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Abstract

Extending qualitative CSPs with the ability of restricting selected variables
to finite sets of possible values has been proposed as an interesting research
direction with important applications, cf. “Qualitative constraint satisfaction
problems: an extended framework with landmarks” by Li, Liu, and Wang (Arti-
ficial Intelligence 201:32-58, 2013). Previously presented complexity results for
this kind of extended formalisms have typically focused on concrete examples
and not on general principles. We propose three general methods. The first
two methods are based on analysing the given CSP from a model-theoretical
perspective, while the third method is based on directly analysing the growth
of the representation of solutions. We exemplify the methods on temporal and
spatial formalisms including Allen’s algebra and RCC-5.

Keywords: Constraint satisfaction, qualitative reasoning, computational
complexity.

1. Introduction

This introductory section is divided into two parts where we first discuss the
background of this article and thereafter describe our results.

1.1. Background

Qualitative reasoning has a long history in artificial intelligence and the
combination of qualitative reasoning and constraint reasoning has been a very
productive field. A large number of constraint-based formalisms for qualitative
reasoning have been invented, most notably within temporal and spatial rea-
soning, and they have been investigated from many different angles. It has been
noted that a particular extension to qualitative CSPs is highly relevant: Cohn
and Renz [25, p. 578] observe the following
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One problem with this [constraint-based] approach is that spatial
entities are treated as variables which have to be instantiated using
values of an infinite domain. How to integrate this with settings
where some spatial entities are known or can only be from a small
domain is still unknown and is one of the main future challenges of
constraint-based spatial reasoning.

and Li, Liu, and Wang [48, p. 33] write

There is a growing consensus, however, that breakthroughs are nec-
essary to bring spatial/temporal reasoning theory closer to practi-
cal applications. One reason might be that the current qualitative
reasoning scheme uses a rather restricted constraint language: con-
straints in a qualitative CSP are always taken from the same calcu-
lus and only relate variables from the same infinite domain. This
is highly undesirable, as constraints involving restricted variables
and/or multiple aspects of information frequently appear in practi-
cal tasks such as urban planning and spatial query processing.

That is, they regard the question of how to extend constraint formalisms with
constants and other unary relations1 as being very important; the same observa-
tion has been made in a wider context by Kreutzmann and Wolter [44]. An inter-
esting recent example where such extensions of qualitative formalisms are neces-
sary is the article on spatial query processing by Nikolaou and Koubarakis [56].

Given a (finite or infinite) set of values D, we let Dc = {{d} | d ∈ D} (i.e.
the set of constant relations over D) and Df = {D′ ⊆ D | D′ is finite} (i.e. the
set of finite unary relations over D). Let us consider finite-domain CSPs for
a moment. For every finite constraint language Γ over D, the computational
complexity of CSP(Γ ∪Df ) is known due to results by Bulatov [17]. This is an
important complexity result in finite-domain constraint satisfaction and it has
been reproven several times using different methods [2, 18]. Very recently, the
complexity of CSP(Γ ∪Dc) and CSP(Γ) has also been determined [19, 63].

The situation is radically different when considering infinite-domain CSPs
where similar powerful results are not known. This can, at least partly, be
attributed to the fact that infinite-domain CSPs constitute a much richer class
of problems than finite-domain CSPs: for every computational problem X, there
is an infinite-domain constraint language ΓX such that X and CSP(ΓX) are
polynomial-time Turing equivalent [9]. Finite domain CSPs are, on the other
hand, always members of NP. Hence, the majority of computational problems
cannot be captured by finite-domain CSPs.

Nevertheless, there exist concrete examples where interesting qualitative
and/or infinite-domain CSPs have been extended with finite unary relations
and/or constant relations. A very early example is the article by Jonsson &

1Finite unary relations are sometimes referred to as landmarks in the AI literature. We
will use the standard mathematical term throughout the article.
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Bäckström [38] (see also Koubarakis [43]) where several temporal formalisms
(including the point algebra and Allen’s algebra) are extended by unary rela-
tions (and also other relations). A more recent example is the article by Li et
al. [48] where the point algebra and Allen’s algebra are once again considered. Li
et al. also study several other formalisms including the cardinal relation algebra
and RCC-5 and RCC-8 over two-dimensional regions and where constants are
assumed to be polygonal regions. The results for the temporal formalisms by
Jonsson & Bäckström are not completely comparable with the results by Li et
al.: Jonsson & Bäckström’s approach is based on linear programming while Li
et al. use methods based on enforcing consistency and computational geometry.
Consistency-enforcing methods have certain advantages such as lower time com-
plexity and easier integration with existing constraint solving methods. At the
same time, the linear programming method allows for more expressive exten-
sions with retained tractability. Both consistency-based and LP-based methods
have attracted attention lately, cf. Giannakopoulou et al. [30] and Kreutzmann
and Wolter [44], respectively, and generalisations of the basic concepts have
been proposed and analysed by de Leng and Heintz [26].

We see that this line of research has to a large extent been based on analysing
concrete examples. The approach in this article will be different: instead of
studying concrete examples, we study basic principles and aim at providing
methods that are applicable to many different constraint formalisms.

1.2. Our results
We present three different methods. The first two methods are based on

analysing the given CSP from a model-theoretical perspective. The third method
is more of a toolbox for proving that the size of solutions (i.e., the number of bits
needed for representing a solution) grows in a controlled way, and that problems
consequently are in NP. We will now describe these methods in slightly more
detail.

Method I. The first method is based on exploiting ω-categoricity. This is
a model-theoretical property of constraint languages and other mathematical
structures that have gained a lot of attention in the literature. Briefly speaking,
a constraint language Γ is ω-categorical if Γ is the unique countable model (up
to isomorphism) of the set of all first-order sentences that are true in Γ. One of
the interesting aspects of ω-categorical constraint languages is that they in some
respects resemble constraint languages over finite domains: this is expressed by
a famous result proved by Engeler, Ryll-Nardzewski, and Svenonius (see Theo-
rem 11). From a model-theoretical point of view, ω-categoricity is a very strong
assumption. Nevertheless, many interesting CSP problems can be formulated
using ω-categorical constraint languages: examples include the point algebra,
RCC-5, RCC-8, and Allen’s algebra. Among the ω-categorical constraint lan-
guages, the model-complete cores are particularly interesting. Such constraint
languages allow us to define gadgets that can be used for simulating constants.
This method is applicable to a wide selection of CSP(Γ) problems when Γ is
ω-categorical. The drawback with the method is that it may be difficult to com-
pute the gadgets used for simulating constants. Given that Γ is an ω-categorical
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model-complete core and that the gadgets can be computed efficiently, we verify
(based on results by Bodirsky [5]) that CSP(Γ) is polynomial-time equivalent
to CSP(Γ∪Dc). To demonstrate the strength of this method, we apply it to an
extended version of Allen’s algebra. This exercise shows, for example, that rela-
tions with higher arity than two does not pose any particular problem. This is
an important observation since previous work (such as Li et al. [48]) has mostly
focused on binary relations.

Method II. The second method is based on homogeneity. This is a property of
relational structures that has been studied for a long time in mathematics and
logic. Some machinery is needed for the formal definition so we refrain from
giving it here. However, we note that homogeneous relational structures have
many interesting properties: for instance, they allow quantifier elimination and
they are ω-categorical whenever the structure contains a finite number of rela-
tion symbols and the domain is countably infinite. Even though homogeneity
is a very strong property of relational structures, there are many well-known
examples within AI and computer science. An early example was provided by
Hirsch [33] who proved that Allen’s algebra (with the standard interval-based
representation) is homogeneous. Given that Γ is homogeneous and satisfies cer-
tain additional restrictions, we show that CSP(Γ) is polynomial-time equivalent
to CSP(Γ∪Dc). The additional restrictions are a bit technical; in brief, Γ needs
to be based on a partition scheme in the sense of Ligozat & Renz [51]. This
method has both advantages and disadvantages when compared to method I.
The main advantage is that we do not have to compute the gadgets that are
needed for applying method I while the main disadvantage is that we are re-
stricted to a particular kind of constraint languages. Nevertheless, many inter-
esting examples can be found within this restricted class of problems.

Method III. Even though many qualitative CSPs are ω-categorical and method
I and/or II may be applicable, this is not always the case. One alternative
approach is to analyse the growth of CSP(Γ ∪ Dc) solutions, measured as a
function of instance size. If the growth is polynomially bounded, then it follows
immediately that CSP(Γ ∪Dc) is a member of NP. One disadvantage with this
method is that we cannot obtain polynomial-time equivalences between CSP(Γ)
and CSP(Γ ∪ Dc). Another disadvantage is that it may be quite difficult to
obtain such bounds. In certain cases, one can inductively compute bounds by
a fairly straightforward analysis of problem instances. We demonstrate this by
analysing a variant of RCC-5 that is based on finite sets of integers instead of
closed sets in topological spaces.

We illustrate the methods on both temporal and spatial formalisms (includ-
ing point-based temporal constraints, Allen’s algebra, and RCC-5). We want
to stress that the representation of domains and relations is very important. In
fact, we will see that RCC-5 can be represented in two different ways (which
we denote RCC-5set and RCC-5ω−cat) that give rise to exactly the same com-
putational problem (by Proposition 13). However, we will also see (in Sections
5 and 6.2) that there exists an RCC-5 constraint language R such that RCC-
5set(R ∪ {{c}}) is NP-complete while RCC-5ω−cat(R ∪ X) is polynomial-time
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solvable, where {c} is a particular constant relation and X is an arbitrary fi-
nite set of constants. Thus, adding constant relations to constraint languages
that are computationally equivalent (but represented differently) may lead to
problems with different computational complexity.

The reader may find it strange that we mostly consider extensions with
constant relations. The explanation is the close connection between problems
extended with constants and with finite unary relations: if one of them is in NP,
then both are in NP (see Lemma 3). Most problems under consideration be-
come NP-hard when adding unary relations containing at least three elements:
for example, if the constraint language contains the disequality relation 6=, then
NP-hardness follows from a straightforward reduction from 3-Colourability.
However, NP-completeness is not inevitable if we only add constants to the
language—a concrete example of this phenomenon was given earlier in the con-
text of RCC-5. Thus, we can extract more information by considering constants
instead of finite unary relations. The same viewpoint is taken by, for instance,
Li et al. [48].

This article has the following structure. We introduce the basic concepts
from CSPs and logic together with some information about homomorphisms in
Section 2. Temporal constraints, Allen’s algebra, and RCC-5 will be introduced
in Section 3. The three different methods outlined above are presented in Sec-
tions 4, 5, and 6, respectively. We conclude the article with a brief discussion
in Section 7. This article is a revised and extended version of a conference
paper [37].

2. Preliminaries

This section is divided into three parts where we provide basic informa-
tion concerning constraint satisfaction, logic, and automorphisms of relational
structures, respectively.

2.1. Constraint satisfaction problems

We begin by presenting CSPs in terms of homomorphisms. This view is
widely used in the literature on finite-domain CSP and it will provide us with
certain advantages: some of the properties that we consider later on are in-
herently based on homomorphisms. One should note, however, that there is
no fundamental difference with the more common AI viewpoint that constraint
satisfaction is about assigning values to variables in a way that satisfy certain
constraints. In fact, it will be convenient to use both viewpoints in the sequel.

A relational signature τ consists of relation symbols Ri with associated arities
ki ∈ N. A (relational) structure Γ over relational signature τ (also called τ -
structure) is a set DΓ (the domain) and relation RΓ

i ⊆ Dki

Γ for each relation
symbol Ri of arity ki. If the reference to the structure Γ is clear, we may omit
the superscript in RΓ

i . We sometimes use the shortened notation x for a vector
(x1, . . . , xn) of any length.
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Let Γ and ∆ be τ -structures. A homomorphism from Γ to ∆ is a function
f from DΓ to D∆ such that for each n-ary relation symbol R in τ and each
n-tuple a = (a1, . . . , an), if a ∈ RΓ, then (f(a1), . . . , f(an)) ∈ R∆.

Let Γ be a structure with a relational signature τ . Then, the constraint
satisfaction problem (CSP) for Γ is the following computational problem.

CSP(Γ)
Instance: A τ -structure ∆.
Question: Is there a homomorphism from ∆ to Γ?

Example 1. For k ≥ 1, the k-Colourability problem is the computational
problem of deciding for a given finite graph G whether the vertices can be coloured
by k colours such that adjacent vertices get different colours. It is well-known
that the k-colouring problem is NP-hard for k ≥ 3 and tractable when k ≤
2. For k ≥ 1, let Kk denote the complete loop-free graph on k vertices. We
view undirected graphs as τ -structures where τ contains a single binary relation
symbol E which denotes a symmetric and anti-reflexive relation. Then, the
k-Colourability problem can be viewed as CSP({Kk}).

Example 2. Consider the problem CSP((Q;<)) where < is the binary order
relation of the set Q of rational numbers. Let G = (V,A) be a directed graph.
It is easy to see that there is a homomorphism from G to (Q;<) if and only if
G contains no directed cycle. Thus, CSP((Q;<)) is solvable in polynomial time
since cycle detection in directed graphs can be carried out in polynomial time.

A homomorphism from a given τ -structure ∆ to Γ is often called a solu-
tion of ∆ for CSP(Γ). In the homomorphism perspective on CSPs, the struc-
ture Γ is typically called the template of the constraint satisfaction problem
CSP(Γ). The reader should be aware that several different names are used in
the literature; constraint language is probably the most common within AI.
Clearly, we can equivalently define the instances of the CSP(Γ) problem as
a tuple (V,C) where V is a set of variables and C is a set of constraints of
the form R(xi1 , . . . , xik) where R is a relation in Γ, k is the arity of R, and
{xi1 , . . . , xik} ⊆ V . In this case, a solution is a function from V to the domain
of Γ satisfying (f(xi1), . . . , f(xik)) ∈ R for every R(xi1 , . . . , xik) ∈ C.

To represent an input structure ∆ of CSP(Γ), we need to fix a suitable
representation of the relation symbols in the signature τ . We will see in the
forthcoming sections that the choice of representation is very important. Given
a particular representation of relation symbols, we let ||∆|| denote the size of
an input structure ∆. It is in general not clear how to represent solutions for
CSP(Γ) in a compact way, i.e., by an object whose size is polynomially bounded
in the input size. When domains are of fixed finite size, then this is indeed
possible by simply writing down the variable assignment. When domains are of
infinite size, this is not always possible. Note, however, that for the definition
of the problem CSP(Γ) we do not need to explicitly represent solutions since we
only have to decide the existence of solutions.

6



Let D be a domain with a particular representation and let ||d|| denote
the size of the representation of d ∈ D. We let Dc = {{d} | d ∈ D} and
Df = {D′ ⊆ D | D′ is finite}. Given a representation of the elements in D,
we always represent the members of Df as sets of elements in D and we may
assume that the size of Df is linear in the sizes of its elements. Other ways
of representing Df are possible (such as solution sets of equations) but they
are outside the scope of this article. If Γ is a constraint language with domain
D, then CSP(Γ ∪ Dc) is the problem CSP(Γ) extended with constants and
CSP(Γ ∪Df ) is the problem CSP(Γ) extended with finite unary relations. The
next lemma strengthens Proposition 1(iii) in Li et al. [48] by extending it to
arbitrary constraint languages.

Lemma 3. Let Γ denote a constraint language. CSP(Γ ∪Dc) is in NP if and
only if CSP(Γ ∪Df ) is in NP.

Proof. Assume that CSP(Γ ∪Df ) is in NP. Then, CSP(Γ ∪Dc) is in NP, too,
since Dc ⊆ Df . Assume instead that CSP(Γ ∪ Dc) is in NP. Let us consider
an arbitrary instance I = (V,C) of CSP(Γ ∪ Df ). Assume I has a solution
s : V → D. We replace each constraint U(x) ∈ C with U ∈ Df by the
constraint {s(v)}(v). The resulting instance I ′ is an instance of CSP(Γ ∪Dc),
it is satisfiable, and ||I ′|| ≤ ||I||. The problem CSP(Γ ∪ Dc) is in NP so the
satisfiability of I ′ can be verified in polynomial time by a certificate X. A
polynomial-time verifiable certificate for I is thus the tuple (I ′, X).

Lemma 3 allows us to, for example, concentrate on CSP(Γ ∪Dc) instead of
CSP(Γ ∪Df ) when proving membership in NP.

2.2. Logic

First-order formulas ϕ over the signature τ (or, in short, τ -formulas) are as
usual inductively defined using the logical symbols of universal and existential
quantification, disjunction, conjunction, negation, equality, bracketing, variable
symbols and the symbols from τ . The semantics of a first-order formula over
some τ -structure is defined in the ordinary Tarskian style. A τ -formula without
free variables is called a τ -sentence. We write Γ |= ϕ if and only if the τ -
structure Γ is a model for the τ -sentence ϕ, that is, satisfies ϕ. This notation
is lifted to sets of sentences (viewed as conjunctions) in the usual way.

2.2.1. Logical definitions

One can use first-order formulas over the signature τ to define relations
over a given τ -structure Γ: for a formula ϕ(x1, . . . , xk) where x1, . . . , xk are
the free variables of ϕ, the corresponding relation R is the set of all k-tuples
(t1, . . . , tk) ∈ Dk

Γ such that ϕ(t1, . . . , tk) is true in Γ. In this case, we say that R
is first-order definable in Γ. We extend definability to structures in the natural
way: a structure Θ is first-order definable in Γ if every relation in Θ is first-
order definable in Γ. Note that our definitions are always parameter-free, i.e.,
we do not allow the use of domain elements in them. Quantifier-free formulas
will be of a certain interest in the following. We say that the τ -structure Γ
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admits quantifier elimination if every relation with a first-order definition in Γ
has a quantifier-free definition in Γ. We also say that a set of formulas T admits
quantifier elimination if each φ ∈ T has a logically equivalent quantifier-free
formula.

We will often consider quantifier-free formulas in conjunctive normal form
(CNF). Such a formula is a conjunction of clauses and a clause is a disjunction
of literals, i.e., negated or unnegated atomic formulas. A first-order τ -formula
φ(x1, . . . , xn) is called positive if it does not contain the negation symbol ¬. We
note that every quantifier-free positive formula can be rewritten into a logically
equivalent positive formula in conjunctive normal form.

A first-order τ -formula φ(x1, . . . , xn) is called existential if it is of the form

∃xn+1, . . . , xm.ψ

where ψ is a quantifier-free first-order formula. A subset of positive and existen-
tial formulas is of particular interest to us: a first-order τ -formula φ(x1, . . . , xn)
is called primitive positive if it is of the form

∃xn+1, . . . , xm.ψ1 ∧ · · · ∧ ψl

where ψ1, . . . , ψl are atomic τ -formulas, i.e., formulas of the form

1. R(y1, . . . , yk) with R ∈ τ and yi ∈ {x1, . . . , xm} or

2. y = y′ for y, y′ ∈ {x1, . . . , xm}.

Primitive positive formulas will be called pp-formulas for short. In a pp-
formula, equality relations can always be removed by identifying variables. This
is not true for general formulas since we may, for instance, have formulas such
as ¬(x = y). If the relation R has a primitive positive definition in Γ, then we
say that R is pp-definable in Γ, and we define 〈Γ〉 to be the set of relations that
are pp-definable in Γ. Jeavons [36] has proved the following result.

Theorem 4. If Γ is a structure and the relation R is pp-definable in Γ, then
there is a polynomial-time reduction from CSP(Γ ∪ {R}) to CSP(Γ).

This explains why pp-definability is important when studying the complexity
of CSP problems. To exemplify pp-definitions and Theorem 4, consider the
structure Γ = {N; {1, 2, 3, 4}, 6=}. We see that the binary relation K4 = {(x, y) ∈
{1, 2, 3, 4}2 | x 6= y} (from Example 1) is pp-definable in Γ since

K4(x, y)⇔ {1, 2, 3, 4}(x) ∧ {1, 2, 3, 4}(y) ∧ x 6= y.

and it follows that CSP(Γ) is NP-hard. It is worth mentioning that many of
the operations that are encountered in relation algebra can be viewed as pp-
definitions. Let R and S denote binary relations. Then, the converse R^ has the
pp-definition R^(x, y) ⇔ R(y, x), the intersection R ∩ S has the pp-definition
(R∩S)(x, y)⇔ R(x, y)∧S(x, y), and the composition R◦S has the pp-definition
(R ◦ S)(x, y)⇔ ∃z.R(x, z) ∧ S(z, y).

We finally discuss certain families of binary relations. Partition schemes were
introduced by Ligozat & Renz [51] and they have been highly influential in CSP
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research. Let D be a non-empty domain. Given a finite family B = {B1, . . . , Bk}
of binary relations over D, we say that B is jointly exhaustive (JE) if

⋃
B = D2

and that B is pairwise disjoint (PD) if Bi ∩ Bj = ∅ whenever 1 ≤ i 6= j ≤ k.
If B is simultaneously JE and PD (which we denote JEPD), then B forms a
partition of the set D2.

Definition 5. Let D be a non-empty domain and let B = {B1, . . . , Bk} be a
finite set of binary relations over D. We say that B is a partition scheme if the
following holds:

1. B is JEPD,

2. the equality relation EQD = {(x, x) ∈ D2} is in B, and

3. for every Bi ∈ B, the converse relation B^
i is in B.

It is important to note that if B is a partition scheme over a domain D, then
for arbitrary d, d′ ∈ D there exists exactly one B ∈ B such that (d, d′) ∈ B.
Given a finite set of binary relations B = {R1, . . . , Rk}, we follow notational
conventions from [24, 40] and define B∨= as the set of all unions of relations
from B. Equivalently, each relation in B∨= can be viewed as a disjunction
B1(x, y) ∨ B2(x, y) ∨ · · · ∨ Bk(x, y) for some {B1, . . . , Bk} ⊆ B. We sometimes
abuse notation and write (B1, . . . , Bk) to denote the relation B1∪· · ·∪Bk. The
set B∨= and the problem CSP(Γ) where Γ ⊆ B∨= are the natural objects that
are studied in connection with partition schemes. If B is a partition scheme, then
every relation in B∨= is quantifier-free positive definable in B but not necessarily
pp-definable in B (since disjunctions are not allowed in pp-definitions).

2.2.2. Membership in NP

When a constraint language Γ is logically defined in some constraint lan-
guage Θ, then Γ sometimes inherits useful properties of Θ. We have already
encountered Theorem 4 which is one example of this. We will next present two
results that connect logical definability with membership in NP. These results
will be helpful in the forthcoming Sections 5 and 6.

Lemma 6. Let B denote a partition scheme over domain D, and let Γ denote a
finite constraint language that is quantifier-free definable in B. If CSP(B ∪Dc)
is in NP, then CSP(Γ ∪Dc) is in NP.

Proof. We assume that B = {B1, . . . , Bk}, Γ = {R1, . . . , Rm}, and that every
relation Ri, 1 ≤ i ≤ m, is defined by a quantifier-free formula φi. Without
loss of generality, we assume that φi is written in conjunctive normal form. We
first demonstrate that every clause in φi can be rewritten as a disjunction of
relations in B. If φi does not contain any negative literals, then φi itself has
this property. Otherwise, consider a negation such as ¬(Bi(x, y)). Since B is a
partition scheme, we have the following equivalence:

¬(Bi(x, y))⇔
∨

B∈B\{Bi}

B(x, y).
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We can thus assume, without loss of generality, that φi does not contain any
negated literals.

Let I = (V,C) denote an arbitrary instance of CSP(Γ∪Dc) with the solution
s : V → D. Pick an arbitrary constraint Ri(x1, . . . , xn) ∈ C with Ri ∈ Γ. We
consider the defining formula φi = σ1∧ · · ·∧σp. From each clause σi, 1 ≤ i ≤ p,
choose one literal that is satisfied by solution s. Add these literals to the set
C ′. Repeat this process for all constraints in C. Finally, add all constraints
U(x) ∈ C with U ∈ Dc to C ′. Note the following.

1. (V,C ′) is an instance of CSP(B ∪Dc),

2. the size of (V,C ′) is polynomially bounded in the size of (V,C),

3. (V,C ′) is satisfiable (as is witnessed by the function s), and

4. there exists a polynomial-time verifiable certificate for the satisfiability of
(V,C ′) (since CSP(B ∪Dc) is in NP).

Hence, there is a polynomial-time verifiable certificate for the satisfiability
of (V,C): concatenate the instance (V,C ′) with a polynomial-time verifiable
certificate for the satisfiability of (V,C ′). This implies that CSP(Γ ∪Dc) is in
NP.

Lemma 7. Let Θ denote a constraint language over domain D, and let Γ denote
a finite constraint language that is quantifier-free positive definable in Θ. If
CSP(Θ ∪Dc) is in NP, then CSP(Γ ∪Dc) is in NP.

Proof. The proof is virtually the same as the proof of Lemma 6. We merely
observe the following: when a quantifier-free positive formula is converted into
conjunctive normal form, the resulting formula is still positive, i.e., it contains
no negation symbols. Thus, we will not need to rewrite negated literals as
disjunctions and it is not required that Θ is a partition scheme.

Results like Lemma 6 and 7 may give the impression that there is a strong
connection between the complexity of CSP(Γ) and CSP(Γ∪Dc). Unfortunately,
this is not true in general. To see this, we begin by arbitrarily choosing a com-
plexity class C that admits complete problems under polynomial-time reductions
(such as PSPACE or EXPTIME). Let Γ = {R1, R2, . . . } be a constraint lan-
guage over domain N such that CSP(Γ) is C-complete under polynomial-time
reductions. Results by Bodirsky and Grohe [9, Theorem 1] provide a systematic
way of obtaining such Γ. However, one should note that it is often possible (and
sometimes even simpler) to obtain such a Γ via ad hoc constructions.

Let 0k denote the all-zero vector with k elements. Given a relation R ∈ Γ
with arity k, we define

R′ = {(a1 + 1, . . . , ak + 1) | (a1, . . . , ak) ∈ R} ∪ {0k}.

and let Γ′ = {R′ | R ∈ Γ} ∪ {S′} where

S′ = {(1, n) ∈ N2 | n ≥ 1} ∪ {02}.
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The problem CSP(Γ′) is trivially in P since every instance (V,C) is satisfied
by assigning the value 0 to each variable. We will next show that the problem
CSP(Γ′ ∪ Nc) is, on the other hand, C-hard. We can thus find examples of Γ′

such that CSP(Γ′) and CSP(Γ′ ∪ Nc) are arbitrarily far separated.
To verify that CSP(Γ′∪Nc) is C-hard, we present a polynomial-time reduction

from CSP(Γ) to CSP(Γ′ ∪ {{1}}). Let (V,C) denote an arbitrary instance of
CSP(Γ). Introduce one fresh variable y and define (V ′, C ′) such that V ′ =
V ∪ {y} and

C ′ = {R′i(x̄) | Ri(x̄) ∈ C} ∪ {S′(y, x) | x ∈ V } ∪ {{1}(y)}.

If (V,C) has a solution f : V → N, then it is obvious that the function
f ′ : V ′ → N defined by f ′(y) = 1 and f ′(x) = f(x) + 1, x ∈ V , is a solution to
(V ′, C ′).

If (V ′, C ′) has a solution f ′ : V ′ → N, then we note that no variable can
be assigned the value 0. Thus, it is easy to verify that the function f : V → N
defined by f(x) = f ′(x)− 1 is a solution to (V,C).

2.3. Automorphisms

Keeping the homomorphism definition of CSPs in mind may be helpful in
the rest of this section. Let Γ and ∆ denote two relational τ -structures over
domain D. We say that a function f : D → D preserves R ∈ Γ if for every
(a1, . . . , ak) ∈ R, the tuple (f(a1), . . . , f(ak)) is in R, too. A bijective ho-
momorphism f from Γ to ∆ is called an isomorphism if the inverse of f is a
homomorphism from ∆ to Γ. If Γ and ∆ are isomorphic, then it is clear that
CSP(Γ) and CSP(∆) are the same computational problem. An injective homo-
morphism that additionally preserves the complement of each relation is called
an embedding ; the complement of a k-ary relation R in Γ is the relation Dk \R.
Homomorphisms from Γ to Γ are called endomorphisms of Γ. An automorphism
of Γ is a bijective endomorphism whose inverse is also an endomorphism. In
other words, automorphisms are bijective embeddings of Γ into Γ or isomor-
phisms from Γ to Γ. The set containing all endomorphisms of Γ is denoted
End(Γ) while the set of all automorphisms is denoted Aut(Γ).

Example 8. Let R+ = {(x, y, z) ∈ Z3 | x + y = z}. For arbitrary a ∈ Z,
let ea : Z → Z be defined as ea(n) = a · n. Let e : Z → Z be an arbitrary
endomorphism of (Z;R+); e is a homomorphism so (e(x), e(y), e(z)) ∈ R+

whenever (x, y, z) ∈ R+ and, more generally, e(
∑k

i=1 xi) =
∑k

i=1 e(xi) when
x1, . . . , xk ∈ Z. Arbitrarily choose n ∈ Z and note that

e(n) = e(1 + · · ·+ 1︸ ︷︷ ︸
n times

) = n · e(1).

It follows that End((Z;R+)) = {ea | a ∈ Z}. Note that ea has an inverse if and
only if a ∈ {−1, 1}. Thus, Aut((Z;R+)) = {ea | a ∈ {−1, 1}}.
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A useful observation is that if (V,C) is an instance of CSP(Γ) with a solution
s : V → D, then s′ : V → D defined by s′(x) = α(s(x)) is a solution to (V,C)
for every α in Aut(Γ) or End(Γ). If a function s : V → D is not a solution to
(V,C), then s′(x) = α(s(x)) is not a solution for any α ∈ Aut(Γ) while s′ may
or may not be a solution if α ∈ End(Γ) \Aut(Γ).

In the following, let G be a set of permutations of a set X. We say that G is a
permutation group if the identity permutation is in G and for arbitrary g, f ∈ G,
the functions x 7→ g(f(x)) and x 7→ g−1(x) are also in G. In other words, G
is closed under function composition and inversion. If Γ is a τ -structure, then
Aut(Γ) is a permutation group on the set DΓ. For n ≥ 1, the orbit of an n-tuple
(t1, . . . , tn) ∈ Xn under G is the set {(α(t1), . . . , α(tn)) | α ∈ G}. Clearly, the
orbits of n-tuples under G partition the set Xn, that is, every (t1, . . . , tn) ∈ Xn

lies in precisely one orbit under G.

Example 9. Consider once again the structure (Z;R+) from Example 8. It is
obvious that {e1, e−1} forms a group under function composition. If a ∈ Z, then
the orbit of (a) equals {a,−a} so (Z;R+) admits an infinite number of different
orbits under its automorphism group.

We will now introduce the central concept of ω-categoricity. It has been
observed that ω-categoricity plays an important role in the context of qualitative
reasoning. We will not go into the details here but the interested reader may
refer to, for instance, Huang [35], Westphal et al. [62], Bodirsky & Dalmau [8],
and Bodirsky & Jonsson [11].

A first-order theory is a set of first-order sentences. When the first-order
sentences are over the signature τ , we say that T is a τ -theory. The (full)
theory of a τ -structure ∆ (denoted Th(∆)) is the set of τ -sentences φ such that
∆ |= φ. A model of a τ -theory T is a τ -structure ∆ such that ∆ satisfies
all sentences in T . Theories that have a model are called satisfiable. Since
models are structures, the notion of isomorphism for structures immediately
carries over to models. A satisfiable first-order theory T is ω-categorical if
all countable models of T are isomorphic, and a structure is ω-categorical if
its first-order theory is ω-categorical. All ω-categorical structures that appear
in this article will be countably infinite so we make the convention that ω-
categorical structures are countably infinite. Note that the first-order theory
of a finite structure does not have infinite models so finite structures are ω-
categorical. One of the first infinite structures that was found to be ω-categorical
(by Cantor [22]) is the linear order of the rational numbers (Q;<). There are
many characterisations of ω-categoricity and the most important one is in terms
of the automorphism group.

Definition 10. A permutation group G over a countably infinite set X is oligo-
morphic if G has only finitely many orbits of n-tuples for each n ≥ 1.

An accessible proof of the following theorem can be found in Hodges’ book [34].

Theorem 11 (Engeler, Ryll-Nardzewski, Svenonius). Let Γ be a countably in-
finite structure with countable signature. Then, Γ is ω-categorical if and only if
Aut(Γ) is oligomorphic.
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Example 9 immediately implies that (Z;R+) is not an ω-categorical struc-
ture. Consider the structure (Z;<). One can verify that Aut((Z;<)) = {x 7→
x+ a | a ∈ Z}. Hence, (Z;<) is not ω-categorical (despite the fact that (Q;<)
is indeed ω-categorical): the orbits of (0, 0), (0, 1), (0, 2), . . . are distinct.

We conclude this section by presenting a result that connects first-order
definability with ω-categoricity.

Theorem 12 (Thm. 7.3.8 in Hodges [34]). If Γ is an ω-categorical structure
and ∆ is first-order definable in Γ, then ∆ is ω-categorical, too.

3. CSP Examples

We will now give a brief introduction to three qualitiative formalisms: tempo-
ral constraints (including the point algebra), Allen’s algebra and RCC-5. These
formalisms will be used as illustrating examples during the course of the article.

We begin with the structure (Q;<), that is, the rational numbers with the
usual linear ordering relation. Constraint languages that are first-order definable
in (Q;<) are well-studied in the literature and they are sometimes called tem-
poral constraint languages. We have already noticed that (Q;<) is ω-categorical
which implies that all temporal constraint languages are ω-categorical by The-
orem 12. Furthermore, the computational complexity of CSP(Γ) is known for
every finite temporal constraint language Γ [13]. In particular, CSP(Γ) is either
in P or it is an NP-complete problem. The point algebra (PA) is the constraint
language {<,=, >}∨= and CSP(PA) is probably the most well-known example
of a polynomial-time solvable temporal constraint language.

We continue by introducing Allen’s algebra [1]. It was introduced to reason
about intervals and the qualitative relationships between intervals. The variable
domain is

I = {{x ∈ Q | a ≤ x ≤ b} | a, b ∈ Q and a < b},

that is, it consists of all closed intervals [a, b] of rational numbers. If I =
[a, b] ∈ I, then we write I− for a and I+ for b. The basic relations are the 13
relations defined in Figure 1. We let A denote the set of Allen basic relations.
Clearly, A is a partition scheme and the 8192 relations of Allen’s algebra are the
contents of the set A∨=. The structure A∨= is known to be ω-categorical [32].
Observe that A∨= is not a temporal constraint language since the domain is
not Q.

For every subset Γ ⊆ A∨=, the complexity of CSP(Γ) is known [45]. Unlike
temporal constraint languages, the complexity for all finite first-order definable
constraint languages are not known. We will encounter the Ord-Horn sub-
class [55] H ⊆ A∨= later on. A relation R ∈ A∨= is a member of H if and only
if the following hold: ([I−, I+], [J−, J+]) ∈ R if and only if φ(I−, I+, J−, J+)
evaluates to true, where φ is a positive CNF formula φ(x−, x+, y−, y+) over
(Q;≤,=, 6=) such that each clause contains at most one relation of the form
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Basic relation Illustration Endpoints

I precedes J p III I+ < J−

J preceded by I p` JJJ

I meets J m IIII I+ = J−

J met by I m` JJJJ

I overlaps J o IIII I− < J− < I+,
J overlapped by I o` JJJJ I+ < J+

I during J d II I− > J−,
J includes I d` JJJJJJ I+ < J+

I starts J s III I− = J−,
J started by I s` JJJJJJ I+ < J+

I finishes J f III I+ = J+,
J finished by I f` JJJJJJ I− > J−

I equals J ≡ IIII I− = J−,
JJJJ I+ = J+

Figure 1: The definitions of the basic relations of Allen’s algebra.

PP(x, y) iff x ⊂ int(y)
PP`(x, y) iff int(x) ⊃ y
DR(x, y) iff int(x) ∩ int(y) = ∅
PO(x, y) iff int(x) ∩ int(y) 6= ∅, x 6⊆ y, y 6⊆ x
EQ(x, y) iff x = y

Figure 2: Basic relations of RCC-5reg where int(·) denotes the interior operator.

x = y or x ≤ y. The constraint language H is very well-studied within the liter-
ature on temporal constraints. We merely note that CSP(H) is polynomial-time
solvable, CSP(H ∪ {R}) is NP-hard whenever R ∈ A∨= \ H, and that A ⊆ H

We finally turn our attention to RCC-5. The RCC formalisms [58] are de-
signed for reasoning about spatial regions and they are the basis for a large
part of the work in qualitative spatial reasoning (QSR). There are several vari-
ants such as RCC-23, RCC-8, and RCC-5. We will heneceforth concentrate on
the simplest formalism RCC-5. RCC-5 is based on five basic relations PP, PP`

(which is the inverse of PP), PO, DR, and EQ, which together form a partition
scheme. Here, PP stands for proper part, PO stands for partial overlap, DR stands
for disconnected regions, and EQ stands for equality. We will consider several
different variants of RCC-5 based on different choices of variable domains.

The first variant is based on the standard representation of the spatial cal-
culus RCC-8 (the reader is referred to Renz and Nebel [60, Sec. 3.1] for details
concerning RCC-8) but where one is not able to distinguish regions from their
topological closure: the disconnectedness relations DC and EC are replaced by
DR and the tangential and non-tangential proper part relations TPP and NTPP

are replaced by PP (and the relation PP` is introduced analogously). Here, the
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PP(x, y) iff x ⊂ y
PP`(x, y) iff x ⊃ y
DR(x, y) iff x ∩ y = ∅
PO(x, y) iff ∃a, b, c : a ∈ x, a 6∈ y, b ∈ x, b ∈ y, c 6∈ x, c ∈ y
EQ(x, y) iff x = y

Figure 3: Basic relations of RCC-5set.

domain consists of the nonempty regular closed subsets of some regular and
connected topological space. A subset of a topological space is called regular
closed if it is equal to the closure of its interior. Note that the sets are not
required to be connected. The basic relations of RCC-5 under this choice of
variable domain is given in Figure 2. We henceforth call this algebra RCC-5reg.

We continue by providing another variant of RCC-5. Here, we consider
arbitrary non-empty subsets of an infinite set such as N. We define the relations
PP, PP`, DR, PO, EQ as in Figure 3 and denote the resulting structure by RCC-5set.
RCC-5set is not ω-categorical while it is unknown whether there is a topological
space (with the properties described above) where one can define RCC-5reg

such that the resulting structure is ω-categorical. However, there are ways of
defining RCC-5 such that the resulting structure is ω-categorical described in
the literature. For instance, Bodirsky and Chen [7] presents such a structure
based on Fräıssé amalgamation. We let RCC-5ω−cat denote this constructions.

The following result is a consequence of Proposition 15 in Bodirsky & Jons-
son [11] combined with Section 6 in Bodirsky and Chen [7].

Proposition 13. Let (V,C) be an instance of RCC-5. The following three
statements are equivalent.

1. (V,C) is satisfiable if the relations are interpreted over RCC-5reg.

2. (V,C) is satisfiable if the relations are interpreted over RCC-5set.

3. (V,C) is satisfiable if the relations are interpreted over RCC-5ω−cat.

In other words, the RCC-5 representations RCC-5reg, RCC-5set, and RCC-
5ω−cat are indistinguishable from a computational perspective. The RCC-5
representation used by Li et al. [48] is restricted to regions in the plane. The
exact computational properties of this representation are not known, but it is
worth noting that Proposition 13 cannot be extended to RCC-5 based on non-
empty open disks in the plane [11, Sec. 2.5.2]. Further discussions concerning
different interpretations of RCC-5 and other spatial formalisms can be found
in [7, 27, 49].

4. Method I: ω-categoricity and model-complete cores

Our first method is based on analysing a given constraint language Γ with
respect to its automorphisms and the central notions here are ω-categoricity
and model-complete cores. We present the method in Section 4.1 and, as an
example, apply it to an extended version of Allen’s algebra in Section 4.2.
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4.1. Constants and model-complete cores

We first introduce the concept of homomorphically equivalent CSPs. Let
Γ and ∆ denote two relational τ -structures. If Γ and ∆ are isomorphic, then
it is clear that CSP(Γ) and CSP(∆) correspond to the same computational
problem. However, Γ and ∆ may be non-isomorphic and still correspond to
the same computational problem. Assume that Γ = (D;R1, R2, . . . ) and ∆ =
(D′;R′1, R

′
2, . . . ). Given an instance (V,C) of CSP(Γ), let (V,C ′) denote the

instance of CSP(∆) where each relation Ri appearing in C has been replaced
by R′i. We say that Γ and ∆ have the same CSP if the following holds for
all instances (V,C) of CSP(Γ): (V,C) is satisfiable if and only if (V,C ′) is
satisfiable. This is, for example, the case when there simultaneously exists
a homomorphism from Γ to ∆ and a homomorphism from ∆ to Γ. In this
case, we say that Γ and ∆ are homomorphically equivalent and this defines an
equivalence relation on structures. We note that there are structures that have
the same CSP even when they are not homomorphically equivalent. Consider
for example the structures (Z;<) and (Q;<). They have the same CSP and
there is a homomorphism from (Z;<) to (Q;<) but there is no homomorphism
from (Q;<) to (Z;<).

For ω-categorical structures Γ, the equivalence classes have interesting prop-
erties: the homomorphic equivalence class of Γ contains a distinguished member
∆ which is up to isomorphism uniquely given by two properties: ∆ is a core and
∆ is model-complete. A relational structure Γ is a core if all endomorphisms
of Γ are embeddings. Cores are important when studying the complexity of
finite-domain CSPs: we refer to the textbook by Hell and Nešetřil [31] that
extensively covers cores in the context of graph homomorphisms and to Bulatov
et al. [20] that covers cores in general finite-domain CSPs. It is known that
when the domain of a relational structure is infinite, then there are several rea-
sonable ways of defining cores; see, for instance, Bauslaugh [4] or Bodirsky [6,
Sec. 3.6.3]. The reason for choosing the definition above is simple: it is the
definition used by Bodirsky [5] in his proof of the forthcoming Theorem 14.

Model completeness is a central concept in model theory. Let T be a first-
order theory. We say that the formulas φ and ψ are equivalent modulo T if
T |= (φ ⇔ ψ). A structure Γ is model-complete if every formula in Th(Γ) is
equivalent to an existential formula modulo T . This may be viewed as a limited
notion of quantifier elimination.

Consider the relation < over the rationals Q. The structure (Q;<) admits
quantifier elimination [46] so every formula in Th((Q;<)) is equivalent to a
quantifier-free formula (and, naturally, an existential formula). It follows that
(Q;<) is model-complete, and that every Γ that is first-order definable in (Q;<)
is model-complete, too. The structure (Q;<) is also a core. Let e : Q → Q be
an endomorphism of (Q;<), i.e., if a < b, then e(a) < e(b). Clearly, e is injective
and it preserves the relation ≥ (that is, the negation of <) since if a > b, then
e(a) > e(b) and if a = b, then e(a) = e(b). However, there are relations R that
are first-order definable in (Q;<) and (Q;R) is not a core. One trivial example
is the equality relation =. The function x 7→ 1 is obviously an endomorphism

16



of = but it is not injective and thus not an embedding. We have the following
important result.

Theorem 14 (Theorem 16 in Bodirsky [5]). Every ω-categorical structure ∆
is homomorphically equivalent to a model-complete core structure Γ which is
unique up to isomorphism. Moreover, Γ is ω-categorical and the orbits of n-
tuples over DΓ are pp-definable in Γ for all n ≥ 1.

Since homomorphically equivalent structures have the same CSP, one can
focus on ω-categorical structures that have these properties. The fact that we
can pp-define the orbits of n-tuples will now become highly important.

Theorem 15. Let Γ be a constraint language over the domain D. Assume the
following:

1. Γ is a model-complete ω-categorical core and

2. the domain elements are represented in a way such that given a vector d̄ =
(d1, . . . , dn) ∈ Dn, a pp-definition in Γ of the orbit of d̄ can be generated
in polynomial time (in the size of the representation of d1, . . . , dn).

Then, CSP(Γ) and CSP(Γ ∪Dc) are polynomial-time equivalent.

Proof. Let Γ′ = Γ∪Dc. The reduction from CSP(Γ) to CSP(Γ′) is trivial so we
concentrate on the other direction. Let I ′ = (V ′, C ′) be an instance of CSP(Γ′).
Assume without loss of generality that if {di}(x) is in C ′, then there is no vari-
able y 6= x such that {di}(y) ∈ C ′; if so, the constraint {di}(y) can be removed
and the variable y be replaced by x. Normalising an instance in this way can
easily be done in polynomial-time. We assume (without loss of generality) that
the only constraints in C ′ with relations from Dc are {d1}(x1), . . . , {dm}(xm).
This can be achieved in polynomial time by renaming of variables.

Compute (in polynomial time) the formula F (x1, . . . , xm) for the orbit of
(d1, . . . , dm). Define I = (V,C) such that the constraint set C equals C ′ ex-
tended with F (x1, . . . , xm) and with the constant relations removed. Let V de-
note V ′ expanded with the existentially quantified variables in F (x1, . . . , xm).
Note that I can be constructed in polynomial time and it is an instance of
CSP(Γ).

If the instance I has no solution, then it follows immediately that I ′ does
not have a solution—one can view I as being a relaxation of I ′ since the formula
F (x1, . . . , xm) is, in particular, satisfiable when x1 = d1, . . . , xm = dm. If the
instance I has a solution s : V → D, then we claim that there is a solution
s′ : V ′ → D to I ′, too. Since F describes the orbit of (d1, . . . , dm), there is an
automorphism α of Γ such that α(s′(xi)) = di, 1 ≤ i ≤ m. This implies that
α(s′(x)) restricted to the set V is a solution to I.

For those that are familiar with the algebraic approach to finite-domain
CSPs, it may be illuminating to compare the proof of Theorem 15 with the
proof of Theorem 4.7 in Bulatov et al. [20].

We concretise the method by presenting an example based on temporal con-
straint languages, i.e. constraint languages that are first-order definable in the
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structure (Q;<). We have already observed (in Section 3) that temporal con-
straint languages are ω-categorical. It is additionally known (by Junker and
Ziegler [41], also see Cameron [21]) that there are five possible choices of Aut(Γ).
We concentrate on the (for our purposes) most interesting case when < ∈ 〈Γ〉
and Aut(Γ) = Aut(Q;<). Arbitrarily choose such a language Γ and assume
(without loss of generality due to Theorem 4) that < ∈ Γ. We know that Γ is
model-complete (by the discussion preceding Theorem 14) so we assume that Γ
is a core. For instance, Γ may be the point algebra {<,>,=}∨=. We represent
all members of Q in the natural way, i.e., as (a/b) where a, b are integers written
in binary and b 6= 0.

The automorphisms of (Q;<) are the bijective functions f : Q→ Q that are
monotonically increasing. The orbit of 1-tuples equals Q while the orbit of a
2-tuple (a, b) with a < b equals {(x, y) ∈ Q2 | x < y}. More generally, the orbit
of a k-tuple (a1, . . . , ak) with a1 < a2 < · · · < ak equals

{(x1, . . . , xk) ∈ Qk | x1 < x2 < · · · < xk}

so the orbit-defining formulas can be generated in polynomial time. Theorem 15
is thus applicable and CSP(Γ ∪ Qc) is polynomial-time equivalent to CSP(Γ).
In particular, CSP(Γ∪Qc) is in P if CSP(Γ) is in P, and CSP(Γ∪Qc) is in NP
if CSP(Γ) is in NP.

This example shows that ω-categoricity is indispensable. Theorem 15 com-
bined with the tractability of CSP((Q;<, 6=)) implies that CSP(ΓQ) is in P when
ΓQ denotes (Q;<, 6=) extended with the constant relations in Qc. Recall that
(Z;<) and (Z;<, 6=) are not ω-categorical and define ΓZ by expanding (Z;<, 6=)
with Zc. The problem CSP(ΓZ) is NP-hard since the relation {0, 1, 2} can be
pp-defined via

{0, 1, 2}(x)⇔ ∃y, z.{−1}(y) ∧ {3}(z) ∧ y < x ∧ x < z,

and the problem CSP((Z; {0, 1, 2}, 6=)) is NP-hard since there is an obvious
polynomial-time reduction from 3-Colourability. A similar example of this
phenomenon (but based on RCC-5 instead of (Q;<)) will be presented in Sec-
tion 6.2.

By Theorem 14, we know that orbit-defining formulas always can be pp-
defined in Γ under the given assumptions. Whether these can be generated or
not in polynomial time is a completely different question, though. Bodirsky [5,
Sec. 7] notes that if the set of possible constants is finite, then an orbit-defining
formula for these constants can be computed off-line and subsequently be used
without additional cost. This gives us the following result.

Corollary 16. Let Γ be a constraint language over the domain D and let D′c be
a finite subset of Dc. If Γ is a model-complete ω-categorical core, then CSP(Γ)
and CSP(Γ ∪D′c) are polynomial-time equivalent problems.

Assuming that the set of constant relations is finite is sensible in applica-
tions such as geographical information systems: geographical maps contain a
comparatively small number of features and they tend to evolve quite slowly.
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4.2. An example based on Allen’s algebra

We will now illustrate the results presented in Section 4.1 with the aid of a
slightly more involved example. There are several reasons for doing this. First
of all, we want to show how the results can be used for studying non-binary
constraint languages. One may argue that most constraint formalisms studied
in AI are binary and studying higher-arity formalisms is of minor importance.
However, there are many interesting formalisms based on relations with higher
arity. We refer the reader to the survey by Dylla et al. [28] that contains both
examples of higher-arity formalisms and a thorough discussion concerning their
properties. Another reason is to give the reader some familiarity with the use
of results such as Theorem 15. Even though it may seem quite abstract at first
sight, it is both powerful and fairly easy to use in concrete applications.

Our departure is the following dichotomy result.

Theorem 17 (Theorem 5.5.23 in Bodirsky [6]). Let Γ be a finite set of re-
lations that are first-order definable in A and m ∈ Γ (where m is the Allen
relation satisfying (I, J) ∈ m if and only if I+ = J−). Then, CSP(Γ) is either
polynomial-time solvable or NP-complete.

The reader may be puzzled about the restriction to constraint languages
containing the relation m. Intuitively, m allows us to define certain relations that
make endpoints identical and such relations are the very basis of the dichotomy
result (see the construction in the beginning of Lemma 22).

Before continuing, we want to point out that switching from A∨= to relations
that are first-order definable in A gives new possibilities but also poses new
problems. Consider, for example, the following ternary Allen relation:

R∗ =

{
(I, J,K) ∈ I3

∣∣∣∣ (s, s`,≡)(I, J) ∧ (s, s`,≡)(I,K)∧
(s, s`,≡)(J,K) ∧ (s(K, I) ∨ s(K,J))

}
.

This relation expresses that I, J , and K have the same starting point and
the ending point of K is before at least one of the ending points of I and J . Note
that the disjunction s(K, I) ∨ s(K,J) is not expressible with relations in A∨=.
Relations that are first-order definable in A are inherently different from the
relations in A∨=. We exemplify by the Ord-Horn class H that was described
in Section 3. Nebel and Bürckert [55] have proved that the ORD-Horn class
H has the following uniqueness property: if A ⊆ X ⊆ A∨= and CSP(X) in
P, then X ⊆ H. Such a unique class of relations does not exist if we consider
relations that are first-order definable in A: there exist two incomparable classes
of relations X1, X2 that are first-order definable in A, the ORD-Horn class is a
strict subset of both, and CSP(Xi), 1 ≤ i ≤ 2, is in P. This is a straightforward
consequence of results proved by Bodirsky and Kára [14]; more details can be
found in Bodirsky [6, Chapter 10]. One extension of H can be used for studying
the relation R∗: CSP(H ∪ {R∗}) is indeed polynomial-time solvable. First, R∗

can be rewritten as a relation that is definable in (Q;<) by splitting the intervals
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into variables that range over Q:

R∗∗ =

(I−, I+, J−, J+,K−,K+) ∈ Q6

∣∣∣∣∣∣∣∣
I− < I+ ∧ J− < J+∧
K− < K+∧
I− = J− = K−∧
(K+ < I+ ∨K+ < J+)

 .

Every relation in H can be rewritten in a similar way; we let H′ denote the
resulting constraint language. Now, the constraint language H′ ∪ {R∗∗} is a
subset of the tractable dual-ll class [14], and we conclude that CSP(H∪ {R∗})
is tractable, too. This kind of transformations of constraint languages will be
an important ingredient in the proofs of the forthcoming results.

Bodirsky’s proof of Theorem 17 is based on the following fundamental result.

Theorem 18 (Bodirsky and Kára [13]). Let Γ be a finite set of relations that are
first-order definable in (Q;<). Then, CSP(Γ) is either polynomial-time solvable
or NP-complete.

The problem of applying Theorem 18 directly to Allen relations stems from
the different domains: the theorem is concerned with the domain Q while Allen
relations are defined over the interval domain I. We will now generalise the
dichotomy result for the first-order extension of Allen’s algebra (Theorem 17)
as follows: we show that adding constants to the constraint language do not
change the complexity of the corresponding constraint satisfaction problem.

Theorem 19. Let Γ be a finite set of relations that are first-order definable in
A and m ∈ Γ. Then, the problems CSP(Γ) and CSP(Γ∪Ic) are polynomial-time
equivalent. Additionally, these problems exhibit a dichotomy: they are either
polynomial-time solvable or NP-complete depending on the choice of Γ.

Theorem 19 can be proved in several different ways. Our proof does not
use any complex formal machinery and it emphasises the connections with the
results in Section 4.1. The proof can be found in Section 4.2.1 and we discuss
some aspects of this result in Section 4.2.2. Special cases of Theorem 19 and
related results have been studied in the literature. We have already mentioned
that Li et al. [48] have showed that CSP(A∨=∪Ic) is in NP. Their approach seems
difficult to generalise for handling relations with arbitrarily high arity. Another
example is Jonsson and Bäckström [38] who have proved that CSP(H∪ Ic) is in
P. Their approach does not easily generalise to larger classes of relations, either.
In fact, it cannot be used for proving that CSP(H∪{R∗}∪ Ic) is in P—a result
that can easily be inferred from Theorem 19.

4.2.1. Dichotomy result

We begin by proving that Allen relations admit quantifier elimination. The
exact definition of homogeneity (which is used in the proof below) is not impor-
tant at this point but we will come back to it in Section 5.

Lemma 20. Structure A admits quantifier elimination.
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Proof. By Statement 2.22 in Cameron [21], we know that an ω-categorical struc-
ture admits quantifier elimination if and only if it is homogeneous. Corollary 5.9
in Hirsch [33] shows that A∨= is homogeneous. Every homogeneous structure
that contains a finite number of relations and has an infinite countable domain
is ω-categorical, cf. Lemma 3.2.10 in Bodirsky [6]. We conclude that A∨= ad-
mits quantifier elimination. This immediately implies that A admits quantifier
elimination, too, since every relation in A∨= can be rewritten as a disjunction
of relations in A without introducing any quantifiers.

Let R ⊆ Ik denote a k-ary relation that is first-order definable in A. Assume
without loss of generality (due to Lemma 20) that (I1, . . . , Ik) ∈ R if and only
if φR(I1, . . . , Ik) holds where φR is a quantifier-free formula. Define the formula
X(φR) to be a formula φ′ ∧ φ′′ with 2k free variables x−1 , x

+
1 , . . . , x

−
k , x

+
k where

1. φ′ = x−1 < x+
1 ∧ · · · ∧ x

−
k < x+

k and
2. φ′′ is φ where each atomic formula a(Im, In) with a ∈ A is replaced by the

corresponding definition in Table 1 over variables x−m, x
+
m, x

−
n , x

+
n .

Note that the formula X(φ) is always quantifier-free first-order definable in
(Q;<). We adapt X(·) for handling relations in the natural way: for a relation
R with arity a, let

X̂(R) = {(x−1 , x
+
1 , . . . , x

−
a , x

+
a ) ∈ Qa | X(φR)(x−1 , x

+
1 , . . . , x

−
a , x

+
a )}.

If we go back to the relations R∗ and R∗∗ that were introduced earlier, then we
see that R∗∗ = X̂(R∗). Finally, we extend X̂ to constraint languages: X̂(Γ) =
{X̂(R) | R ∈ Γ}. By the very definition of X̂(·), it is straightforward to verify
that CSP(Γ) is polynomial-time reducible to CSP(X̂(Γ)). The basic step is to
replace each interval variable I with two point variables x−, x+ where x− is
interpreted as the starting point of I and x+ the ending point of x+. Showing
that there is a polynomial-time reduction in the other direction needs some more
work.

Lemma 21. The relations (s, s`,≡) and (f, f`,≡) are pp-definable in {m}.
Proof. Note that

(s, s`,≡)(I, J)⇔ ∃K.m(K, I) ∧m(K,J)

and that (f, f`,≡) can be pp-defined analogously.

Lemma 22. Let Γ be a finite set of relations that are first-order definable in A
and m ∈ Γ. Then, CSP(X̂(Γ)) is polynomial-time reducible to CSP(Γ).

Proof. Assume without loss of generality (due to Lemma 21 and Theorem 4)
that {(s, s`,≡), (f, f`,≡)} ⊆ Γ.

Arbitrarily choose an instance (V,C) of CSP(X̂(Γ)). We say that variables
x, y ∈ V are a pair if x appears at position k (where k is odd) in some constraint
in C and y appears in the same constraint at position k + 1. Note that if x, y
are a pair, then every solution must assign a strictly higher value to y than to
x.

Based on (V,C), we define an instance (V ′, C ′) of CSP(Γ) as follows.
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1. For each pair of variables x, y ∈ V , introduce an interval variable Ix,y and
put it into V ′.

2. For variables Ix,y and Ix,z in V ′, add the constraint (s, s`,≡)(Ix,y, Ix,z)
to C ′.

3. For variables Iy,x and Iz,x in V ′, add the constraint (f, f`,≡)(Ix,y, Ix,z) to
C ′.

4. For variables Iy,x and Ix,z in V ′, add the constraint m(Iy,x, Ix,z) to C ′.

5. For variables Ix,y and Iz,x in V ′, add the constraint m(Iz,x, Ix,y) to C ′.

6. For each constraint S(x1, x2, . . . , x2m−1, x2m) ∈ C, add the constraint
R(Ix1,x2

, . . . , Ix2m−1,x2m
) to C ′ where R ∈ Γ satisfies S = X̂(R).

We claim that (V ′, C ′) is satisfiable if and only if (V,C) is satisfiable.

Assume (V,C) is satisfiable and that it has the solution f : V → Q. Define
the function f ′ such that f ′(Ix,y) = [f(x), f(y)]. The variables x, y are a pair
so they appear in some constraint that requires f(x) < f(y). Thus, f ′ is a
function from V ′ to I. If there are interval variables Ix,y and Ix,z in V ′, then we
know that the constraint (s, s`,≡)(Ix,y, Ix,z) is in C ′. The function f ′ satisfies
this constraint since f ′(Ix,y) = [f(x), f(y)] and f ′(Ix,z) = [f(x), f(z)]. It can
analogously be verified that the constraints introduced in steps 3-5 are satisfied
by f ′. Finally, the constraints introduced in steps 6 are satisfied by f ′ due to
the definition of X̂(·).

Assume (V ′, C ′) is satisfiable and that it has the solution f ′ : V ′ → I. For
each variable x ∈ V , there is at least one variable Ix,y or Iy,x in V ′ for some
y ∈ V . Arbitrarily choose a function g : V → V ′ such that for every x ∈ V ,
g(x) = Ix,y or g(x) = Iy,x (for some y ∈ V ) and g(x) ∈ V ′. Define a function
f : V → Q as follows:

1. f(x) = a if g(x) = Ix,y and f ′(Ix,y) = [a, b] or

2. f(x) = b if g(x) = Iy,x and f ′(Iy,x) = [a, b].

Note that the exact choice of function g for defining f(x) is irrelevant: when-
ever we have interval variables, say, Ix,y and Ix,z, then f ′(Ix,y) = [a, b] and
f ′(Ix,z) = [a, c], due to the constraints introduced in steps 2-5 in the reduction.
Thus, there exists exactly one function f corresponding to a given solution f ′.

We conclude the proof by proving that f is a solution to (V,C). Arbitrarily
choose a constraint S(x1, x2, . . . , x2m−1, x2m) in C. Assume first that all vari-
ables are distinct. We need to verify that (f(x1), f(x2), . . . , f(x2m−1), f(x2m)) ∈
S. We know that (f ′(Ix1,x2

), . . . , f ′(Ix2m−1,x2m
)) ∈ R so the very construction

of f combined with the definition of X̂(·) implies that this holds. Assume now
instead that the variables are not distinct. We exemplify with a 4-ary constraint
S(x, y, x, z). This corresponds to a constraint R(Ix,y, Ix,z) in C ′ where we addi-
tionally have the constraint (s, s`,≡)(Ix,y, Ix,z) ∈ C ′ due to step 2 in the reduc-
tion. It is thus guaranteed that the intervals f ′(Ix,y) and f ′(Ix,z) start at the
same point. Since (V ′, C ′) has a solution, we know that (f ′(Ix,y), f ′(Ix,z)) ∈ R.

This implies that (f(x), f(y), f(x), f(z)) ∈ S due to the definition of X̂(·). It is
not hard to generalise this reasoning to constraints of higher arity.
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We are now ready to prove Theorem 19.

Proof. We prove the result by giving four polynomial-time reductions.

1. CSP(Γ ∪ Ic) to CSP(X̂(Γ) ∪Qc). We have earlier discussed the fact that
there is a straightforward reduction from CSP(Γ) to CSP(X̂(Γ)). Assume
that we have a unary relation that constrains the interval variable I to
have the value [a, b]. In the reduction, I is associated with two variables x−

and x+ ranging over Q. It is easy to see that we can replace a constraint
[a, b](I) with [a, b] ∈ Ic with the constraints {a}(x−) and {b}(x+) where
{a}, {b} ∈ Qc.

2. CSP(X̂(Γ)∪Qc) to CSP(X̂(Γ)). We merely note that the relation < is pp-
definable in X̂(Γ) since x < y ⇔ ∃z, w.X̂(m)(x, z, w, y) so the reduction
exists due to the discussion after Theorem 15.

3. CSP(X̂(Γ)) to CSP(Γ). This reduction exists due to Lemma 22.

4. CSP(Γ) to CSP(Γ ∪ Ic). Trivial.

For an arbitrary constraint language Θ that is first-order definable in (Q;<),
we know that CSP(Θ) is either in P or is an NP-complete problem by Theo-
rem 18. Since X̂(Γ) is first-order definable in (Q;<), the reduction above shows
that CSP(Γ), CSP(Γ∪ Ic), CSP(X̂(Γ)), and CSP(X̂(Γ)∪Qc) are either in P or
they are NP-complete problems.

Theorem 19 only gives the complexity for CSP(Γ∪Ic) and not for CSP(Γ∪If ).
However, we can conclude (by Lemma 3) that CSP(Γ ∪ If ) is in NP. Recall
that the complexity of CSP(Γ) and CSP(Γ ∪ Ic) is always the same (up to
polynomial-time reductions) when m ∈ Γ. This does not hold for CSP(Γ ∪ If ).
Let Θ = {m, 6≡} where 6≡ =

⋃
B∈A\{≡}B. CSP(Θ) is in P since Θ is a subset

of the Ord-Horn class H. The problem CSP(Θ ∪ If ) is NP-complete, though.
This can be proved by a reduction from 3-Colourability. Let G = (V,E) be
an undirected graph. For each v ∈ V , introduce a variable v′ and the constraint
{[0, 1], [1, 2], [2, 3]}(v′). For each edge (v, w) ∈ E, introduce the constraint 6≡
(v′, w′). It is easy to see that the resulting instance is satisfiable if and only if
G is 3-colourable, and this implies that CSP(Γ ∪ If ) is NP-complete.

4.2.2. Discussion

It is now suitable to discuss some aspects of the dichotomy result presented
in the previous section. One obvious question is what happens if we consider
languages that do not contain the relation m. Unfortunately, the proof breaks
down. Let Γ = {R1, . . . , Rn} be first-order definable in A such that m ∈ Γ and
Ri, 1 ≤ i ≤ n, is defined by the quantifier-free formula φi. The reductions in
the proof of Theorem 19 shows that the problems CSP(Γ) and CSP(Θ) have
the same complexity up to polynomial-time reductions where the relations in Θ
are defined via X(φ1), . . . , X(φn). We demonstrate that this is not true in the
general case where we do not have access to the relation m.
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Just as in the previous section, we let 6≡ denote the ’not equal’ relation, i.e.,
the relation 6≡=

⋃
B∈A\{≡}B. Let φR(I, J,X, Y ) denote the formula

m(I, J)→ 6≡(X,Y )

and φS(X,A,B,C) the formula

≡(X,A) ∨ ≡(X,B) ∨ ≡(X,C).

Define the relations R,S ⊆ I4 as follows:

R = {(I, J,X, Y ) ∈ I4 | φR(I, J,X, Y )} and

S = {(X,A,B,C) ∈ I4 | φS(X,A,B,C)}.

Let Γ′ = {R,S}. Clearly, m 6∈ Γ′ and the relations in Γ′ are first-order definable
in A by definition. Observe that the problem CSP(Γ′) is in P: if (V,C) is an
instance of CSP(Γ′), then the constant function f(v) = [0, 1] is a solution to
(V,C). Now take Θ′ = {R′, S′} where

R′ = {(x1, . . . , x8) ∈ Q8 | X(φR)(x1, . . . , x8)} and

S′ = {(x1, . . . , x8) ∈ Q8 | X(φS)(x1, . . . , x8)}.

We show that the problem CSP({R′, S′}) is NP-hard by a reduction from 3-
Colourability. Let (V,E) denote an arbitrary undirected graph. Introduce
“colour variables” c−1 , c

+
1 , c
−
2 , c

+
2 , c
−
3 , c

+
3 , auxiliary variables a1, a2, a3, and im-

pose the constraints

(1) R′(a1, a2, a2, a3, c
−
1 , c

+
1 , c
−
2 , c

+
2 ),

(2) R′(a1, a2, a2, a3, c
−
1 , c

+
1 , c
−
3 , c

+
3 ), and

(3) R′(a1, a2, a2, a3, c
−
2 , c

+
2 , c
−
3 , c

+
3 ).

We first note that these three constraints are simultaneously satisfiable: for
instance, every function f : {a1, a2, a3} ∪ {c−i , c

+
i | 1 ≤ i ≤ 3} → Q such that

f(a1) < f(a2) < f(a3) <

f(c−1 ) < f(c+1 ) < f(c−2 ) < f(c+2 ) < f(c−3 ) < f(c+3 )

is a solution. By inspecting the definition of R′, it is evident that every solution
f must satisfy f(a1) < f(a2) < f(a3). Given this, it follows that for arbitrary
1 ≤ i 6= j ≤ 3, either f(c−i ) 6= f(c−j ) or f(c+i ) 6= f(c+j ) (or both). We conclude

that [f(c−1 ), f(c+1 )], [f(c−2 ), f(c+2 )], and [f(c−3 ), f(c+3 )] are distinct intervals.
For each vertex v ∈ V , introduce variables v−, v+ and the constraint

S′(v−, v+, c−1 , c
+
1 , c
−
2 , c

+
2 , c
−
3 , c

+
3 ).

24



This constraint implies that [f(v−), f(v+)] ∈ {[f(c−i ), f(c+i )] | 1 ≤ i ≤ 3}. Thus,
[f(v−), f(v+)] may have one of three possible values due to constraints (1)–(3).
This value correspond to the colour given to vertex v.

Finally, for each edge (v, w) ∈ E, introduce the constraint

R′(a1, a2, a2, a3, v
−, v+, w−, w+).

This constraint ensures that [f(v−), f(v+)] 6= [f(w−), f(w+)], i.e., adjacent
vertices are assigned different colours. It is not hard to verify that the resulting
instance is satisfiable if and only if (V,E) is 3-colourable. This shows that the
complexities for CSP(Γ) and CSP(Θ) do not always match when m 6∈ Γ.

Another interesting question concerns the complexity of the metaproblem:
given a constraint language Γ such that m ∈ Γ and Γ is first-order definable in
A, what is the complexity of CSP(Γ)? Preferably, we want problems of this kind
to be decidable. Let us first consider the structure (Q;<). Let Θ be a finite
set of relations that are first-order definable in (Q;<). Bodirsky and Kára [13]
have showed that there are nine different cases where CSP(Θ) is polynomial-
time solvable, and they have algebraically characterised these classes. A similar
algebraic classification is possible for CSP(Γ) and, consequently, CSP(Γ∪ Ic) by
Theorem 19—the complexity of such a CSP is determined by a corresponding
set of relations that are first-order definable in (Q;<). In practice, the following
result may be more useful.

Theorem 23 (Bodirsky and Kára [13], see also Bodirsky et al. [15]). Let Γ =
{R1, . . . , Rn} be a finite set of relations that are first-order definable in (Q;<),
and let φ1, . . . , φn denote their quantifier-free first-order definitions. There is
an algorithm that given φ1, . . . , φn decides whether CSP(Γ) is polynomial-time
solvable or NP-complete.

As far as we know, there are no specialised algorithms for performing quan-
tifier elimination in Allen’s algebra described in the literature. There are, how-
ever, general algorithms that can be used for this purpose.

Proposition 24 (Proposition 3.1.22 in Marker [54]). Suppose that T is a de-
cidable theory with quantifier elimination. Then, there is an algorithm which
when given a formula φ as input will output a quantifier-free formula ψ such
that T |= ∀x1, . . . , xn.φ(x̄)↔ ψ(x̄).

The theory of Allen relations is first-order axiomatisable: this follows from
the fact that the theory of dense linear order has this property, (cf. Section 1.2
in Marker [54]) combined with the definitions of the basic relations in A. By
choosing T to be the theory of Allen relations, it follows from Proposition 24
that there exists a suitable quantifier elimination algorithm.

Theorem 25. Let Γ = {R1, . . . , Rn} be a finite set of relations that are first-
order definable in A and contains the relation m, and let φ1, . . . , φn denote
their first-order definitions. There is an algorithm that given φ1, . . . , φn decides
whether CSP(Γ) is polynomial-time solvable or NP-complete.
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Proof. The first-order formulas φ1, . . . , φn can be algorithmically converted into
logically equivalent quantifier-free formulas φ′1, . . . , φ

′
n, as described above. Given

φ′1, . . . , φ
′
n, we can easily compute the quantifier-free formulas X(φ′1), . . . , X(φ′n)

by exploiting the definitions in Table 1. We note the following.

• CSP(Γ) is polynomial-time equivalent with CSP(X̂(Γ)) by Lemma 22, and

• the computational complexity of CSP(X̂(Γ)) is decidable by Theorem 23
since we have access to the formulas X(φ′1), . . . , X(φ′n) that define the
relations in X̂(Γ).

Combining these two facts concludes the proof.

The same result holds for CSP(Γ ∪ Ic) by Theorem 19. Even though the
metaproblem is indeed decidable, it is quite evident that the method outlined
above is time-consuming. We want to stress that there may exist more efficient
methods: one encouraging example is conservative constraints over finite do-
mains. They admit a polynomial-time algorithm for the meta-problem whereas
the straightforward algorithm is super-exponential [23].

5. Method II: Homogeneous structures

Our second method is based on analysing a given constraint language Γ with
respect to its automorphisms, just as method I. However, the central notion in
method II is homogeneity instead of ω-categoricity. In our context, homogeneous
structures are typically ω-categorical so method I is, in principle, applicable.
The main advantage of working with homogeneous structures is that we do not
need a method for computing orbit-defining formulas. This advantage comes
at a price: the method is restricted to constraint languages based on partition
schemes.

Homogeneous2 structures have been intensively studied in mathematics and
logics (for instance, in connection with combinatorics, model theory, and group
theory) and they are also highly relevant in the study of CSPs. Homogeneous
structures have useful properties such as admitting quantifier elimination and
they are ω-categorical whenever the structure contains a finite number of re-
lations and the domain is countably infinite. Theoretically interesting exam-
ples include (Q;<), (N; =), and the random (or Rado) graph. There are also
many examples that are (more obviously) relevant in AI and computer science.
One of the earliest studies of homogeneous structures in AI was performed by
Hirsch [33]. He proved, among other things, that Allen’s algebra under the
interval representation is homogeneous. Another early example is the homoge-
neous representation of RCC-5 proposed by Bodirsky and Chen [7]; this is the
ω-categorical representation that was briefly discussed in Section 3. Other ex-
amples include RCC-8 [16], phylogeny constraints [12], and temporal constraints
for partially-ordered time [42].

2The term ultra-homogeneous is sometimes used in the literature.
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We need some machinery before providing the formal definition of homogene-
ity. Let D be the domain of a relational τ -structure Γ and arbitrarily choose
S ⊆ D. Then the substructure induced by S in Γ is the τ -structure ∆ with
domain S such that R∆ = RΓ ∩ Sn for each n-ary R ∈ τ ; we also write Γ[S] for
∆. The structure Γ is called homogeneous if every isomorphism f : D1 → D2

between finite induced substructures of Γ can be extended to an automorphism
of Γ, that is, there exists an automorphism α such that f(x) = α(x) when
x ∈ D1. The survey by Macpherson [53] is a good introduction to homoge-
neous structures. We give a very simple example to illustrate the idea behind
homogeneity.

Example 26. We revisit Example 1. Assume k ≥ 1 to be fixed, let D =
{1, . . . , k}, and let Kk denote the binary relation {(x, y) ∈ D2 | x 6= y}. One
may easily verify that Aut({Kk}) equals the full symmetric group on the set D,
i.e., the group of all permutations of D.

Arbitrarily choose D1, D2 ⊆ D and an isomorphism f : D1 → D2 between
Kk[D1] and Kk[D2]. Note that |D \D1| = |D \D2| and let g : D \D1 → D \D2

be an arbitrary bijection. If we define α : D → D such that α(d) = f(d) when
d ∈ D1 and α(d) = g(d) otherwise, then α is an extension of f and α is a
permutation on D which implies that α ∈ Aut({Kk}). Since D1, D2, and f
were arbitrarily chosen, we conclude that the structure (D;Kk) is homogeneous.

Many additional examples can be found in, for instance, the article by
Hirsch [33]. Homogeneity is a more “fragile” concept than ω-categoricity. For
instance, Γ being homogeneous and ∆ being first-order definable in Γ does not
necessarily imply that ∆ is homogeneous.

In the following, we will concentrate on partition schemes as defined in Sec-
tion 2.2.

Theorem 27. Let B = {B1, . . . , Bk} be a partition scheme over the domain D
and let B ⊆ Γ ⊆ B∨=. Assume the following:

1. Γ is homogeneous, and

2. the domain elements are represented in a way such that given two elements
a, b ∈ D, it is possible to find (by using an algorithm A) the unique Bi,
1 ≤ i ≤ k, such that (a, b) ∈ Bi in polynomial time (measured in the size
of the representations of a and b).

Then, CSP(Γ) and CSP(Γ ∪Dc) are polynomial-time equivalent.

Proof. Let Γ′ = Γ∪Dc. The reduction from CSP(Γ) to CSP(Γ′) is trivial so we
concentrate on the other direction. Let I ′ = (V ′, C ′) be an instance of CSP(Γ′).
We assume without loss of generality (just as in the proof of Theorem 15) that
the only constraints in C ′ with relations from Dc are {d1}(x1), . . . , {dm}(xm).

Construct an instance I = (V,C) of CSP(Γ) as follows: let

• V = V ′,

• Ĉ = {B(xi, xj) | 1 ≤ i 6= j ≤ m and B = A(di, dj)}, and
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• C = (C ′ ∪ Ĉ) \ {{d1}(x1), . . . , {dm}(xm)}.

The instance I = (V,C) can obviously be generated in polynomial time.
If the instance I ′ has a solution, then it follows immediately that I has a

solution—the constraints in Ĉ are satisfiable by the assignment x1 = d1,. . . ,xm =
dm.

If the instance I has a solution s : V → D, then we claim that there is a so-
lution s′ : V → D to I ′, too. Let S = {s(x1), . . . , s(xm)} and T = {d1, . . . , dm}.
The set T contains m elements by our initial assumptions and the set S con-
tains m elements due to the constraints in Ĉ; all variables in {x1, . . . , xm} are

assigned distinct values since none of the constraints in Ĉ allows equality (due to
the fact that B is a partition scheme and d1, . . . , dm are distinct values). Thus,
f : S → T is a well-defined bijective function if we let f(s(xi)) = di, 1 ≤ i ≤ m.
We continue by proving the following claim.

Claim: f is an homomorphism from B[S] to B[T ] when B ∈ B. Arbitrarily
choose a tuple (a, b) ∈ B[S]. By the choice of S, we know that a = s(xi) and
b = s(xj) for some distinct 1 ≤ i, j ≤ m. We see that

(f(a), f(b)) = (f(s(xi)), f(s(xj))) = (di, dj).

We know that di, dj ∈ T so it remains to show that (di, dj) ∈ B. If A(di, dj) =

B, then we are done. If A(di, dj) = B′ 6= B, then B′(xi, xj) ∈ Ĉ ⊆ C so
(s(xi), s(xj)) ∈ B′. This contradicts that a = s(xi), b = s(xj), and (a, b) ∈ B
since B ∩B′ = ∅.

We show that f is an isomorphism between Γ[S] and Γ[T ]. We have al-
ready verified that f is a bijective function. Hence, we need to show that f
is a homomorphism from Γ[S] to Γ[T ], and that the inverse function f−1 is a
homomorphism from Γ[T ] to Γ[S].

We begin by showing that f is a homomorphism from Γ[S] to Γ[T ]. Arbi-
trarily choose a relation R ∈ Γ where R = B1 ∪ · · · ∪Bp and Bi ∈ B, 1 ≤ i ≤ p.
Arbitrarily choose (a, b) ∈ R[S]. The tuple (a, b) is a member of some relation
Bi in {B1, . . . , Bp}. By the Claim, (f(a), f(b)) ∈ Bi[T ] so (f(a), f(b)) ∈ R[T ]
since Bi ⊆ R. It follows that f is a homomorphism from R[S] to R[T ] since (a, b)
was arbitrarily chosen in R[S]. This, in turn, implies that f is a homomorphism
from Γ[S] to Γ[T ] since R was arbitrarily chosen in B∨=.

Next, we show that f−1 is a homomorphism from Γ[T ] to Γ[S]. Arbitrarily
choose a relation R ∈ Γ where R = B1 ∪ · · · ∪ Bp and Bi ∈ B, 1 ≤ i ≤ p.
Arbitrarily choose (di, dj) ∈ R[T ]. The tuple (di, dj) is a member of some
relation Bm in {B1, . . . , Bp}. Now, consider the tuple (f−1(di), f

−1(dj)). By the
definition of f , we see that (f−1(di), f

−1(dj)) = (s(xi), s(xj)). If (s(xi), s(xj)) ∈
Bm, then we are done. Assume to the contrary that (s(xi), s(xj)) ∈ Bn where
n 6= m. By the Claim, (f(s(xi)), f(s(xj))) ∈ Bn and (f(s(xi)), f(s(xj))) =
(di, dj). This leads to a contradiction since (di, dj) cannot simultaneously be a
member of Bn and Bm due to the fact that B is a partition scheme.
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Since Γ is a homogeneous structure, the function f can be extended to an
automorphism α of Γ. It follows that the function s′ : V → D defined such that
s′(x) = α(s(x)) is a solution to I ′; merely note that s′(xi) = di, 1 ≤ i ≤ m.

The major advantage of working with homogeneous structures instead of
using Method I is that we do not need any efficient algorithm for computing
orbit formulas. Presumably, the computations required by condition (2) in
Theorem 27 are easier to carry out than computing orbit formulas given that
domain elements are represented in some suitable way. In fact, if the constants
represent objects in the real world, we may very well know their relations a
priori and we do not need an algorithm for computing them.

We exemplify the result by taking a look at Allen’s algebra with domain
I. Hirsch [33] has shown that A∨= is a homogeneous structure and the second
precondition of Theorem 27 is clearly satisfied with the given representation.
We conclude that CSP(A∨= ∪ Ic) is an NP-complete problem since CSP(A∨=)
is NP-complete. By Lemma 3, it follows directly that CSP(A∨= ∪ If ) is an
NP-complete problem, too. One may also note that CSP(H ∪ Ic) is in P when
H is the ORD-Horn subclass [55] since H contains all 13 basic relations.

RCC-8 may serve as another example. We first recall the result for RCC-
8 presented by Li et al. [48]. They use a representation of RCC-8 where the
objects are regions in the plane, and they show that RCC-8 extended with
polygonal constants give rise to an NP-complete problem. Unfortunately, their
representation of RCC-8 is not known to be homogeneous so method II is not
applicable in this case. There are other representations that are homogeneous,
though: one example is presented by Bodirsky and Wölfl [16]. In this case, we
do not have an explicit method for analysing the relationships between domain
elements. Thus, either one has to construct such a method or one may restrict
oneself to objects with known relationships. In particular, one may restrict
oneself to finite sets of constant relations. If D′c is a finite set of constant
relations, then the relations between the corresponding domain elements can
be computed in advance. Since D′c is finite, this information can be stored in
a finite table which can be efficiently accessed. This gives us a result that is
analogous to Corollary 16.

Corollary 28. Let B = {B1, . . . , Bk} be a partition scheme over the domain D
and let B ⊆ Γ ⊆ B∨=. Let D′c denote a finite subset of Dc. If Γ is homogeneous,
then CSP(Γ) and CSP(Γ ∪D′c) are polynomial-time equivalent.

One may additionally note that Corollary 28 is applicable to RCC-5ω−cat

since this representation is known to be homogeneous [7].
Theorem 27 can be utilised in many other ways. One example is the following

result which “lifts” Theorem 27 to first-order definable relations. Note, however,
that this result is only useful for proving membership in NP.

Corollary 29. Let B = {B1, . . . , Bk} be a partition scheme and let B ⊆ Γ ⊆
B∨=. Assume the following:

1. Γ is homogeneous,
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2. B satisfies precondition (2) of Theorem 27, and

3. CSP(B) is in NP.

For every finite set Θ = {R1, . . . , Rk} of relations that are first-order defin-
able in Γ, CSP(Θ ∪Dc) and CSP(Θ ∪Df ) are in NP.

Proof. Arbitrarily choose a Θ = {R1, . . . , Rk} that satisfies the preconditions.
Note that CSP(Γ) is in NP since CSP(B) is in NP and Γ ⊆ B∨=; this can easily
be proved along the same lines as Lemma 6. By Theorem 27, CSP(Γ ∪Dc) is
in NP since CSP(Γ) is in NP. This implies that CSP(B ∪ Dc) is in NP since
B ⊆ Γ. By arguing as in the proof of Lemma 20, we may assume that each Ri,
1 ≤ i ≤ k, has a quantifier-free definition in B. It follows from Lemma 6 that
CSP(Θ∪Dc) is in NP, too. By Lemma 3, it additionally holds that CSP(Θ∪Df )
is in NP.

6. Method III: Small solutions

The methods in Sections 4 and 5 provide polynomial-time equivalences be-
tween CSP(Γ) and CSP(Γ ∪ Dc) under certain conditions. In this section, we
will instead analyse the constraint language Γ ∪ Dc directly. The main result
will be weaker than in the previous two sections since we will only be able to
prove membership in NP. On the other hand, the approach is applicable also
without ω-categoricity.

6.1. The small solution property

Let Γ be an arbitrary constraint language with domain D, and assume that
the relations in Γ and the elements in D are represented is some fixed way. We
say that Γ has the small solution property if there exists a polynomial p (that
only depends on the choice of Γ) such that for every satisfiable instance I =
(V,C) of CSP(Γ), there exists a solution s : V → D such that ||s(v)|| ≤ p(||I||)
for every v ∈ V .

Lemma 30. Let Γ denote a constraint language over the domain D. Assume
that

1. Γ has the small solution property and

2. there exists an algorithm A and a polynomial q such that for arbitrary k-
ary R ∈ Γ and d1, . . . , dk ∈ D, algorithm A can verify whether (d1, . . . , dk) ∈
R in time O(q(||R||+

∑k
i=1 ||di||)).

Then CSP(Γ) is in NP.

Proof. Let (V,C) denote an arbitrary instance of CSP(Γ). To show that I =
(V,C) is satisfiable, non-determinstically guess a solution s : V → D such that
||s(v)|| ≤ p(||I||) for every v ∈ V (where p denotes a fixed polynomial). Such
a solution exists since Γ has the small solution property, and the size of s is
consequently polynomially bounded in ||I||. The solution s can thus be verified
in polynomial time with the aid of algorithm A.
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Many well-known structures possess the small solution property. One exam-
ple is the temporal constraint problem that we introduced in Sec. 3: if (V,C)
is an instance of this problem with a solution s : V → Q, then there exists
a solution t : V → {1, . . . , |V |}, too, and this solution can be represented by
approximately |V | · log2 |V | bits. The existence of t can be shown along the
following lines: let S = {s(v) | v ∈ V } = {a1, . . . , ap} with a1 < a2 < · · · < ap,
and define t(v) = i if and only if s(v) = ai. It is easy to verify that t is indeed a
solution to (V,C). This idea can, for instance, be used for verifying that Allen’s
algebra has the small solution property.

Another example is relations R defined by linear expressions, that is, R is
defined by

(x1, . . . , xk) ∈ R⇔
k∑

i=1

ci · xi ≤ c0

or

(x1, . . . , xk) ∈ R⇔
k∑

i=1

ci · xi = c0

where the coeffecients are in Z and the variables range over, for instance, Q or
Z. Given a constraint language Γ containing such relations, the small solution
property for Q follows from the fact that linear programming can be solved (and
a concrete solution written down) in polynomial time while the property for Z
has been proven by Papadimitriou [57]. This example is interesting in several
respects. First of all, the constants in Qc are, of course, linear. Furthermore, we
know (from Example 8) that not even the language Γ = {{(x, y, z) ∈ Z3 | x+y =
z}} is ω-categorical; the same can be proved for the domain Q. Thus, the
methods in Section 4 and 5 are not applicable in this case.

An important observation is that it is not sufficient to verify that Γ itself
has the small solution property—one needs to verify that Γ ∪Dc has the small
solution property if one wants to use Lemma 30 in connection with constants.
We exemplify by using the relation R = {(x, y) ∈ N2 | x = 2y−1}. The con-
straint language {R} has the small solution property since every instance has
the solution that assigns 1 to every variable. However, CSP({R, {2}}) does not
have small solutions if we assume integers to be written in binary. Consider the
instance (V,C) where V = {x0, . . . , xn} and

C = {{2}(x0), R(x1, x0), R(x2, x1), . . . , R(xn, xn−1)}.

It is easy to verify that (V,C) is solvable and every solution s : V → N must
satisfy s(xn) = Tower(n) where Tower is the rapidly increasing function

Tower(n) = 22..
2︸︷︷︸

n times

.

The small solution property is particularly useful in connection with relations
that are constructed via logical definitions.
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Corollary 31. Let Γ be a set of relations with domain D such that precondition
(2) of Lemma 30 is satisfied and Γ ∪Dc has the small solution property.

1. If Γ is a partition scheme and Θ is a finite set of relations that are
quantifier-free definable in Γ, then CSP(Θ ∪ Dc) and CSP(Θ ∪ Df ) are
in NP.

2. If Θ is a finite set of relations that are quantifier-free positive definable in
Γ, then CSP(Θ ∪Dc) and CSP(Θ ∪Df ) are in NP.

Proof. We begin by proving case 1. Hence, assume that Γ is a partition scheme.
We know that Γ ∪Dc has the small solution property so CSP(Γ ∪Dc) is in NP
by Lemma 30. Lemma 6 implies that CSP(Θ∪Dc) is in NP and, consequently,
CSP(Θ ∪Df ) is in NP by Lemma 3.

We continue by proving case 2. We know that Θ has a quantifier-free positive
definition in Γ. This and the fact that CSP(Γ ∪Dc) is in NP allow us to apply
Lemma 7 and conclude that CSP(Θ∪Dc) is in NP and that CSP(Θ∪Df ) is in
NP by Lemma 3.

We exemplify Corollary 31 with the point algebra PA over Z; recall from
Sec. 2.3 that (Z;<) is not ω-categorical so methods I and II are not applicable.
Let Γ denote the basic relations {<,>,=} over the domain Z. By using the same
idea as we used for proving that temporal constraints have the small solution
property, it follows that if an instance (V,C) of CSP(Γ) has a solution, then it
has a solution s : V → {1, . . . , |V |} and Γ has the small solution property. Let
us now consider the constraint language Γ ∪ Zc. We assume as usual that the
constants in Zc are represented by c written in binary. Let (V,C) denote an
arbitrary instance of CSP(Γ ∪ Zc) and define S = {d | {d}(x) ∈ C}. Building
on the same proof idea once again, one can easily verify that if (V,C) has a
solution, then it has a solution s : V → {(minS) − |V |, . . . , (maxS) + |V |}.
Now, at most r = dlog2(|minS|) + 1e and r′ = dlog2(|maxS|) + 1e bits are
needed to represent the numbers minS and maxS, respectively. This implies
that Γ ∪ Zc has the small solution property since r and r′ are smaller than
||(V,C)||. We see that Γ is a partition scheme and Γ ∪ Zc satisfies precondition
(2) of Lemma 30. We conclude that both CSP(Θ ∪ Zc) and CSP(Θ ∪ Zf ) are
members of NP whenever Θ is quantifier-free first-order definable in Γ.

6.2. An example based on RCC-5set

We will now illustrate the small solution property with RCC-5set. Hence-
forth, let R denote the RCC-5 basic relations interpreted as RCC-5set relations
(see Figure 3 in Section 3). It is known that RCC-5set is not ω-categorical so
the methods in Sections 4 and 5 are not applicable. As a warm-up, we give a
simple way of proving this under the assumption that P 6= NP. Let Γ = R∪{6=}
where 6= equals

⋃
B∈R\{EQ}B. It is known that CSP(Γ) is in P [39, 59]. We

extend Γ with one constant: Γ′ = Γ ∪ {{0, 1, 2}}. Consider the constraints
{PP(y, z), {0, 1, 2}(z)}. It is clear that if s is a solution, then

s(y) ∈ {{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}}
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so there are 6 distinct possible choices for the variable y. This implies that
there is a straightforward polynomial-time reduction from 6-Colourability
to CSP(Γ′) (since the relation 6= is in Γ′) and, consequently, that CSP(Γ′) is
NP-complete. If Theorem 15 or Theorem 27 were applicable, then CSP(Γ′)
would be polynomial-time solvable.

Proving that a particular constraint language has the small solution prop-
erty may be a non-trivial task; one may, for instance, think of the previously
mentioned results concerning linear and integer programming. When studying
qualitative constraint languages, one often encounters relations that only relates
“smaller” objects with “larger” objects: obvious examples include the less-than
relation < or the subset relation ⊂. Such relations are occasionally useful for
inductively proving the small solution property. This idea is illustrated in the
next lemma.

Lemma 32. Let D = 2N \ {∅}. The constraint language R∪Dc has the small
solution property.

Proof. Let I = (V,C) be a satisfiable instance of CSP(R ∪ Dc) with solution
s : V → 2N \ {∅}. Construct a new instance I ′ = (V ′, C ′) as follows.

Step 1. Remove every EQ(x, y) constraint: this can be done by collapsing the
variables x and y (we leave the obvious details of this step to the reader).

Step 2. Replace every PP`(x, y) constraint with PP(y, x).

Step 3. Remove every PO(x, y) constraint by replacing it with

DR(z1, z2) DR(z2, z3) DR(z3, z1)
PP(z1, x) DR(z1, y)
PP(z2, x) PP(z2, y)
PP(z3, y) DR(z3, x)

where z1, z2, z3 are fresh variables.

Note the following.

1. I ′ is a satisfiable instance of CSP(R∪Dc),

2. the only non-unary relations that appear in I are DR and PP, and

3. the size of V ′ is upper bounded by some polynomial q (that does not
depend on (V,C)).

Fact 3 can be established as follows: fresh variables are only introduced in
Step 3 where PO constraints are removed, and there are at most O(|V |2) such
constraints since PO is a binary relation.

We say that two variables u, v in I ′ are PP-connected if there exists a sequence
of variables w1, . . . , wp such that

1. w1 = u,

2. wp = v, and

3. PP(wi, wi+1) ∈ C ′ for all 1 ≤ i < p.
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Note that if u and v are PP-connected, then in any solution s′ of I ′ we have that
(s′(u), s′(v)) ∈ PP.

Given a constant relation U = {{a1, . . . , ak}} ∈ Dc, we let sz(U) = k. Now,
let

T = max{sz(U) | U(x) ∈ C ′ and U ∈ Dc}.

If u is PP-connected with some variable v and U(v) ∈ C ′, then we know that
|s′(u)| < T for any solution s′ to I ′.

We prove that at most |V ′| ·T different elements are needed for representing
a solution by induction over the number of variables in V ′. This implies the
result by reasoning as follows: we can without loss of generality assume that
the set of possible values is 2{1,...,|V

′|·T} \ {∅}. To represent such a value, i.e.,
a set, we need at most |V ′| · T bits if we view each value as a bit vector where
the ith component equals 1 if and only if i is a member of the set. Hence,
CSP(R∪Dc) has the small solution property since |V ′| ≤ q(|V |) ≤ q(||I||) and
T ≤ ||I|| ≤ q(||I||).
Basis step. If |V ′| = 1 and V ′ = {v}, then either a singleton set is sufficient as a
value for v (if v is not constrained by a unary relation) or a set with cardinality
T is sufficient (otherwise).

Induction hypothesis. Assume the claim holds when |V ′| = p.

Induction step. We show the claim when |V ′| = p + 1. If there are variables
v, v′ ∈ V ′ such that v is PP-connected to v′ and v′ is PP-connected to v, then
(V ′, C ′) has no solution and this leads to a contradiction. Thus, we can choose
a variable v ∈ V ′ such that v is maximal with respect to PP-connectedness, i.e.
v is not PP-connected to any other variable. Let I ′′ be the instance I ′ restricted
to variable set V \{v}. By the induction hypothesis, we need at most pT values
for the instance I ′′. If there exists U(v) ∈ C, then we need at most T values
for v which gives us at most pT + T = (p + 1)T values in total. If there is no
U(v) ∈ C, then we need at most one additional value for v so we need at most
pT + 1 ≤ (p + 1)T values in total. To see this, v may (in the worst case) be
PP-connected to every other variable and v must (by the induction hypothesis)
contain at least pT different values. However, it must also be a strict superset
of the other variables and this is accomplished by adding one fresh element.

Theorem 33. Let Γ be a finite set of relations that are quantifier-free definable
in R. Then, CSP(Γ ∪Dc) and CSP(Γ ∪Df ) are in NP.

Proof. Combine Lemma 32 with Corollary 31.

6.3. Discussion

The idea behind Lemma 32 can readily be extended to other classes of re-
lations that are related to RCC-5 such as (certain variants of) set relations (cf.
Bodirsky and Hils [10] and the references in their article), and it can also be
generalised in other directions. An interesting observation is that the NP mem-
bership results for RCC-5 and RCC-8 in the plane by Li et al. [48] is implicitly
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based on the small solution property. There, the representational size of the
regions are analysed and bounded by exploiting a particular parameter that is
related to embeddings of planar graphs in the plane. Another interesting obser-
vation is that Li [47] uses concepts that are similar to PP-connectedness when
constructing different realisations of the RCC-8 formalism. This may indicate
that the approach taken in the proof of Lemma 32 could quite easily be adapted
to other spatial formalisms.

We conclude this section by a few observations concerning the small solution
property. First of all, it is important to realise that the converse of Lemma 30
does not necessarily hold. Clearly, the function log(Tower(n)) grows faster than
any polynomial in n. Now consider the constraint language Γ = {U1, U2, . . . }
where Ui = {x ∈ N | x = Tower(i)}. Checking if an instance of CSP(Γ)
is satisfiable or not can trivially be solved in polynomial time if U1, U2, . . . are
represented in a reasonable way—for instance, if Ui is represented by the number
i written in binary. Thus, CSP(Γ) is in NP, too. It is obvious, though, that Γ
does not have the small solution property if we represent the natural numbers
in binary.

Finally, we want to emphasise once again that the choice of exact interpre-
tation and representation of relations and domain elements is extremely im-
portant. Recall the ω-categorical and homogeneous representation of RCC-5
that we denoted RCC-5ω−cat. In this case, adding constants preserves compu-
tational complexity (up to polynomial-time reductions) by Theorem 27 (given
that relations and domain elements are represented in a suitable way). Recall
that adding a finite number of constant relations always preserve the complexity
by Corollary 28. We know from an earlier example that adding even a single
constant may not preserve the complexity of RCC-5set. At the same time, we
know from Proposition 13 that the CSPs for RCC-5set and RCC-5ω−cat are the
very same computational problem.

7. Conclusions

We have presented three different methods for analysing the complexity
of qualitative CSPs extended with finite unary relations. Assume we have a
constraint language Γ over domain D and we want to analyse the complex-
ity of CSP(Γ ∪ Dc) or CSP(Γ ∪ Df ). Which method should we use? If Γ
is ω-categorical, then methods I (model-complete cores) and II (homogeneity)
should be considered first. If there is a way of efficiently computing orbit-
defining formulas, then method I is typically the easiest method to use and
it gives polynomial-time equivalence of CSP(Γ) and CSP(Γ ∪ Dc). However,
if B ⊆ Γ and Γ is quantifier-free definable in B for some partition scheme B,
then one should always check whether Γ is homogeneous or not. If so, one can
apply method II and circumvent the need for computing orbit-defining formu-
las. Note, though, that one does not always get polynomial-time equivalence
of CSP(Γ) and CSP(Γ ∪ Dc) in this case. If Γ is not ω-categorical (or there
are other problems in applying method I and/or II), then one has to resort to
method III (small solutions).
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We exemplify this approach by taking a closer look at the cardinal relation
algebra (CRA) [29, 50]. Here, the domain elements are points in the plane and
we have nine basic relations (N, NE, E, SE, S, SW, W, NW and the equality
relation EQ) that describe cardinal directions. For instance, (x, x′) SW (y, y′)
holds if and only if x < x′ and y < y′. Let B denote this set of relations over the
set Q2. Li et al. [48] have shown that B∨= extended with constants and/or finite
unary relations give rise to an NP-complete constraint satisfaction problem. We
will now give a more fine-grained analysis in the case when we add constants
to constraint languages. Hirsch [32, Corollary 8] has shown that CRA is ω-
categorical so method I is in principle applicable. However, given a constraint
language Γ ⊆ B∨=, we do not know right away whether it is a model-complete
core or not, and we do not know how to compute orbit-defining formulas. This
can probably be worked out quite easily since CRA is closely related to the point
algebra PA. A simpler way, though, is to note that Hirsch [32, Theorem 1] has
proved that CRA is homogeneous. If we combine this with the fact that CRA is
a partition scheme, we can easily apply method II and conclude the following: if
B ⊆ Γ ⊆ B∨=, then CSP(Γ) and CSP(Γ∪(Q2)c) are polynomial-time equivalent
problems.

Methods I and II are based on exploiting model-theoretical properties of
the underlying constraint languages. While methods based on model theory
and universal algebra have been very common when studying CSPs from the
viewpoint of theoretical computer science [3, 13, 20], such methods have been
less popular within the AI community (with some notable exceptions such as
Hirsch [32] and Huang [35]). Thus, we take the opportunity to discuss these
methods in slightly more detail.

Method I. The main obstacle for applying method I is the need for computing
orbit-defining formulas efficiently. In fact, it is not even known if this problem is
decidable or not in the general case. Studying this problem is a very important
future research direction. In cases where we do not know how to efficiently gen-
erate orbit-defining formulas, there are (at least) two possible workarounds. We
have already encountered the first workaround in Corollary 16: the restriction to
finite sets of constant relations. Another workaround is to sacrifice polynomial-
time equivalence and allow more time for computing the orbit-defining formula.
If the problem at hand is NP-hard, then a (preferably mildly) exponential al-
gorithm can be acceptable. In both cases, algorithmic methods for generat-
ing orbit-defining formulas would be helpful. We note, on the positive side,
that related definability problems have recently been successfully addressed, cf.
Bodirsky et al. [15]. Their methods are interesting since they combine methods
taken from universal algebra, Ramsey theory, and topological dynamics.

Method II. Given a structure Γ, it may be difficult to verify that it is in-
deed homogeneous. Here, one should note that if Γ contains a finite number
of relations, the domain of Γ is countably infinite, and Γ is homogeneous, then
Γ is ω-categorical, cf. Macpherson [53]. This explains why one should always
check ω-categoricity first, and this can quite often be accomplished by using
Theorem 11. If Γ is ω-categorical, then Γ is homogeneous if and only if every
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formula in Th(Γ) is equivalent to a quantifier-free formula (see, for instance,
Macpherson [53]). This gives an alternative way of proving homogeneity than
using the automorphism-based definition directly. This also clarifies the con-
nections between method I and method II: recall that Γ is model-complete if
and only if every formula in Th(Γ) is equivalent to an existential formula.

Another approach for using homogeneity is to construct suitable homoge-
neous structures “from scratch”. The main tool for this is Fräıssé amalgama-
tion. The details are outside the scope of this article: Macpherson [53] outlines
the approach and concrete constructions for RCC-5 and RCC-8 can be found
in Bodirsky & Chen [7] and Bodirsky & Wölfl [16], respectively. One should
note that amalgamation is quite common in the literature on CSPs and related
problems; however, it is often referred to as the patchwork property [35, 52, 61].
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