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ABSTRACT

Biologically inspired hierarchical networks for ig&
processing are based on parallel feature extraatonss the
image using feature detectors that have a limitedeRtive
Field (RF). It is, however, unclear how large theseeptive
fields should be. To study this, we ran systemsdsts of
various receptive field sizes using the same hibreal
network. After 40 epochs of training, we tested ileéwork
both by using similar but novel images of the saropical
cyclone that was used for training, and by usirgsidiilar
images, depicting different cyclones. The resuftdidate
that correct RF size is important for generalizatim
hierarchical networks, and that RF size should lmsen so
thatall RFs at least partially cover meaningful partshaf t
input image.

Index Terms—Hierarchical artificial neural networks,

local feature extraction, receptive field size, getization,
activation-based receptive field analysis

1. INTRODUCTION

One approach to artificial neural networks for imag

processing employs a network architecture thahspired
by the human visual system. These biologically-ireszh
networks have a hierarchical structure. At the bafsthis
structure are the input and the first hidden layehjch
detects local features that are extracted fromqfate input
image [1] [2] [3] [4]- These features typically titute
oriented line segments and/or color patches tteataated
in a limited part of the input image.

Receptive field (RF) denotes the part of the inpu#ge
which a unit receives input from. In this study, feeus on
the RF of units in the first hidden layer. At thecend and
subsequent hidden layers, the local features ambioed
into increasingly complex patterns located in pesgively
larger parts of the input image [1] [2] [3] [4]. Hee, RFs
become larger for each hidden layer in the network.

This is achieved through a hierarchical connegtiity
connecting each hidden laylerl group-wise to the previous
layer k, so that each unit group in laylerl receive signals
from a small number of groups in laykr(Figure 1). This
connectivity pattern makes up a hierarchical comgation
structure, where patches in the input image aregssed by
dedicated receiving groups in the first hidden tayand
these groups in turn project to dedicated groupghmm
subsequent layers, until a single group of unitsaaver the
complete input image.

In hierarchical networks, each unit receives sigjilaht
directly or indirectly originate from a limited gaof the
input image. This part makes up the unit’s recepfigld, in
the following called RF. Of particular importancee ahe
RFs of the first hidden layer units, as these semmEsequent
processing in the network. Also, RF size in thetflridden
layer and the rate of convergence of RFs in sules#qu
hidden layers determine the number of hidden lajyersare
necessary to obtain a full connection hierarchyenetobject
recognition works on the whole input image. Henitas
especially important that RF size is chosen cagefal the
first hidden layer.

Theoretically, on the one hand, larger RF sizehat t
first hidden layer should yield smaller networkentaining
a fewer number of layers, decreasing the network’s
complexity, which in turn ought to decrease thek risr
overfitting.

On the other hand, smaller RF size would encourage
the development of micro-feature detectors in thwvark,
which would presumably allow for a greater recorakion
possibilities, and support combinatorial generdiliza[5].

To clarify the role of RF size, we conducted systBm
generalization tests where we varied the RF sizhefirst
hidden layer. In particular we wanted to relate dipdimal
RF size to the size of the meaningful portion af thput
image, in our case, the oval contended by the ogto
spiral shape. We hypothesized that optimal RF size
dependent on the size of this meaningful portiothefinput
image.



2. THE NETWORKS USED IN THIS STUDY

original image was rotated and shifted in up tor feteps in
eight directions, producing about 200 images. Wategto

Hierarchical networks for image processing havenbeerelate the optimal RF size to the size of the nmegfol

demonstrated to be especially well suited for exiing local

features from an image. Feature extraction is cdigneved
using various filters [1] [4] [6]- These filterseapre-defined,
which simplifies learning in the network. As prefided

filters were ill-suited for the amorphous cloud gés in our
tropical cyclone images, we let feature detectorthe first
hidden layer develop through training.

portion of the input image, in our case, the owattended
by the cyclone’s spiral shape. For this reasonsthe of the
cyclone relative to the image frame was kept conistaring

training and testing. About 95% of the 200 trarezlamages
were used for training. The remaining 5% of the gem
were set aside for testing. In addition, we testednetwork
using all possible translations (except zooming) fatir

In contrast to standard hierarchical networks wherggovel cyclones.

feature integration and translation invariancedkieved by
two separate but intertwined hierarchies of layess
implemented both types of computation using oneahihy.
Kovordanyi and Roy [7] provide a detailed descaptiof
this architecture and its usefulness for image gssing.

We used the same convergence rate for all networks

that were tested, which inevitably meant that théworks
contained a different number of layers, dependingtize
initial RF size at the first hidden layer. Hendggs hetworks
comprised of five to six layers: Input, V1, V2, V&nd Dir,
alternatively Input, V1, V2, V3, V4, and Dir, degbng on

3.1 Simulations

We ran systematic tests of nearly identical netwpike
main difference being the RF size at the first biuthyer.
Hidden layer units were organized into groups, each
group sharing the same receptive field, and thokihy at
the same part of the input image. RF size of tts fiidden
layer units was varied from 16 x 16 pixels, to 2Bxpixels,
and finally 26 x 26 pixels. Using a few pixels’ olap
between neighboring RFs, the chosen RF sizes yiefde

how many layers were needed to make the connectio@OUP structure in the first hidden layer, so tfiatconsisted

converge into a final layer where units receivegluinfrom

of 5 x5, 4 x 4, and 3 x 3 receiving groups, retipely

the complete image (cf. Figure 1). The networkso als (Figure 1).

contained an additional layer Correct_dir. Thiselaglid not
partake in computation, but allowed us to visualynpare
the network’s output with the desired output.

3. TESTING PROCEDURE

A series of recurrent hierarchical networks witlb@&x 66
input layer size was developed in the neural nétwool
Emergent [8]. The network’s task was to predictlaye
movement based on cloud patterns in a satellitggemsVe
used satellite images of one cyclone for trainifde

The number of units in each receiving group in faye
V1 was 6 x 6 = 36. This number, as well as othéwaork
parameters, was kept constant across the netwuaksvere
tested. Hence, the only variation between netwarks the
RF size at the first hidden layer, which in turrtedmined
the number of layers that were required to builduth
connection hierarchy with the top hidden layer iéng
input from the entire image.

Emergent offers a sigmoid-like activation functiamd
saturating weights limited to the interval [0, Lgarning in
the network was based on a combination of Condition

|
Input

Figure 1. The three types of recurrent hierarchical netwhbst tvere used in this study. The dense connedtieg between layers
Input and V1 illustrate the RF for receiving graip 1) in layer V1, as well as the projection fielithis group in layer V2. As can be
seen, RF at the first hidden layer (V1) was vadess the three networks, from 16 x 16, throughk 20, to 26 x 26 pixels (input

image dimension was 66 x 66 pixels in each case).



Principal Component Analysis (CPCA), which is a Bialn
learning algorithm and Contrastive Hebbian learr{i@giL),
which is an error-driven algorithm, a biologicabgsed
alternative to backpropagation of error [9]:

CPCA:Aw; = gYj(X — W;j) = Anenb Eq. 1
X = activation of sending unit
y; = activation of receiving unijt
w; = weight from unii to unitj

CHL: Aw; =&(x" V" =X~ ¥7) = Derr Eq. 2

X = activation of sending unit

y; = activation of receiving unjt

X", y" = act when also output clamped
X',y =act when only input is clamped

Learning mix:Aw; = €[ChepbOnebb+ (1 = Chent) Lerr]
€ = learning rate
Chebb = Proportion of Hebbian learning

Eqg. 3

The amount of Hebbian learning used was based o = g°(k + 1) +q(g°(K) - g°(k + 1))

previous systematic testing [10]. We usegg,c= 0.01 for

connections between Input and V1, angd,c= 0.001 at

subsequent layers.

Recurrent networks tend to get over-activated durin
settling due to feedback signals that can induce an
uncontrollable spread of activation across the renti
network. Recurrent networks must therefore use some
inhibitory mechanism to reduce this tendency forerev
activation. In order to keep at least some unitivacthe
amount of inhibition must be adapted to the achedlinput
coming into the layer. Emergent offerskaVinners-Take-

All (KWTA) mechanism, which allows at mdsunits to stay
active in each layer or unit group. Assuming thtuaits
within a layer or unit group have been sorted iceading
order according to their activation level, the alijee of the
KWTA-algorithm is to keep units R-active, while inhibiting
unitsk+1-N. The amount of inhibitiog; to be delivered to a
layer or a unit group is defined to lie somewhezingen the
inhibition thresholdof unit k+1, g®k + 1), which is the
amount of inhibition that is required to drive ukitl below
its activation threshold, and the inhibition threlsh g°(k),
of unitk:

Eqg. 4
g° (K) = inhibition threshold for uni
g = margin above required inhibition level

Table 1.Results from the generalization tests using bd@Pnaesting set from the same cyclone that was fsddaining and images
of four new cyclones. Testing with the four newloyes was based on the two best weight sets sgélfrota the five listed below.

Cyclones Generalization Generalization with new cyclones
with test images
Cyclone used RF size, and size
for training and number of
the receiving
groups in V1 Total 7 Total 200 Total 200 Total 200 Total 200
layer Corr | Wrong Corr | Wrong Corr | Wrong Corr | Wrong Corr | Wrong
(%) | (%) (%) | (%) (%) | (%) (%) | (%) (%) | (%)
RF size 16 x 16, 85.7 14.3 64.5 35.5 30 70 48.5 51.5 45 55
group size 6 x 6, 100 0 71.5 28.5 7.5 92.5 57.5 42.5 59 41
25 groups 57.1 42.9
85.7 14.3
100 0
16 x 16
RF size 20 x 20, 85.7 14.3 715 28.5 5.5 94.5 58.5 41.5 52 48
group size 6 x 6,/ 100 0 76.5 24.5 20.5 79.5 58.5 41.5 66.5 33.5
16 groups 714 28.6
100 0
85.7 14.3
RF size 26 x 26, 100 0 87 13 36 64 68 32 88 12
group size 6 x 6, 85.7 14.3 96.5 3.5 53 47 74 26 88 12
9 groups 100 0
100 0
100 0
26 x 26
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Figure 2. Activation-based receptive and projective fieldlgais for layer V1 in the 16 x 16 receptive fieletwork architecture
(leftmost network in Figure 1). The plots show thiety-six (6 x 6) units in the lower leftmost gnein V1 organized in the same order
as they appear within the layer.The plot on the left shows average activation ntedifrom the Input layer into each of the thirty-si
units in the receiving group. So, in a sense, thsshow the average of all those training antingémages that a particular unit has
learnt to react to. Note that all thirty-six urlitave the same RF, that is they receive input fleersame part of the image (marked with
white squares). The plot on the right shows projection fields (audrom the same unit group in V1 into the outfayer Dir (8 x 1

units). The two plots reveal that about ten umit¥1 are never activated during processing. Intémdinine or so units have not

developed any useful feature representations (rbilotes) and become activated for all inputs. Thestes also project to a large
number among the eight directional units (thosedtion units that receive projection are markedhweéllow-red squares).

In this study, inhibitiorg; was calculated separately for contain task-relevant information, such as infororatibout
each unit group within a layeq was set to 0.25, which is object identity. Non-meaningful parts could, fomexle, be
the default value used for the stand&WTA algorithm in  background information and/or noise.

Emergent ([9]). In addition to the above tests, we analyzed theyhtei
structure developed in the network during traininging an
4 TEST RESULTS indirect method called activation-based receptiveldf
analysis. This analysis is based on the co-aatinaif input-
We tested the network’s generalization capabilitytivo ~ Units and a particular receiving unit. The average
ways: First, by using the 5% testing set contaimmoyel activation taken over all input images reflects teedency
translations (orientation and position variatioagjhe same Of this particular receiving unit to react to pewlar features
cyclone that was used for training, and secondsinygua full ~ in the input.

set of images (all orientation and position vacias) of four The activation-based receptive field analysis risvea
novel cyclones. We recorded the number of errors anthat the feature detectors that were developealyer|V1 for
calculated the percent errors that were made (THble the small RF sizes (16 x 16) were often not indeadf

As illustrated in Table 1, generalization performan cyclone direction (which was an important taskvefe
was worse when a small RF of 16 x 16 pixels wasl ise dimension of the input). Also, units were to a am@xtent
layer V1. Generalization performance was intermtedfar ~ dead that is, they did not partake in the processinany
20 x 20 pixels RF in layer V1. Generalization wastbfor ~ input (Figure 2).
an RF size of 26 x 26 pixels. This indicates th&ti& an In contrast, V1 units with large RFs (26 x 26 units
important factor for generalization, and that Redeto be developed useful representations, and tended tot ftea
big enough so that all receiving groups in V1 coseme input depicting cyclones in a few specific direago(which
portion of the meaningful parts of the image. Thecan be seen in the elongated shapes in Figure I8a).
meaningful parts would be those parts of the imtige  addition, the V1 feature detectors turned out tdirectly
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Figure 3. Activation-based receptive and projective fieldlgais for layer V1, when 26 x 26 pixels RF weredig layer V1. The
same unit group is shown as in Figure 2 (depidtieglower leftmost receiving group in V1). Notettaithough average incoming
activation is shown across the whole image, umitsaly receive input from a small RF within theaige (marked with white
squares)a. As illustrated in the plot at the left, most urtigsve developed useful feature representationssaitiie form of direction
indication,b. and these feature detectors project to a small ruwiftdirectional units in the output layer (thasection units that
receive projection are marked with yellow-red sggar

project to a few direction units in the output Igyiadicating
that the V1 units were to a greater extent usefutte task
of predicting the direction of cyclone movementfiie 3).

does not, at least partially, cover foreground rimfation will
develop a tendency for spurious activations. Irbted
mediating useful information in the feed-forwardediion,

these units will be driven by feedback signals, clthinay

5. CONCLUSIONS

hamper learning and subsequent generalization & th

network. This effect will, of course, not occurafger RFs

Our results indicate that RF-size has to be adafueitie
type of input images that are used. In particURE, size in
the first hidden layer must be chosen so that eatikidual
RF will cover meaningful information; meaningful ihe
sense that the information contributes to the thsknetwork
has to accomplish. Meaningful information makes the
foreground of the image, while other informationd&m
noise are part of the image’s background. [2]

For the images that we have used, optimal RF size
turned out to be relatively large, 26 x 26 pixeldich is
about one third of the image size. When we usedlema
RFs, peripheral receiving groups, for example cdogethe
lower left corner of the input image, did for sonmeage
translations not see any part of the foregroundth&tsame
time, these unit groups were encouraged by KWETA
algorithm to produce an activation pattern consigtof k
active units.

It may be the case that part of the observed effant
be attributed to th&kWTA-algorithm that we used, which
encourages a certain level of activatidnagtive units) in
each receiving group. This entails that those umitese RF

[1]

(3]

[4]

are used that cover part of the image foreground.
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