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Constraint Satisfaction Problems (CSP) are a well-known and important class of computa-
tional problems. An instance of the constraint satisfaction problem consists of a set of variables,
a set of possible variable values (known as the domain), and a set of constraints which impose
restrictions on value assignments to the variables. To solve such a problem, a value has to be
found for each variable so that all the constraints are satisfied. Many problems encountered
in computer science, artificial intelligence, and mathematics can be viewed as instances of the
CSP: examples can be found in, for instance, spatiotemporal reasoning, computer vision, ma-
chine learning, scheduling, bioinformatics, and graph theory. CSPs are additionally the basis for
many optimisation problems, counting problems, etc. One of the most prominent complexity-
theoretic questions concerning CSPs is the following: given a set of relations Γ (referred to as a
constraint language), what is the complexity of CSP(Γ), i.e. the CSP where only the relations
in Γ are allowed in constraints. CSP(Γ) and mathematical methods for studying this problem is
the focal point of this project.

CSPs over finite domains are extremely well-studied in the literature. A major breakthrough
took place in 2017 when Bulatov and Zhuk proved (independently) the dichotomy conjecture: a
problem CSP(Γ) is either polynomial-time solvable or NP-complete. This result was based on
a thorough understanding of the mathematics behind finite-domain CSPs. In particular, various
results from algebra were the key for obtaining this result, and it has been argued that the recent
vitalisation of universal algebra is an effect of interplay with CSP research.

If we turn our attention to infinite-domain CSPs, then there is still an abundance of interest-
ing applications e.g. in spatiotemporal reasoning, computer vision, computational linguistics,
and bioinformatics. However, there cannot exist a dichotomy result since an infinite number of
complexity classes is needed for capturing the complexity of CSP(Γ). This is one of several
reasons for infinite-domain CSPs behaving very differently compared to finite-domain CSPs,
implying that we need an extended mathematical toolbox for analysing infinite-domains CSPs.
During the last few years, there has been a rapid development of new tools for studying infinite-
domain CSPs. These tools have been based on ideas from various mathematical fields such as
universal algebra, mathematical logic/model theory, graph theory, and Ramsey theory. This has
led to a number of full complexity classification results for restricted classes of CSPs, such as
certain temporal constraints, graph-based constraints, phylogeny constraints, and others.

The main goal when analysing the complexity of CSPs has historically been to separate NP-
hard cases from polynomial-time cases. From both a theoretical and practical point of view, it
is additionally highly interesting to analyse the time complexity of algorithms for the NP-hard
cases. There is a substantial body of such results for finite-domain CSPs while our understand-
ing of infinite-domain CSPs is comparatively weak. Hence, this project is directed towards
mathematical methods for studying computational aspects of infinite-domain CSPs in a broad
sense: we want to both separate polynomial-time solvable cases and NP-hard cases, and analyse
the time complexity of the NP-hard cases. We expect strong cross-fertilisation effects from such
an approach, and that it will lead to innovative methods for studying CSPs.
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It is convenient to separate the project description into two parts based on the mathematical
properties of the constraint languages at hand. The balance between work on Part 1 and Part 2
below will be up to discussion with the PhD student.

Part 1. Here, we consider ω-categorical constraint languages, i.e. when all countable mod-
els of the first-order theory of Γ are isomorphic. From the AI perspctive, it is very common that
qualitative CSPs are ω-categorical, and there is a large number of CSPs for qualitative reasoning
described in the literature. Understanding and exploiting the ω-categoricity of qualitative CSPs
has been one of the keys for obtaining powerful complexity results. This part has a large degree
of built-in flexibility: one may approach ω-categorical language from many different angles,
ranging from purely mathematical questions (concerning, for instance, clone theory) via ques-
tions concerning computational complexity to (fairly practical) questions concerning concrete
algorithms for particular subproblems. The common denominator for all these approaches is
that interesting mathematics enter the stage in a natural way. A concrete starting point would be
to analyse computational aspects of the RCC-5 formalism (by Cohn et al.) for spatial reasoning:
not much is known concerning time complexity of algorithms nor the computational complex-
ity of first-order definable fragments. Despite its apparent simplicity, RCC-5 has resisted deeper
analyses and this can be attributed to an insufficient mathematical understanding.

Part 2. This part concerns numeric constraints. The term numeric constraints is not
well-defined in the literature—the basic feature is first-order definability over some structure
(A;R,R1, R2, . . .) where R(x1, . . . , xn) ≡ x1 = f(x2, . . . , xn) for some “mathematically rel-
evant” function f : An−1 → A. It is common to choose A and R with A ∈ {Z,Q,R} and
R(x, y, z) ≡ x = y+ z. Important types of relations in this context are semilinear relations that
are first-order definable in {x = y+ z,≤, {1}}, semialgebraic relations that are first-order defi-
able in {x = y + z, x = y · z,≤, {1}}, and Presburger arithmetic, i.e. semilinear relations over
the integers. Numeric constraints have important applications and, from an AI perspective, we
particularly want to point out the importance of numeric constraints when extending spatiotem-
poral formalisms with metric information. Numeric constraints are typically not ω-categorical
so the algebraic approach is not applicable in general; nevertheless, certain complexity classifi-
cations have been obtained by using “non-systematic” methods. Recently, there has been quite
some work aimed at constructing general methods for analysing numeric constraints. Examples
include the exploitation of saturated models and their Galois connections, connections with al-
gorithmic game theory, and the invention of new algorithmic methods for numeric constraints.
The area is in a state of flux and this may provide opportunities for very rapid progress. A con-
crete starting point would be to analyse the computational complexity of various extensions of
the influential simple temporal problem by Dechter, and to develop suitable analysis methods.
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