chu and Liu, 1965; Edmonds,
1967); the same problem for unrestricted directed acyclic graphs is intractable (Schluter,
2014).

It is intuitively clear that, when choosing a parsing algorithm with a restricted search
space, one would like the structural constraint to admit most (if not all) dependency
graphs in the data. In this paper we study the specific effect that structural constraints
have on training a neural dependency parsers using hinge loss. More specifically, we
show, by theoretical analysis and experimentation, that both the noncrossing constraint
in semantic parsing and the projectivity constraint in syntactic parsing can make the
hinge loss unbounded, leading to divergence during training and an underperforming
model. We also show how to repair the hinge loss function to play along with structural
constraints, and verify empirically that the modified loss function can lead to improved



He tried to take my hand to show me

arg1

arg1

arg1

poss

arg2

arg2

arg1

arg2 arg2

root

nsubj mark

xcomp

advcl

poss
obj

mark obj

Figure 1: A sample dependency graph from the SDP dataset (Flickinger et al., 2016, DM
#41526060) drawn above and the corresponding dependency tree with Stanford Basic
(SB) dependencies drawn below. Note that this graph violates the noncrossing constraint,
as the arcs take→ He and tried→ to cross each other.

parsing accuracy, compared to the unmodified baseline. Our experiments also indicate
that our modified hinge loss has a regularizing effect when parsing to dependency trees
with an unrestricted algorithm.

Structure of the paper The following Section 2 introduces the necessary background
for dependency parsing using neural networks. Section 3 explains the problem of restricting
the search space when training with the structural hinge loss and proposes our solution in
the form of a modified hinge loss function. The effect of the proposed solution is tested
empirically in Section 4. Section 5 features an overall discussion of the findings, followed
by a summary and our conclusions in Section 6.

2 Background

We introduce a mathematical description of dependency graphs and parsing algorithms for
both tree and graph parsing, followed up by an overview of the neural network structures
used in the parser, and how they are trained.

2.1 Graphs and Parsing

Given a natural language sentence x = x1, x2, . . . , xn, we define a dependency graph for x
as an arc-labelled directed acyclic graph whose vertices correspond, one-to-one, to the
words xi. Placing the vertices of a dependency graph on a line in the plane following the
left-to-right ordering of the sentence, we draw the arcs as semi-circles in the half-plane



above the line, using arrows to denote the direction from head to dependent. An arc from
word xi to word xj is denoted as i→ j. Each arc of the dependency graph has a label
taken from a finite set, describing the relation of the head and the dependent vertices. A
dependency tree is a dependency graph fulfilling the tree constraint: it is connected, and
each node, except for the root node, has exactly one incoming arc. Examples of syntactic
and semantic dependency graphs for the sentence He tried to take my hand to show me
are shown in Figure 1. The agent for the three verbs tried, take and show is He, which is
directly encoded in the semantic dependency graph, whereas this relation is not easily
visible in the syntactic dependency tree. This ability to assign one and the same actor to
multiple predicates and other degrees of freedom, allow expressing more meaning related
phenomena and thus motivate the extension from trees to graphs.

2.1.1 Parsing as Combinatorial Optimization

Dependency graph parsing for both syntactic and semantic dependencies can be cast as
maximum subgraph parsing, generalizing the approach of McDonald et al. (2005). The
predicted graph ŷ for the sentence x is chosen as the graph y from a set Y (x) of candidate
graphs which maximizes the scoring function S:

ŷ = arg max
y∈Y (x)

S(x, y) (1)

The scoring function S is computed via a sum of scores for local substructures s(x, a),
which in our case are single arcs a ∈ y. This is known as the arc-factored model.

ŷ = arg max
y∈Y (x)

∑
a∈y

s(x, a) (2)

In order to simplify the equations, we drop the parameter x thus making the dependence
of the scoring function and the input sentence implicit. The set of candidate graphs Y (x)
is defined to match the needs of the type of graphs that are parsed (e.g. trees when parsing
syntactic dependency graphs) and can be constrained even further to tighten the search
space. The maximization of Equation (2) is solved using some decoding algorithm which,
given a matrix of scores for each possible arc, returns the highest scoring subgraph.

2.1.2 Parsing Algorithms

We use four different parsing algorithms for our experiments, two of which are for trees,
and two for graphs, where for each pair one restricts the search space, while the other
does not. All of those approaches consider only unlabelled arcs. We view labelling as a
separate procedure that is done on top of the predicted unlabelled graph, classifying each
arc label independently.

For trees, we use the algorithm by Eisner and Satta (1999), which restricts outputs to
be projective. Informally, a projective tree is one whose arcs – including an infinitely long
arc to the root node – can be drawn in the half-plane above or below the sentence without
crossings. The tree drawn in the lower half of Figure 1 is projective. More formally, a single
arc i → j is projective if every vertex k lying between i and j (i < k < j or j < k < i)
has a path from i, and a tree is projective if all of its arcs are projective. For semantic



dependency graphs, we use the algorithm of Kuhlmann and Jonsson (2015), which is
restricted to noncrossing acyclic graphs. Both algorithms can be understood in terms of
deduction systems, representing certain sub-structures as items that are deduced using
a set of rules. These rules take already created items or initial axioms as input, trying
to create a final goal item. A derivation is the chain of rules used to create the goal
item. In order to discern between the possibly many derivations for the goal item, we use
weighted rules resulting in weighted derivations. The highest-scoring such derivation then
corresponds to the highest-scoring dependency graph.

For most datasets, both structural constraints are not complete, meaning that there
are graphs in the training data that are not projective or not noncrossing. We compare
these non-complete decoding algorithms with two algorithms covering their respective
datasets completely: for syntactic parsing, we use the Chu-Liu-Edmonds (CLE) (Chu and
Liu, 1965; Edmonds, 1967) algorithm for finding the highest scoring dependency tree. For
semantic parsing, we use a mostly unrestricted algorithm for graphs; this algorithm adds
every arc with a positive weight, only ignoring loops (no i→ i) and allowing each pair of
endpoints to only have one connecting arc (i.e. if there is i→ j then there is no j → i).
The graphs returned by the unrestricted algorithm are thus possibly cyclic, even though
the data is restricted to only acyclic graphs.

2.1.3 Types of Prediction Errors

Considering systems that predict dependency graphs, we not only differentiate between
correct and incorrect predictions, but also whether to add or not to add an arc to the
dependency graph. Given a sentence x, a gold graph y and a predicted graph ŷ, we let
A(x) be the set of all possible arcs on x (i.e. the complete graph), with y ⊆ A(x) and
ŷ ⊆ A(x). We distinguish between four categories:

• True positives : correctly predicted arcs

y ∩ ŷ = {a ∈ A(x) | a ∈ y ∧ a ∈ haty}

• True negatives : arcs neither in the predicted nor in the gold graph

A(x) \ (y ∪ ŷ) = {a ∈ A(x) | a /∈ y ∧ a /∈ ŷ}

• False positives : predicted arcs that are not in the gold graph

ŷ \ y = {a ∈ A(x) | a ∈ ŷ ∧ a /∈ y}

• False negatives : arcs that were missed in the prediction

y \ ŷ = {a ∈ A(x) | a ∈ y ∧ a /∈ ŷ}

Using this terminology we can reason on the type of mistakes made and compute the
F1-score (the harmonic mean of precision and recall) or regular accuracy for evaluating
different parsers.



. . . to take my hand to . . .

arg1

poss

arg2

. . . eto etake emy ehand eto . . .

. . . cto ctake cmy chand cto . . .. . .

MLP

. . .

Score Matrix

Figure 2: The basic arc-scoring architecture, applied to a partial phrase of Figure 1.
The embedded words ei are processed by a bidirectional RNN, to produce contextual
embeddings ci. Each pair of these embeddings is processed by an MLP to compute a score
for each possible arc. The connections are coloured to match the arcs of the graph above.

2.2 Neural Networks for Parsing

In order for the decoding algorithm to find the highest scoring graph, we need to score
each arc using a learning component. The network architecture described in the following
is taken from Kiperwasser and Goldberg (2016) and visualized in Figure 2. In order
for a neural network to read the tokens xi of a sentence x, we need to embed them as
vectors ei. These are then processed by the base of the neural network, a bidirectional
RNN (BiRNN), that processes the word vectors ei of sentence x both left-to-right and
right-to-left. Concatenating the outputs from the forward and backward RNNs, we get a
context-dependent representation ci for each token xi. Each possible ordered pair of these
representations is then further processed by a feed-forward neural network (or multi-layer
perceptron MLP), to compute scores for each possible arc, creating a score matrix. Labels
are computed by another feed-forward network using the same inputs, predicting scores
for each label. The complete parser thus first applies the neural network on the input
sentence, uses the scores for each possible arc as input to predict the highest scoring
unlabelled graph, and then uses the labelling network to predict the arcs’ labels.

The network is trained with the objective to minimize a loss function. A loss function
is generally designed to capture how far off the network’s predicted output is from the
target output. We use the structural hinge loss objective and the binary cross-entropy
objective in order to train our networks.



Binary Cross-Entropy The binary cross-entropy loss is defined for each possible arc,
regardless of whether the arc was part of the output graph or not. We compute this
cross-entropy loss L for a sentence x with gold graph y and predicted graph ŷ:

L(x, ŷ, y) =
∑

a∈A(x)

1y(a) · − log(σ(s(a))) + (1− 1y(a)) · − log(1− σ(s(a))) (3)

The equation uses the sigmoid function σ(x) = (1 + e−x)−1, the indicator function 1y(a)
that returns 1 if the arc a is in gold graph y and zero otherwise, and finally the score
output from the neural network s(a) that is computed for every possible arc A(x) on
sentence x. True positives with high positive weights will receive a loss close to zero, as
well as true negatives with high negative weights. False positives are punished via the
second term as σ(s(a)) will be close to 1, and thus − log(1− σ(s(a))) grows large. For
false negatives the first term works analogously. The cross-entropy loss will thus decrease
towards zero as weights are adjusted to fit the data.

Structural Hinge Loss In contrast to binary cross-entropy, the structural hinge loss
only takes arcs of the predicted and gold graph into account. It is computed as the
difference between the sum of scores of arcs in the predicted and gold graph. Comparing
the predicted and intended structure directly, means that we have to run a decoding
algorithm to choose the highest-scoring subgraph before we are able to compute the loss.

L(x, ŷ, y) =
∑
a∈ŷ

s(a)−
∑
a∈y

s(a) (4)

True positives are present in both sums and cancel each other out, reducing the loss to
the difference of the sum of false positives and the sum of false negatives:

L(x, ŷ, y) =
∑
a∈ŷ\y

s(a)−
∑
a∈y\ŷ

s(a) (5)

In order to increase the distance of scores for correct and incorrect predictions, a margin
is often applied that penalizes correct predictions, if their scores are too close to those of
incorrect predictions. We use a margin for our experiments but will ignore it for now to
simplify the presentation. Considering the simple unrestricted decoding algorithm that
only adds arcs with positive weights, we can assume that all scores in the first sum are
positive, whereas all scores in the second sum are negative or less than the score of a
competing arc in the opposite direction present in the first sum. When parsing trees with
the CLE algorithm, the parser has to choose arcs in order to meet the tree constraint,
even if the scores are negative. This means that both sums can be negative, but the
second sum will be less than the first sum, as the prediction is based on the maximal
scoring arcs. The difference between both will therefore be positive.

Similarly to the cross-entropy loss, the hinge loss will also decrease towards zero when
fitting the weights to the data, as the number of false positives and false negatives will
ideally become zero, making both sums empty. A major difference between both losses is
that the hinge loss does not further consider true positives and true negatives, whereas
the cross entropy loss instead uses an increasingly small loss even for those.



Sie müssen dem Grundsatz der Wahrheit verpflichtet sein und verbindlich handeln

root

auxnsubj

det

iobj

det

nmod
cop

cc

advmod

conj

conj

root

cop

nsubj

iobj
aux

Figure 3: A sample dependency tree from the UD dataset (Nivre et al., 2017, German-GSD
#train-s7963). Note that this tree violates the projectivity constraint, as the arcs coloured
red cross three other arcs (blue and dashed). Alternative arcs that adhere to the constraint
are drawn below.

Label Loss Our system deals with the decision which arcs to add to the graph and how
to label them independently, as done in the system by Kiperwasser and Goldberg (2016).
The labeller is an MLP similar to the arc scorer, which is trained on gold arcs and only
applied to predicted arcs during testing. The loss for the labels is computed independently
of the predictions of the unlabelled arcs, and finally added to the loss of arcs.

Optimization Using the loss function as a signal of falseness, we adjust the parameters
of the network in the opposite direction of the loss’ gradient. The goal is thus to increase
the scores of false negatives and to decrease the scores of false positives. This is done
using the stochastic gradient descent (SGD) algorithm or some more advanced alternative
and backpropagation to efficiently update all activated parameters.

3 Interplay Between Restriction and Loss

As stated previously, the structural hinge loss will be zero given that there are neither false
positive nor false negative predictions. For decoding algorithms that completely cover
the training data, such as the CLE algorithm for trees and the unrestricted algorithm
for graphs, this will be true as soon as the weights are tuned correctly. Using a decoding
algorithm that restricts the search space, however, complicates the simple assumption
that only the weights computed by the network have an influence on false positives and
false negatives.

To illustrate the problem, consider a depedency graph as in Figure 1 that contains
crossing arcs. For each pair of crossing arcs a1, a2, the noncrossing decoder will have to
choose which arc (e.g. a1) to include in the output graph as the gold graph y is not in
the set of candidate graphs (y /∈ Y (x)). The loss is thus not bounded at zero because we
possibly have false negatives (here a2) with positive weights. The optimizer will try to
further minimize the loss, effectively increasing the false negative arc’s (a2) weight beyond



what would be needed if no constraint was applied. With this arc’s (a2) weight increased,
the parser is more likely to choose it over its crossing counterpart (a1) in the future. In
order to fix the mistake of leaving out the formerly chosen arc (a1), its weight will be
increased as it has now become a false negative. This will lead to the loss decreasing
further and further, sending a misleading update signal to the network’s parameters and
decreasing the loss indefinitely.

In order to fix the problem with the unbounded loss it seems reasonable to introduce
a lower bound at zero:

L(x, ŷ, y) = max
(

0,
∑
a∈ŷ\y

s(a)−
∑
a∈y\ŷ

s(a)
)

(6)

This can however stop the network from learning from some of its mistakes. There might
for example be a false negative with positive weight that was not set due to the structural
constraint and an unrelated false positive with a smaller weight. This negative loss will
thus be cut off at zero, indicating that there is nothing wrong and nothing to update.

Bounding functions like max and min have their gradients defined to be zero if the
bound applies, and one otherwise. This means that if the bound is applied, the zero
gradient of the bound function propagates downwards the computation graph to every
parameter below. With all these gradients being zero, none of these parameters will be
updated, effectively stopping learning.

Applying an upper bound to every false negative arc instead, we can control which
arcs should have their parameters updated. Under the assumption that false negatives
whose scores exceed the bound are not part of the predicted graph due to the structural
constraint, we stop updates being made for only those false negatives, still allowing the
updates to be applied for other false negatives and also false positives.

This however is only valid in the semantic parsing scenario, due to the structurally more
liberal nature of graphs , which allows the parser to ignore all arcs that have a negative
weight. Trees on the other hand follow a rigid structure, which includes one incoming
arc for every node. If there is a false negative caused by the structural constraint, then
there also is a false positive, needed to fulfil the tree requirement. A false negative with
sufficiently high score will no longer be updated using the minimum, but a structurally
forced false positive that might already have a sufficiently negative score (i.e. it would
be ignored if considered for itself) will have its parameters adjusted even further. We
therefore apply the same strategy to false positives as for false negatives. We allow a
minimum score of m for false positives and a maximum score of n for false negatives.

L(x, ŷ, y) =
∑
a∈ŷ\y

max
(
m, s(a)

)
−
∑
a∈y\ŷ

min
(
n, s(a)

)
(7)

While this does not stop the loss function from becoming negative, which seems
unwanted for a loss function, we have created a lower bound we can optimize towards.
For graphs this minimum is the number of structurally impossible false negatives times n,
added with the number of structurally enforced false positives times m for trees.



Figure 3 visualizes the problems of using an overly strict constraint. The arcs marked
in red cross the arcs marked in blue (and dashed). Assuming that their score is less than
the blue arcs’ scores, the parser needs to find a projective alternative as below. Their
scores will be increased, exceeding the blue arcs’ scores when parsing the sentence another
time. Keeping the red arcs and projectivizing the blue arcs instead also forces the magenta
arc verpflichtet→ sein to change direction in order to keep the tree constraint, leading to
four new false positives, forced by the preference to draw the red arcs. While the new
loss function does not stop the parser to choose incorrect arcs, even if their scores are
sufficiently high, it stops the updates on “false” false positives and “false” false negatives.

4 Experiments and Results

This section demonstrates the behaviour of the structural hinge loss in its original, naively
fixed and fixed form, when paired with a decoder that puts an overly strict structural
constraint on the graphs compared with a decoder that does not. With these experiments
we aim to show that

(i) the hinge loss will perform suboptimally and decrease towards infinity

(ii) forcing a lower bound at zero hinders learning

(iii) there should be no negative influence of the adjusted hinge loss when no structural
restriction is used.

After introducing the network structure we report our results for semantic dependency
graph parsing (SDP) followed by a short discussion, in turn followed by our results and a
short discussion for syntactic dependency tree parsing.

4.1 Network Parameters and Setup

We not only adopt the neural network structure for graph-based parsing from Kiperwasser
and Goldberg (2016) but also their implementation, adjusting it to a current version
of Dynet (Neubig et al., 2017) and Python 3. Instead of using regular long short-term
memory networks (LSTM, Hochreiter and Schmidhuber (1997)), we use a variant with
coupled input and forget gates, which results in fewer parameters without losing out
on performance (Greff et al., 2015). We follow standard practice and use gold part-of-
speech (POS) tags. In each experiment we train models using the Adam optimizer (Kingma
and Ba, 2014) for 20 epochs using hyperparameters as in Table 1 and DyNet’s default
parameters if not stated otherwise. Out of these 20 models we finally choose the model
that performs best on the development set. We extend the structural hinge loss with a
margin, based on the weighted Hamming distance with parameters p an r that introduce
a margin for false positives and false negatives respectively:

c(y, ŷ) =
∑
a∈ŷ\y

p+
∑
a∈y\ŷ

r (8)



Table 1: Hyperparameter values for the network and training.

Word embedding 100
POS tag embedding 25
hidden units in arc-MLP 100
hidden units in label-MLP 100
BiLSTM Layers 2
BiLSTM dimensions (hidden/output) 125/125
word dropout 0.25

In contrast to a fixed margin between the score of the highest scoring incorrect and
the gold graph, this margin is able to scale with the number of arcs (Taskar et al., 2003).

L(x, y) = max
ŷ∈Y (x)

(
S(x, ŷ) + c(y, ŷ)

)
− S(x, y) (9)

The maximization is coined loss-augmented inference (Taskar et al., 2005) and is easily
solved by adjusting the score matrix according to the Hamming distance, when predicting
the highest scoring graph.

We follow Peng et al. (2017) and Martins and Almeida (2014) setting the parameters
of the weighted Hamming distance to p = 0.4 and r = 0.6. Note that his favours recall
over precision, by increasing the weights of arcs not in the gold graph by p and decreasing
the weights of arcs in the gold graph by r.

For the constraint-aware structural hinge loss, we set the parameters to fit the Hamming-
augmented loss, that is, we set the minimum for false positives to m = −p and the
maximum for false negatives to n = r. This ensures that arcs that are not within the
margin, but are still false positives or negatives, do not propagate an update signal.

L(x, ŷ, y) =
∑
a∈ŷ\y

max
(
m, s(a)

)
−
∑
a∈y\ŷ

min
(
n, s(a)

)
+
∑
a∈ŷ\y

p +
∑
a∈y\ŷ

r (10)

While this rather small model certainly does not produce state-of-the-art results, it is
sufficient to show the interplay between a structural constraint and the structural hinge
loss, using a system that is the basis for many current parsing systems.

Moss et al. (2019) recently showed that in order to reliably identify significant perfor-
mance changes, one needs to both vary initial random seeds and train-test splits. The
trends showcasing the interplay between loss function and restriction are clearly visible
throughout nearly all experiments. In addition to the obvious differences we test for
statistical sigfinicance to give an intuition on less obvious differences. We compute p-values
following Berg-Kirkpatrick et al. (2012) drawing 106 bootstrap samples from the test sets
and set the significance α to 0.01.



Table 2: Coverage in terms of complete graphs (G) and individual arcs (A) for noncrossing
graphs.

DM PAS PSD

G 69.29 59.85 65.04
A 97.63 97.24 96.01

4.2 Semantic Dependency Parsing

The SDP graphs from Flickinger et al. (2016) come in four different flavours, wherefrom
we consider three: DM graphs derived from DeepBank (Oepen and Lønning, 2006; Ivanova
et al., 2012), the predicate–argument structures computed by the Enju parser (PAS, Miyao
(2006)), and the tectogrammatical layer of the Prague Dependency Treebank (PSD, Hajic
et al. (2012)). All three sets are built on top of the Penn Treebank (PTB (Marcus et al.,
1993)), which uses Wall Street Journal texts, and parts of the Brown corpus (Francis and
Kučera, 1985) for out-of-domain data. The three different SDP flavours follow different
designs, making them structurally different from each other and more or less difficult to
parse. In order to predict the impact a structurally constrained decoder will have, we
report the coverage of the noncrossing constraint on the complete training, development
and test sets in Table 2.

4.2.1 Results

Table 3 reports the results on the three SDP datasets. We compare the results for
systems trained with the unmodified structural hinge loss (hinge Eq. (5)), the hinge
loss with minimum at zero (hinge0 Eq. (6)), the constraint aware hinge loss (hinge’
Eq. (7)), and the binary cross entropy loss (bce Eq. (3)). The decoders used are the
noncrossing directed acyclic graph decoder (ncdag) of Kuhlmann and Jonsson (2015), and
our basically unrestricted decoder. For each system we evaluate labelled F1-score on both
the in-domain (id) and out-of-domain (ood) datasets.

Figures 4 and 5 plot the development of the loss on the training data, and the mean
and standard deviation for arc scores over each of the 20 epochs. Plotting the loss shows
whether it decreases, how far it decreases and whether it decreases to a minimum. Plotting
the mean and the standard deviation of the score matrices shows whether the scores
stabilize and how extremely they deviate from their centre.

4.2.2 Discussion

For all three datasets we can see in Table 3 roughly the same patterns: We first of
all see a sharp drop from hinge to hinge0, a clear increase from hinge to hinge’, and a
slight decrease from hinge’ to bce for the noncrossing parsed data. The results for the
unrestricted decoder are similar.

Even though there is mostly no difference between hinge and hinge’, the unrestricted
decoder with hinge loss significantly outperforms the modified hinge loss system for the
out-of-domain PSD data. While the differences are still small, they suggest that the values
at which individual losses are cut in the loss function of Equation (10) might be too small.



Table 3: Results on the in-domain (id) and out-of-domain (ood) test sets of the SDP
datasets. We emphasize the score of the best performing system, if it performs significantly
better than the second best system.

Flavour Decoder Data hinge hinge0 hinge’ bce

DM
ncdag

id 84.4 70.4 88.3 87.4
ood 79.2 67.8 83.1 82.1

unrestricted
id 89.3 64.6 89.0 88.0

ood 83.5 63.1 83.7 82.3

PAS
ncdag

id 85.1 77.7 90.4 89.7
ood 80.8 76.3 86.0 85.4

unrestricted
id 91.5 74.4 91.3 90.5

ood 87.0 72.4 87.1 86.1

PSD
ncdag

id 73.6 11.9 75.6 74.8
ood 71.1 14.8 73.3 72.4

unrestricted
id 76.4 13.7 76.4 75.4

ood 74.1 16.8 73.5 72.5

0 5 10 15

2000

1500

1000

500

0
Loss

0 5 10 15

160

140

120

100

80

60

40

20

0
Mean

0 5 10 15
0

50

100

150

200

250

300

350

400
SD

(a) hinge ?

0 5 10 15

5

10

15

20

25

30

35

Loss

0 5 10 15
14

12

10

8

6

4

2

0
Mean

0 5 10 15
0

1

2

3

4

5

6

SD

(b) hinge0 �, hinge’ ×, bce +

Figure 4: Plots visualizing the learning behaviour of the four loss functions when parsing
the PAS data with the noncrossing algorithm.



0 5 10 15
0

20

40

60

80

100

120
Loss

0 5 10 15

12

10

8

6

4

2

0
Mean

0 5 10 15
0

1

2

3

4

5

6

SD

Figure 5: Plots visualizing the learning behaviour of the four loss (hinge ?, hinge0 �, hinge’
×, bce +) functions when parsing the PAS data with the unrestricted algorithm.

Looking at the plot for the noncrossing decoder from Figure 4a we see that the unfixed
hinge loss decreases indefinitely. The scores for the arcs become more and more extreme,
seen by the decreasing mean and increasing standard deviation. This behaviour is not
visible for the hinge loss paired with the unrestriced decoder in Figure 5, which resembles
a regular loss function’s plot and has scores that are mostly negative but still close to
zero.

The fixed hinge loss in Figures 4b and 5 looks similar to the unmodified hinge loss
further showing that it fixes the problem caused by the structural constraint, without
interfering when no constraint is used. Looking at the behaviour of hinge0 in Figures 4b
and 5, the network seems to learn efficiently, with a loss decreasing to a lower bound, and
both reasonable mean and standard deviation. The loss reaches its minimum too early,
showing that while some learning is made, the process is suboptimal as shown by the
evaluation results in Table 3. This hopeful behaviour is however not visible when parsing
the PSD dataset. Here the hinge0 loss does not provide a sufficient signal to the model
to learn. In contrast to the DM and PAS datasets, the PSD dataset uses labels that are
much more difficult to predict. The loss of the labels is added independently to the arc
loss, and is thus not affected by the cut-off at zero. DM and PAS both also get feedback
on which arcs to predict, by the label loss, whereas this signal is much weaker and more
difficult to interpret for the PSD data. The performance decrease of the hinge0 loss for
arcs is thus caught by the label loss for DM and PAS, but fails completely for PSD.

The systems trained with binary cross entropy show that the problem of using a
structural constraint on the decoder has no negative impact when computing the loss
directly on the arcs’ scores (e.g. Fig. 4b). However, it also seems that this particular
network for parsing performs better when a hinge loss is applied. This might point to
some network structures being trained more effectively when using a hinge loss.

4.3 Universal Dependencies

For the experiments on syntactic trees we choose the widely used, freely available, Universal
Dependencies (UD version 2.3) treebank (Nivre et al., 2017). Following de Lhoneux et al.
(2017) we select a set of languages with varying degrees of projectivity. The final set of
languages used, their size and projectivity metrics is presented in Table 4, ordered after



Table 4: UD Statistics. Percentage of projective arcs (A) and graphs (G) and total number
of tokens and sentences.

Language A G #Words #Sentences

A.Greek 95.32 61.05 214, 015 17, 081
Basque 96.04 67.07 121, 443 8, 993
Latin 95.55 69.59 199, 958 18, 400
Portuguese 98.32 76.81 227, 794 9, 365
Arabic 99.70 90.53 282, 384 7, 664
German 99.43 91.53 292, 788 15, 590
French 99.70 93.39 400, 440 16, 342
B.Portuguese 99.77 94.40 319, 380 12, 078
English 99.65 96.09 254, 829 16, 622

increasing percentage of projective graphs1. We choose to not use language-specific POS
tags and use Universal POS tags instead. This keeps the variation between languages
small and reduces the number of parameters to a minimum, making the results between
languages more comparable. The Eisner decoder for projective trees and the CLE decoder
for maximum-spanning trees (mst) used in the experiments are taken from UniParse (Varab
and Schluter, 2018).

4.3.1 Results

Table 5 presents the results for all languages, decoders and loss functions. As in Table 3
we mark the best performing system if it is significantly better than the second best
system. Systems trained with the cross-entropy nearly always perform significantly worse
than hinge’.The table is sorted as in Table 4, that is least to most projective treebank.
Figures 6 and 7 show the development of the loss on the training data, the mean and
standard deviation of the arc scores, for the experiments on the Ancient Greek data. For
comparison, we additionally report the training behaviour for a more projective English
dataset in Figure 8.

4.3.2 Discussion

The results of the experiments on syntactic dependency trees follow the same patterns
as the results on semantic dependency graph parsing. Binary cross entropy avoids the
problem of structural constraints and lags behind in terms of labelled F1-score. Using a
maximum at zero (hinge0) to restore the intended minimum of the hinge loss results in
subpar performance, that is even worse than when a structural constraint is combined
with the unfixed hinge loss. The zero gradients that result when the maximum at zero is
applied, stop learning in too many instances, reducing the overall performance in every
case. The differences between the unfixed and fixed hinge losses are minimal when the
CLE-algorithm is used. For the Eisner decoder, we see a clear increase in accuracy when

1Ancient Greek – PROIEL, Basque – BDT, Latin – PROIEL, Portuguese – Bosque, Arabic – PADT,
German – GSD, French – GSD, Brazilian Portuguese – GSD, English – EWT



0 5 10 15

1500

1250

1000

750

500

250

0
Loss

0 5 10 15
0

100

200

300

400

500

Mean

0 5 10 15
0

100

200

300

400

500

600
SD

(a) hinge ?

0 5 10 15

5

10

15

20

25

Loss

0 5 10 15
12

10

8

6

4

2

0

Mean

0 5 10 15
0

1

2

3

4

5

6

7

8
SD

(b) hinge0 �, hinge’ ×, bce +

Figure 6: Plots visualizing the learning behaviour of the four loss functions when parsing
the Ancient Greek data with the projective algorithm.

0 5 10 15
0

5

10

15

20

25

Loss

0 5 10 15
12

10

8

6

4

2

0

2

4
Mean

0 5 10 15
0

1

2

3

4

5

6

7

8
SD

Figure 7: Plots visualizing the learning behaviour of the four loss functions (hinge ?,
hinge0 �, hinge’ ×, bce +) when parsing the Ancient Greek data with the CLE algorithm.



Table 5: Results on the UD datasets. We emphasize the score of the best performing
system, if it performs significantly better than the second best system.

Language Decoder hinge hinge0 hinge’ bce

A.Greek
eisner 66.7 57.8 74.9 73.1
mst 76.3 55.2 76.2 74.3

Basque
eisner 71.7 58.9 75.3 73.3
mst 75.0 52.9 76.0 74.4

Latin
eisner 63.7 51.3 70.1 68.8
mst 70.3 50.8 71.9 69.6

Portuguese
eisner 83.4 65.4 84.6 83.9
mst 84.8 63.3 85.1 84.4

Arabic
eisner 79.6 57.3 79.1 78.7
mst 79.3 51.7 79.2 78.4

German
eisner 79.9 66.4 81.0 79.6
mst 80.4 62.4 80.6 79.6

French
eisner 86.2 71.1 86.6 85.8
mst 86.5 67.2 86.8 85.2

B.Portuguese
eisner 90.1 72.8 90.3 89.8
mst 89.8 67.3 90.3 89.5

English
eisner 85.1 69.2 85.6 84.4
mst 85.6 67.6 85.7 84.5

using hinge’ compared to hinge, albeit with diminishing returns when the percentage
of projective arcs increases. Parsing Arabic with the projective system however is an
interesting outlier. Even though Arabic is only 90.53% projective in terms of complete
graphs, the best performing system uses the projective algorithm and unfixed hinge loss.
This can be partially explained away by the fact that 99.7% of the arcs are projective, thus
being one of the most projective languages tested (see Tab. 4). Similar to the unexpected
results on the out-of-domain PSD dataset, this further suggests that our chosen cut-off
values are not optimal.

Plotting the loss shows the same characteristics for the unrestricted CLE decoder and
the restricted Eisner decoder, with both the unfixed and fixed hinge losses, as previously
for the SDP data. If a structural constraint is used in combination with the regular hinge
loss, the loss decreases indefinitely, while the scores of the matrix become more and more
extreme. The same slow reduction of the mean towards a minimum and comparative
increase of standard deviation as in most previous plots for systems with reasonable results
is seen when the fixed hinge loss is applied instead. But the fixed hinge loss even has a
regularizing effect, when no structural constraint is used (see Fig. 7). When using our
newly introduced hinge loss, the mean of the scores becomes slightly negative (usually
between −1 and −2) indicating that most arcs are not even considered. Additionally,
the standard deviation caps out between 1 and 2, indicating that there is less extreme



0 5 10 15

0

5

10

15

20

25
Loss

0 5 10 15
17.5

15.0

12.5

10.0

7.5

5.0

2.5

0.0

Mean

0 5 10 15
0

5

10

15

20

25
SD

Figure 8: Plots visualizing the learning behaviour of the four (hinge ?, hinge0 �, hinge’ ×,
bce +) functions when parsing the English data with the projective algorithm.

variation in scores.
The plots of Figure 8 indicate that using the Eisner decoder with the regular hinge loss,

should produce subpar results as well, compared with the more regular plots. The loss
decreases below zero, the mean drops towards negative infinity, while the standard deviation
analogously increases indicating extreme positive and negative arc scores. Looking at the
results however, we do not see the same drop in performance as for the more non-projective
languages. The best performing model is already achieved after only 4 iterations over the
training data. After this maximum is reached we see a slight but noticeable decrease in
performance, that indicates some of the negative impact of the faulty loss function. While
this rather small neural network reaches its full potential rather quickly, a bigger system
might suffer the consequences of the unfixed hinge loss before realizing its potential.

5 Discussion

Both experiments clearly show the predictions made in Section 3:

(i) the hinge loss is faulty and decreases infinitely,

(ii) cutting off at zero hinders learning,

(iii) there is barely any unwanted influence of the adjusted loss when an unrestricted
decoder is used.

The gains in labelled F1-score depend on how much the constraint excludes arcs that we
would want to predict. To what extent the decrease in coverage influences the drop in
performance is however not entirely clear, as for example both PSD and Basque have
coverage statistics similar to other overly constrained datasets, but not the same sharp
increases in performance when adjusting the loss. This might be partially due to the
relative difficulty of parsing PSD (especially labelled parsing), and the comparatively
small training data for Basque.

The additionally observed regularizing effect of the proposed loss function on the
scores produced by the neural network however is interesting, as it manifests even when
no constraint is used. The majority of potential arcs is not part of the dependency
graph and should thus ideally have negative weights, whereas the scores of correct arcs



should be positive: the mean is slightly negative and standard deviation keeps most
scores around zero. This effect might further help high-performance systems to avoid
overfitting, additionally to other regularization techniques that are already commonly
used, such as dropout, batching or additional penalty terms designed to keep the model
size small (L2-regularization). These techniques are possibly part of the reason why this
unfortunate interplay between a structural constraint and the structural hinge loss has not
been reported before. Larger neural networks and the preference of unrestricted decoders
have possibly had their influence as well, why this phenomenon was not visible.

6 Conclusion

The definition of the structural hinge loss, when combined with a decoder that has reduced
coverage, results in an unconstrained loss that leads to unwanted updates of the neural
network. In order to fix this inconvenient interaction, we have suggested a modified loss
function that is constrained below zero and designed to halt learning for parameters that
do not need to be updated, but would receive an update with the unmodified structural
hinge loss. The predictions made by our theoretical analysis were confirmed in experiments
using both semantic dependency graphs and syntactic dependency trees. We show for
both types of graphs how the loss develops for an ill-defined loss function, with weights
being updated to increasingly extreme values. The experiments additionally uncovered
a regularizing effect on the values the network outputs for predicting arcs, even when
combined with an unrestricted decoder for trees. This suggests that adjusting the loss
function has the potential to further regularize neural networks to avoid overfitting and
increase performance.

The unmodified definition of the structural hinge loss has obvious flaws that can
and should be avoided. While some these effects may be offset by other more common
regularization techniques, this general interaction should not be ignored even if it is not
visible during evaluation. We look forward to seeing whether there are more instances
in other areas using neural networks and in NLP in particular, where the coverage of
the search space does not match the data, causing an unfavourable interplay of loss and
constraint.

References

Berg-Kirkpatrick, Taylor, David Burkett, and Dan Klein. 2012. An Empirical Investigation
of Statistical Significance in NLP. In Proceedings of the 2012 Joint Conference on
Empirical Methods in Natural Language Processing and Computational Natural Lan-
guage Learning , pages 995–1005. Jeju Island, Korea: Association for Computational
Linguistics.

Cao, Junjie, Sheng Huang, Weiwei Sun, and Xiaojun Wan. 2017. Parsing to 1-Endpoint-
Crossing, Pagenumber-2 Graphs. Proceedings of the 55th Annual Meeting of the Associ-
ation for Computational Linguistics (Volume 1: Long Papers) 1:2110–2120.

Chen, Danqi and Christopher Manning. 2014. A Fast and Accurate Dependency Parser
using Neural Networks. In Proceedings of the 2014 Conference on Empirical Methods in



Natural Language Processing (EMNLP), pages 740–750. Doha, Qatar: Association for
Computational Linguistics.

Chu, Yoeng-Jin and Tseng-Hong Liu. 1965. On the shortest arborescence of a directed
graph. Scientia Sinica 14:1396–1400.

de Lhoneux, Miryam, Sara Stymne, and Joakim Nivre. 2017. Arc-Hybrid Non-Projective
Dependency Parsing with a Static-Dynamic Oracle. Proceedings of the 15th International
Conference on Parsing Technologies pages 99–104.

Dozat, Timothy and Christopher D. Manning. 2017. Deep Biaffine Attention for Neural
Dependency Parsing. ICLR .

Dozat, Timothy and Christopher D. Manning. 2018. Simpler but More Accurate Semantic
Dependency Parsing. Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers) 2:484–490.

Edmonds, Jack. 1967. Optimum Branchings. Journal of Research of the national Bureau
of Standards B 71(4):233–240.

Eisner, Jason and Giorgio Satta. 1999. Efficient Parsing for Bilexical Context-Free
Grammars and Head Automaton Grammars. In ACL. ACL.

Flickinger, Dan, Jan Hajič, Angelina Ivanova, Marco Kuhlmann, Yusuke Miyao, Stephan
Oepen, and Daniel Zeman. 2016. SDP 2014 & 2015: Broad Coverage Semantic Depen-
dency Parsing LDC2016T10 .

Francis, W. Nelson and Henry Kučera. 1985. Frequency Analysis of English Usage: Lexicon
and Grammar. Journal of English Linguistics 18(1):64–70.

Garg, Nikhil and James Henderson. 2011. Temporal Restricted Boltzmann Machines for
Dependency Parsing. In Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies , pages 11–17. Portland,
Oregon, USA: Association for Computational Linguistics.

Greff, Klaus, Rupesh Kumar Srivastava, Jan Koutńık, Bas R. Steunebrink, and Jürgen
Schmidhuber. 2015. LSTM: A Search Space Odyssey. CoRR abs/1503.04069.

Hajic, Jan, Eva Hajicová, Jarmila Panevová, Petr Sgall, Onďrej Bojar, Silvie Cinková, Eva
Fućiková, Marie Mikulová, Petr Pajas, Jan Popelka, Jíri Semecký, Jana Sindlerová, Jan
Sťepánek, Josef Toman, Zdenka Uresová, and Zdenek Zabokrtský. 2012. Announcing
Prague Czech-English Dependency Treebank 2.0. In Proceedings of the 8th International
Conference on Language Resources and Evaluation (LREC 2012), pages 3153–3160.
İstanbul, Turkey: European Language Resources Association.

Henderson, James. 2004. Discriminative Training of a Neural Network Statistical Parser. In
Proceedings of the 42Nd Annual Meeting on Association for Computational Linguistics ,
ACL ’04. Stroudsburg, PA, USA: Association for Computational Linguistics.

Hochreiter, Sepp and Jürgen Schmidhuber. 1997. Long Short-term Memory. Neural
computation 9:1735–80.



Ivanova, Angelina, Stephan Oepen, Lilja Øvrelid, and Dan Flickinger. 2012. Who Did What
to Whom?: A Contrastive Study of Syntacto-semantic Dependencies. In Proceedings of
the Sixth Linguistic Annotation Workshop, LAW VI ’12, pages 2–11. Stroudsburg, PA,
USA: Association for Computational Linguistics.

Kingma, Diederik P. and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.
CoRR abs/1412.6980.

Kiperwasser, Eliyahu and Yoav Goldberg. 2016. Simple and Accurate Dependency Parsing
Using Bidirectional LSTM Feature Representations. Transactions of the Association of
Computational Linguistics 4(1):313–327.

Kübler, Sandra, Ryan T. McDonald, and Joakim Nivre. 2009. Dependency Parsing .
Synthesis Lectures on Human Language Technologies. Morgan & Claypool Publishers.

Kuhlmann, Marco and Peter Jonsson. 2015. Parsing to Noncrossing Dependency Graphs.
Transactions of the Association of Computational Linguistics 3(1):559–570.

Kummerfeld, Jonathan K. and Dan Klein. 2017. Parsing with Traces: An O(n4) Algorithm
and a Structural Representation. Transactions of the Association for Computational
Linguistics 5.

Kurtz, Robin and Marco Kuhlmann. 2017. Exploiting Structure in Parsing to 1-Endpoint-
Crossing Graphs. Proceedings of the 15th International Conference on Parsing Tech-
nologies pages 78–87.

Marcus, Mitchell P., Mary Ann Marcinkiewicz, and Beatrice Santorini. 1993. Building a
Large Annotated Corpus of English: The Penn Treebank. Comput. Linguist. 19(2):313–
330.

Martins, André F. T. and Mariana S. C. Almeida. 2014. Priberam: A Turbo Semantic
Parser with Second Order Features. In Proceedings of the 8th International Workshop
on Semantic Evaluation (SemEval 2014), pages 471–476. Dublin, Ireland: Association
for Computational Linguistics.

Mayberry III, Marshall R. and Risto Miikkulainen. 1999. SARDSRN: A Neural Network
Shift-Reduce Parser. In Proceedings of the 16th Annual International Joint Conference
on Artificial Intelligence (IJCAI-99), pages 820–825. San Francisco, CA: Kaufmann.

McDonald, Ryan T., Fernando Pereira, Kiril Ribarov, and Jan Hajic. 2005. Non-Projective
Dependency Parsing using Spanning Tree Algorithms. In HLT/EMNLP , pages 523–530.
The Association for Computational Linguistics.

Miyao, Yusuke. 2006. From Linguistic Theory to Syntactic Analysis: Corpus-Oriented
Grammar Development and Feature Forest Model . Ph.D. thesis.

Moss, Henry, Andrew Moore, David Leslie, and Paul Rayson. 2019. FIESTA: Fast IdEnti-
fication of State-of-The-Art models using adaptive bandit algorithms. In Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics, pages
2920–2930. Florence, Italy: Association for Computational Linguistics.



Neubig, Graham, Chris Dyer, Yoav Goldberg, Austin Matthews, Waleed Ammar, Antonios
Anastasopoulos, Miguel Ballesteros, David Chiang, Daniel Clothiaux, Trevor Cohn,
Kevin Duh, Manaal Faruqui, Cynthia Gan, Dan Garrette, Yangfeng Ji, Lingpeng Kong,
Adhiguna Kuncoro, Gaurav Kumar, Chaitanya Malaviya, Paul Michel, Yusuke Oda,
Matthew Richardson, Naomi Saphra, Swabha Swayamdipta, and Pengcheng Yin. 2017.
DyNet: The Dynamic Neural Network Toolkit. arXiv preprint arXiv:1701.03980 .

Nivre, Joakim, Željko Agić, Lars Ahrenberg, Maria Jesus Aranzabe, Masayuki Asahara,
Aitziber Atutxa, Miguel Ballesteros, John Bauer, Kepa Bengoetxea, Riyaz Ahmad Bhat,
Eckhard Bick, Cristina Bosco, Gosse Bouma, Sam Bowman, Marie Candito, Gülşen
Cebiroğlu Eryiğit, Giuseppe G. A. Celano, Fabricio Chalub, Jinho Choi, Çağrı Çöltekin,
Miriam Connor, Elizabeth Davidson, Marie-Catherine de Marneffe, Valeria de Paiva,
Arantza Diaz de Ilarraza, Kaja Dobrovoljc, Timothy Dozat, Kira Droganova, Puneet
Dwivedi, Marhaba Eli, Tomaž Erjavec, Richárd Farkas, Jennifer Foster, Cláudia Freitas,
Kataŕına Gajdošová, Daniel Galbraith, Marcos Garcia, Filip Ginter, Iakes Goenaga,
Koldo Gojenola, Memduh Gökırmak, Yoav Goldberg, Xavier Gómez Guinovart, Berta
Gonzáles Saavedra, Matias Grioni, Normunds Grūz̄itis, Bruno Guillaume, Nizar Habash,
Jan Hajič, Linh Hà Mỹ, Dag Haug, Barbora Hladká, Petter Hohle, Radu Ion, Elena
Irimia, Anders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara, Hiroshi Kanayama,
Jenna Kanerva, Natalia Kotsyba, Simon Krek, Veronika Laippala, Phuong Lê H`ông,
Alessandro Lenci, Nikola Ljubešić, Olga Lyashevskaya, Teresa Lynn, Aibek Makazhanov,
Christopher Manning, Cătălina Mărănduc, David Mareček, Héctor Mart́ınez Alonso,
André Martins, Jan Mašek, Yuji Matsumoto, Ryan McDonald, Anna Missilä, Verginica
Mititelu, Yusuke Miyao, Simonetta Montemagni, Amir More, Shunsuke Mori, Bohdan
Moskalevskyi, Kadri Muischnek, Nina Mustafina, Kaili Müürisep, Luong Nguỹên Th i,
Huỳên Nguỹên Th i Minh, Vitaly Nikolaev, Hanna Nurmi, Stina Ojala, Petya Osenova,
Lilja Øvrelid, Elena Pascual, Marco Passarotti, Cenel-Augusto Perez, Guy Perrier, Slav
Petrov, Jussi Piitulainen, Barbara Plank, Martin Popel, Lauma Pretkalniņa, Prokopis
Prokopidis, Tiina Puolakainen, Sampo Pyysalo, Alexandre Rademaker, Loganathan
Ramasamy, Livy Real, Laura Rituma, Rudolf Rosa, Shadi Saleh, Manuela Sanguinetti,
Baiba Saul̄ite, Sebastian Schuster, Djamé Seddah, Wolfgang Seeker, Mojgan Seraji,
Lena Shakurova, Mo Shen, Dmitry Sichinava, Natalia Silveira, Maria Simi, Radu
Simionescu, Katalin Simkó, Mária Šimková, Kiril Simov, Aaron Smith, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Dima Taji, Takaaki Tanaka, Reut Tsarfaty, Francis
Tyers, Sumire Uematsu, Larraitz Uria, Gertjan van Noord, Viktor Varga, Veronika
Vincze, Jonathan North Washington, Zdeněk Žabokrtský, Amir Zeldes, Daniel Zeman,
and Hanzhi Zhu. 2017. Universal Dependencies 2.0 .

Oepen, Stephan and Jan Tore Lønning. 2006. Discriminant-Based MRS Banking. In
Proceedings of the Fifth International Conference on Language Resources and Evaluation
(LREC-2006). Genoa, Italy: European Language Resources Association (ELRA).

Peng, Hao, Sam Thomson, and Noah A. Smith. 2017. Deep Multitask Learning for Semantic
Dependency Parsing. Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers) 1:2037–2048.

Pitler, Emily, Sampath Kannan, and Mitchell Marcus. 2013. Finding Optimal 1-Endpoint-
Crossing Trees. Transactions of the Association of Computational Linguistics 1:13–24.



Schluter, Natalie. 2014. On maximum spanning DAG algorithms for semantic DAG
parsing. Proceedings of the ACL 2014 Workshop on Semantic Parsing pages 61–65.

Stenetorp, Pontus. 2013. Transition-based Dependency Parsing Using Recursive Neural
Networks. In Deep Learning Workshop at the 2013 Conference on Neural Information
Processing Systems (NIPS).

Taskar, Benjamin, Vassil Chatalbashev, Daphne Koller, and Carlos Guestrin. 2005. Learn-
ing structured prediction models: A large margin approach. In L. D. Raedt and
S. Wrobel, eds., Machine Learning, Proceedings of the Twenty-Second International
Conference (ICML 2005), Bonn, Germany, August 7-11, 2005 , vol. 119 of ACM
International Conference Proceeding Series , pages 896–903. ACM.

Taskar, Benjamin, Carlos Guestrin, and Daphne Koller. 2003. Max-Margin Markov
Networks. In S. Thrun, L. K. Saul, and B. Schölkopf, eds., Advances in Neural
Information Processing Systems 16 [Neural Information Processing Systems, NIPS 2003,
December 8-13, 2003, Vancouver and Whistler, British Columbia, Canada] , pages 25–32.
MIT Press.

Titov, Ivan and James Henderson. 2007. Fast and Robust Multilingual Dependency
Parsing with a Generative Latent Variable Model. In Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), pages 947–951. Prague, Czech Republic:
Association for Computational Linguistics.

Varab, Daniel and Natalie Schluter. 2018. UniParse: A universal graph-based parsing
toolkit. CoRR abs/1807.04053.


