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ABSTRACT 

Biologically inspired hierarchical networks for image 
processing are based on parallel feature extraction across the 
image using feature detectors that have a limited Receptive 
Field (RF). It is, however, unclear how large these receptive 
fields should be. To study this, we ran systematic tests of 
various receptive field sizes using the same hierarchical 
network. After 40 epochs of training, we tested the network 
both by using similar but novel images of the same tropical 
cyclone that was used for training, and by using dissimilar 
images, depicting different cyclones. The results indicate 
that correct RF size is important for generalization in 
hierarchical networks, and that RF size should be chosen so 
that all RFs at least partially cover meaningful parts of the 
input image. 
 
Index Terms—Hierarchical artificial neural networks, 
local feature extraction, receptive field size, generalization, 
activation-based receptive field analysis 
 

1. INTRODUCTION 

One approach to artificial neural networks for image 
processing employs a network architecture that is inspired 
by the human visual system. These biologically-inspired 
networks have a hierarchical structure. At the base of this 
structure are the input and the first hidden layer, which 
detects local features that are extracted from part of the input 
image [1] [2] [3] [4]. These features typically constitute 
oriented line segments and/or color patches that are located 
in a limited part of the input image.  

Receptive field (RF) denotes the part of the input image 
which a unit receives input from. In this study, we focus on 
the RF of units in the first hidden layer. At the second and 
subsequent hidden layers, the local features are combined 
into increasingly complex patterns located in progressively 
larger parts of the input image [1] [2] [3] [4]. Hence, RFs 
become larger for each hidden layer in the network. 

This is achieved through a hierarchical connectivity, by 
connecting each hidden layer k+1 group-wise to the previous 
layer k, so that each unit group in layer k+1 receive signals 
from a small number of groups in layer k (Figure 1). This 
connectivity pattern makes up a hierarchical communication 
structure, where patches in the input image are processed by 
dedicated receiving groups in the first hidden layer, and 
these groups in turn project to dedicated groups in the 
subsequent layers, until a single group of units can cover the 
complete input image.  

In hierarchical networks, each unit receives signals that 
directly or indirectly originate from a limited part of the 
input image. This part makes up the unit’s receptive field, in 
the following called RF. Of particular importance are the 
RFs of the first hidden layer units, as these serve subsequent 
processing in the network. Also, RF size in the first hidden 
layer and the rate of convergence of RFs in subsequent 
hidden layers determine the number of hidden layers that are 
necessary to obtain a full connection hierarchy, where object 
recognition works on the whole input image. Hence, it is 
especially important that RF size is chosen carefully in the 
first hidden layer. 

Theoretically, on the one hand, larger RF size at the 
first hidden layer should yield smaller networks, containing 
a fewer number of layers, decreasing the network’s 
complexity, which in turn ought to decrease the risk for 
overfitting. 

On the other hand, smaller RF size would encourage 
the development of micro-feature detectors in the network, 
which would presumably allow for a greater recombination 
possibilities, and support combinatorial generalization [5].  

To clarify the role of RF size, we conducted systematic 
generalization tests where we varied the RF size of the first 
hidden layer. In particular we wanted to relate the optimal 
RF size to the size of the meaningful portion of the input 
image, in our case, the oval contended by the cyclone’s 
spiral shape. We hypothesized that optimal RF size is 
dependent on the size of this meaningful portion of the input 
image. 



2. THE NETWORKS USED IN THIS STUDY 

Hierarchical networks for image processing have been 
demonstrated to be especially well suited for extracting local 
features from an image. Feature extraction is often achieved 
using various filters [1] [4] [6]. These filters are pre-defined, 
which simplifies learning in the network. As pre-defined 
filters were ill-suited for the amorphous cloud shapes in our 
tropical cyclone images, we let feature detectors in the first 
hidden layer develop through training. 

In contrast to standard hierarchical networks where 
feature integration and translation invariance is achieved by 
two separate but intertwined hierarchies of layers, we 
implemented both types of computation using one hierarchy. 
Kovordanyi and Roy [7] provide a detailed description of 
this architecture and its usefulness for image processing.  

We used the same convergence rate for all networks 
that were tested, which inevitably meant that the networks 
contained a different number of layers, depending on the 
initial RF size at the first hidden layer. Hence, the networks 
comprised of five to six layers: Input, V1, V2, V3, and Dir, 
alternatively Input, V1, V2, V3, V4, and Dir, depending on 
how many layers were needed to make the connections 
converge into a final layer where units received input from 
the complete image (cf. Figure 1). The networks also 
contained an additional layer Correct_dir. This layer did not 
partake in computation, but allowed us to visually compare 
the network’s output with the desired output. 

3. TESTING PROCEDURE 

A series of recurrent hierarchical networks with a 66 x 66 
input layer size was developed in the neural network tool 
Emergent [8]. The network’s task was to predict cyclone 
movement based on cloud patterns in a satellite image. We 
used satellite images of one cyclone for training. The 

original image was rotated and shifted in up to four steps in 
eight directions, producing about 200 images. We wanted to 
relate the optimal RF size to the size of the meaningful 
portion of the input image, in our case, the oval contended 
by the cyclone’s spiral shape. For this reason, the size of the 
cyclone relative to the image frame was kept constant during 
training and testing. About 95% of the 200 translated images 
were used for training. The remaining 5% of the images 
were set aside for testing. In addition, we tested the network 
using all possible translations (except zooming) of four 
novel cyclones. 

3.1 Simulations 

We ran systematic tests of nearly identical networks, the 
main difference being the RF size at the first hidden layer.  

Hidden layer units were organized into groups, each 
group sharing the same receptive field, and thus looking at 
the same part of the input image. RF size of the first hidden 
layer units was varied from 16 x 16 pixels, to 20 x 20 pixels, 
and finally 26 x 26 pixels. Using a few pixels’ overlap 
between neighboring RFs, the chosen RF sizes yielded a 
group structure in the first hidden layer, so that V1 consisted 
of 5 x 5, 4 x 4, and 3 x 3 receiving groups, respectively 
(Figure 1).  

The number of units in each receiving group in layer 
V1 was 6 x 6 = 36. This number, as well as other network 
parameters, was kept constant across the networks that were 
tested. Hence, the only variation between networks was the 
RF size at the first hidden layer, which in turn determined 
the number of layers that were required to build a full 
connection hierarchy with the top hidden layer receiving 
input from the entire image.  

Emergent offers a sigmoid-like activation function, and 
saturating weights limited to the interval [0, 1]. Learning in 
the network was based on a combination of Conditional 

 
 
 

 

Figure 1. The three types of recurrent hierarchical network that were used in this study. The dense connecting lines between layers 
Input and V1 illustrate the RF for receiving group (1, 1) in layer V1, as well as the projection field of this group in layer V2. As can be 

seen, RF at the first hidden layer (V1) was varied across the three networks, from 16 x 16, through 20 x 20, to 26 x 26 pixels (input 
image dimension was 66 x 66 pixels in each case). 

 



Principal Component Analysis (CPCA), which is a Hebbian 
learning algorithm and Contrastive Hebbian learning (CHL), 
which is an error-driven algorithm, a biologically-based 
alternative to backpropagation of error [9]: 
 
CPCA: ∆wij = εyj(xi − wij) = ∆hebb   Eq. 1 

xi = activation of sending unit i 
yj = activation of receiving unit j 
wij = weight from unit i to unit j 

 
CHL: ∆wij = ε(xi

+ yj
+ − xi

− yj
−) = ∆err  Eq. 2 

xi = activation of sending unit i 
yj = activation of receiving unit j 
x+, y+ = act when also output clamped 
x−, y− = act when only input is clamped 
 

Learning mix: ∆wij = ε[chebb ∆hebb + (1 −  chebb) ∆err] Eq. 3 
ε = learning rate 
chebb = proportion of Hebbian learning 

 
The amount of Hebbian learning used was based on 

previous systematic testing [10]. We used chebb = 0.01 for 
connections between Input and V1, and chebb = 0.001 at 
subsequent layers.  

Recurrent networks tend to get over-activated during 
settling due to feedback signals that can induce an 
uncontrollable spread of activation across the entire 
network. Recurrent networks must therefore use some 
inhibitory mechanism to reduce this tendency for over-
activation. In order to keep at least some units active, the 
amount of inhibition must be adapted to the actual net input 
coming into the layer. Emergent offers a k-Winners-Take-
All ( kWTA) mechanism, which allows at most k units to stay 
active in each layer or unit group. Assuming that all units 
within a layer or unit group have been sorted in ascending 
order according to their activation level, the objective of the 
kWTA-algorithm is to keep units 1-k active, while inhibiting 
units k+1-N. The amount of inhibition gi to be delivered to a 
layer or a unit group is defined to lie somewhere between the 
inhibition threshold of unit k+1, gi

Θ(k + 1), which is the 
amount of inhibition that is required to drive unit k+1 below 
its activation threshold, and the inhibition threshold, gi

Θ(k), 
of unit k: 

 
gi = gi

Θ(k + 1) + q(gi
Θ(k) − gi

Θ(k + 1))  Eq. 4 
gi

Θ (k) = inhibition threshold for unit k 
q = margin above required inhibition level 

 

Table 1. Results from the generalization tests using both a 5% testing set from the same cyclone that was used for training and images 
of four new cyclones. Testing with the four new cyclones was based on the two best weight sets selected from the five listed below.  

Cyclones Generalization 
with test images 

Generalization with new cyclones 

    

Cyclone used 
for training 

RF size, and size 
and number of 
the receiving 
groups in V1 

layer 
Total 7 Total 200 Total 200 Total 200 Total 200 

Corr 
(%) 

Wrong 
(%) 

Corr 
(%) 

Wrong 
(%) 

Corr 
(%) 

Wrong 
(%) 

Corr 
(%) 

Wrong 
(%) 

Corr 
(%) 

Wrong 
(%) 

 
16 x 16 

RF size 16 x 16, 
group size 6 x 6,  

25 groups 

85.7 
100 
57.1 
85.7 
100 

14.3 
0 

42.9 
14.3 

0 

64.5 
71.5 

 
 

35.5 
28.5 

 
 

30 
7.5 

 
 

70 
92.5 

 
 

48.5 
57.5 

 
 

51.5 
42.5 

 
 

45 
59 
 
 

55 
41 
 
 

 
20 x 20 

RF size 20 x 20, 
group size 6 x 6,  

16 groups 

85.7 
100 
71.4 
100 
85.7 

 

14.3 
0 

28.6 
0 

14.3 
 

71.5 
76.5 

 

28.5 
24.5 

 

5.5 
20.5 

 

94.5 
79.5 

 

58.5 
58.5 

 

41.5 
41.5 

 

52 
66.5 

 

48 
33.5 

 

 
26 x 26 

RF size 26 x 26, 
group size 6 x 6,  

9 groups 

100 
85.7 
100 
100 
100 

0 
14.3 

0 
0 
0 

87 
96.5 

13 
3.5 

36 
53 

64 
47 

68 
74 

32 
26 

88 
88 

12 
12 

 



In this study, inhibition gi was calculated separately for 
each unit group within a layer. q was set to 0.25, which is 
the default value used for the standard kWTA algorithm in 
Emergent ([9]). 

4. TEST RESULTS 

We tested the network’s generalization capability in two 
ways: First, by using the 5% testing set containing novel 
translations (orientation and position variations) of the same 
cyclone that was used for training, and second by using a full 
set of images (all orientation and position variations) of four 
novel cyclones. We recorded the number of errors and 
calculated the percent errors that were made (Table 1). 

As illustrated in Table 1, generalization performance 
was worse when a small RF of 16 x 16 pixels was used in 
layer V1. Generalization performance was intermediate for 
20 x 20 pixels RF in layer V1. Generalization was best for 
an RF size of 26 x 26 pixels. This indicates that RF is an 
important factor for generalization, and that RF needs to be 
big enough so that all receiving groups in V1 cover some 
portion of the meaningful parts of the image. The 
meaningful parts would be those parts of the image that 

contain task-relevant information, such as information about 
object identity. Non-meaningful parts could, for example, be 
background information and/or noise. 

In addition to the above tests, we analyzed the weight 
structure developed in the network during training, using an 
indirect method called activation-based receptive field 
analysis. This analysis is based on the co-activation of input-
units and a particular receiving unit. The average co-
activation taken over all input images reflects the tendency 
of this particular receiving unit to react to particular features 
in the input. 

The activation-based receptive field analysis reveals 
that the feature detectors that were developed in layer V1 for 
the small RF sizes (16 x 16) were often not indicative of 
cyclone direction (which was an important task-relevant 
dimension of the input). Also, units were to a large extent 
dead that is, they did not partake in the processing of any 
input (Figure 2).  

In contrast, V1 units with large RFs (26 x 26 units) 
developed useful representations, and tended to react to 
input depicting cyclones in a few specific directions (which 
can be seen in the elongated shapes in Figure 3a). In 
addition, the V1 feature detectors turned out to indirectly 

 
a.        b. 
 

Figure 2. Activation-based receptive and projective field analysis for layer V1 in the 16 x 16 receptive field network architecture 
(leftmost network in Figure 1). The plots show the thirty-six (6 x 6) units in the lower leftmost group in V1 organized in the same order 
as they appear within the layer. a. The plot on the left shows average activation mediated from the Input layer into each of the thirty-six 
units in the receiving group. So, in a sense, the plats show the average of all those training and testing images that a particular unit has 

learnt to react to. Note that all thirty-six units have the same RF, that is they receive input from the same part of the image (marked with 
white squares). b. The plot on the right shows projection fields (output) from the same unit group in V1 into the output layer Dir (8 x 1 

units). The two plots reveal that about ten units in V1 are never activated during processing. In addition, nine or so units have not 
developed any useful feature representations (round blobs) and become activated for all inputs. These units also project to a large 

number among the eight directional units (those direction units that receive projection are marked with yellow-red squares).  



project to a few direction units in the output layer, indicating 
that the V1 units were to a greater extent useful for the task 
of predicting the direction of cyclone movement (Figure 3). 

5. CONCLUSIONS 

Our results indicate that RF-size has to be adapted to the 
type of input images that are used. In particular, RF size in 
the first hidden layer must be chosen so that each individual 
RF will cover meaningful information; meaningful in the 
sense that the information contributes to the task the network 
has to accomplish. Meaningful information makes up the 
foreground of the image, while other information and/or 
noise are part of the image’s background. 

For the images that we have used, optimal RF size 
turned out to be relatively large, 26 x 26 pixels, which is 
about one third of the image size. When we used smaller 
RFs, peripheral receiving groups, for example covering the 
lower left corner of the input image, did for some image 
translations not see any part of the foreground. At the same 
time, these unit groups were encouraged by the kWTA 
algorithm to produce an activation pattern consisting of k 
active units. 

It may be the case that part of the observed effect can 
be attributed to the kWTA-algorithm that we used, which 
encourages a certain level of activation (k active units) in 
each receiving group. This entails that those units whose RF 

does not, at least partially, cover foreground information will 
develop a tendency for spurious activations. Instead of 
mediating useful information in the feed-forward direction, 
these units will be driven by feedback signals, which may 
hamper learning and subsequent generalization in the 
network. This effect will, of course, not occur if larger RFs 
are used that cover part of the image foreground. 
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