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Abstract

The constraint satisfaction problem (CSP) is a widely studied problem with numerous
applications in computer science and artificial intelligence. For infinite-domain CSPs, there are
many results separating tractable and NP-hard cases while upper and lower bounds bounds on
the time complexity of hard cases are virtually unexplored. Hence, we initiate a study of the
worst-case time complexity of such CSPs. We analyse backtracking algorithms and determine
upper bounds on their time complexity. We present asymptotically faster algorithms based on
enumeration techniques and we show that these algorithms are applicable to well-studied problems
in, for instance, temporal reasoning. Finally, we prove non-trivial lower bounds applicable to
many interesting CSPs, under the assumption that certain complexity-theoretic assumptions
hold. The gap between upper and lower bounds is in many cases surprisingly small, which
suggests that our upper bounds cannot be significantly improved.

1 Introduction
This introductory section is divided into three parts: we begin by motivating our work, continue by
discussing the problems that we study, and finally briefly present our results.

1.1 Motivation

The constraint satisfaction problem over a constraint language Γ (CSP(Γ)) is the problem of finding
a variable assignment which satisfies a set of constraints, where each constraint is constructed from a
relation in Γ. This problem is a widely studied computational problem and it can be used to model
many classical problems such as k-colouring and the Boolean satisfiability problem, in a natural
and uniform way. In the context of artificial intelligence, CSPs have been used for formalizing a
wide range of problems, cf. Rossi et al. [56]. Efficient algorithms for CSP problems are hence of
great practical interest. If the domain D is finite, then a CSP(Γ) instance I with variable set V
can be solved in O(|D||V | · poly(||I||)) time by enumerating all possible assignments. Hence, we
have an obvious upper bound on the time complexity. This bound can, in many cases, be improved
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if additional information about Γ is known, cf. the survey by Woeginger [66] or the textbook by
Gaspers [29]. There is also a growing body of literature concerning lower bounds [34, 40, 43, 62].

When it comes to CSPs over infinite domains, there is a large number of results that identify
polynomial-time solvable cases, cf. Ligozat [46] or Rossi et al. [56]. However, almost nothing is
known about the time complexity of solving NP-hard CSP problems. One may conjecture that a
large number of practically relevant CSP problems do not fall into the tractable cases, and this
motivates a closer study of the time complexity of hard problems. Thus, we initiate such a study in
this article.

1.2 Computational problems

Assume that we are given an instance of CSP(Γ) where Γ is a constraint language over an infinite
domain. Which upper bounds can we provide for CSP(Γ)? Clearly, the method for finite-domain
CSPs, based on enumerating all possible variable assignments, no longer work since the domain is
infinite. In fact, infinite-domain CSPs are in general undecidable [7]. A first step is therefore to
only consider decidable infinite-domain CSPs. However, even for such problems, for every recursive
function, one can find a decidable CSP problem which cannot be solved faster than this [4]. Hence,
we first need to fix a class of constraint languages X such that CSP(Γ) is included in a reasonable
complexity class for every Γ ∈ X. Througout this article we exclusively study the case when
CSP(Γ) is included in NP, since this is a natural and well-studied class of problems. However, when
considering CSPs over infinite domains, representational issues also become highly important. A
relation in a finite-domain CSP problem is easy to represent by simply listing the allowed tuples.
When considering infinite-domain CSPs, the relations need to be implicitly represented. A natural
way is to consider disjunctive formulas over a finite set of basic relations. Let B denote some finite set
of basic relations such that CSP(B) is tractable. Let B∨ω denote the closure of B under disjunctions,
and let B∨k be the subset of B∨ω containing only disjunctions of length at most k. We first consider
a finite-domain example for illustrative purposes: let D = {true, false} and let B = {B1, B2} where
B1 = {true} and B2 = {false}. In other words a unary constraint of the form B1(x) forces the
variable x to be mapped to true, and B2(y) forces the variable y to be mapped to false. It is then
easy to see that CSP(B∨ω) corresponds to the Boolean SAT problem while CSP(B∨k) corresponds
to the k-SAT problem. Early examples of disjunctive constraints over infinite-domains can be
found in, for instance, temporal reasoning [44, 38, 59], reasoning about action and change [26],
and deductive databases [42]. More recent examples include interactive graphics [49], rule-based
reasoning [47], and set constraints (with applications in descriptive logics) [10]. There are also works
studying disjunctive constraints from a general point of view [16, 21] but they are only concerned
with the separation of polynomial cases from NP-hard cases, and do not further investigate the time
complexity of the hard cases.

There is also an important connection to constraint languages containing first-order definable
relations (see Section 2.2 for details.) Assume Γ is a finite constraint language containing relations
that are first-order definable in B, and that the first order theory of B admits quantifier elimination.
Then, upper bounds on CSP(Γ) can be inferred from results such as those that will be presented
in Sections 3 and 4. This indicates that studying the time complexity of CSP(B∨ω) is worthwhile,
especially since our understanding of first-order definable constraint languages is rapidly increasing [8].

CSPs in certain AI applications are often based on binary basic relations and unions of them
(instead of free disjunctive formulas). This is the predominant way of representing constraints in,
for instance, spatial reasoning. Clearly, such relations are a subset of the relations in B∨k and we



let B∨= denote this set of relations. We do not explicitly bound the length of disjunctions since
they are bounded by |B|. The literature on such CSPs is voluminous and we refer the reader to
Renz and Nebel [55] for an introduction. We remark that there exists examples of undecidable CSP
problems over constraint languages of the form B∨= [32]. Hence, even for such restricted problems
it is impossble to give general upper bounds, unless additional restrictions are imposed on the set B
of basic relations.

1.3 Our results

Throughout the article, we primarily measure time complexity in the number of variables. Historically,
this has been the most common way of measuring time complexity: the vast majority of work
concerning finite-domain CSPs concentrates on the number of variables. One reason for this is that
an instance may be massively larger than the number of variables — a SAT instance I = (V,C)
(where V is the set of variables and C is the set of clauses) may contain up to 22|V | distinct
clauses if repeated literals are disallowed — and measuring in the instance size may give far too
optimistic figures. This may be quite detrimental since naturally appearing test examples tend to
contain a moderate number of constraints. In light of this, it is much more informative to know
that SAT can be solved in O(2|V | · poly(||I||)) time (where ||I|| denotes the total number of bits
needed for representing I) instead of merely knowing that it is solvable in O(2||I|| · poly(||I||)) time
(which of course is true since |V | ≤ ||I||.) For instance, we immediately conclude from the bound
O(2|V | ·poly(||I||)) that increasing the number of variables increases the run time much more rapidly
than increasing the number of clauses. This is something that one cannot immediately infer from
the bound O(2||I|| · poly(||I||)).

Let us now turn to the time complexity of solving infinite-domain CSPs. To solve such problems
in practice, backtracking algorithms are usually employed. The literature on heuristically guided
backtracking algorithm and empirical analyses of such algorithms is huge: we refer the reader to
any good textbook (such as Dechter [24] or the handbook edited by Rossi et al. [56]) on constraint
satisfaction for more information about this. What we find lacking in the literature are analyses of
the asymptotical performance of such algorithms, i.e. their worst-case behaviour. Unfortunately, we
show in Section 3 that they can be highly inefficient in the worst case. Let p denote the maximum
arity of the relations in the set of basic relations B, let m = |B|, and let |V | denote the number
of variables in a given CSP instance. We show (in Section 3.1) that the time complexity ranges
from O(22m·|V |p ·log(m·|V |p) · poly(||I||)) (which is doubly exponential with respect to the number
of variables) for CSP(B∨ω) to O(22m·|V |p·logm · poly(||I||)) time for B∨= (and the markedly better
bound of O(2|V |p logm · poly(||I||)) if B consists of pairwise disjoint relations.) The use of heuristics
can probably improve these figures in some cases, but we have not been able to find such results
in the literature and it is not obvious how to analyse backtracking combined with heuristics. At
this stage, we are mostly interested in obtaining a baseline: we need to know the performance of
simple algorithms before we start studying more sophisticated ones. However, some of these bounds
can be improved by utilising standard methods described in the literature: we demonstrate this in
Section 3.2 by applying the highly influential sparsification method by Impagliazzo, Paturi, and
Zane [36].

In Section 4 we switch strategy and show that disjunctive CSP problems can be solved significantly
more efficiently via enumerative methods. By an enumerative method, we mean a method that is
based on enumerating some kind of objects that can be used for determining whether the given
instance has a solution or not. Let us for a moment go back to the simplest possible method for



solving CSPs over a finite domain D: enumerate all assignments of values from D to the variable
set V . This process yields a (very simple) algorithm running in O(|D||V | · poly(||I||)) time. This
is the archetypical example of an enumerative method. However, it is not directly applicable to
infinite-domain CSPs due to the size of the set D.

We introduce two enumerative methods in this article: structure enumeration and domain
enumeration. Structure enumeration is inspired by model checking for finite structure: we enumerate
a sequence of structures (which themselves are small CSP instances) and check whether the given
instance is satisfied by the (implicitly represented) solutions of the structures. Domain enumeration
is more closely related to the enumerative approach to finite-domain CSPs. In certain cases, one
can identify finite sets of ‘canonical’ domain elements with the following property: there exists a
solution if and only if there is a solution that only uses the canonical elements. There are several
important differences between these two methods but there is a general rule of thumb: structure
enumeration is typically easier to apply and it has a greater range of applicability but it gives worse
complexity figures than domain enumeration.

By using structure enumeration, we obtain the upper bound O(2|V |p·m ·poly(||I||)) for CSP(B∨ω).
If we additionally assume that B is jointly exhaustive and pairwise disjoint then the running time is
improved further to O(2|V |p·logm · poly(||I||)). This bound beats or equals every bound presented in
Section 3. We then proceed to show even better bounds for certain choices of B by using domain
enumeration. For instance, we consider certain temporal CSPs.

In the last part of the article (Section 5), we consider the problem of determining lower bounds for
CSP(B∨ω), i.e. identifying functions f such that no algorithm for CSP(B∨ω) has a better running time
than O(f(|V |)). We accomplish this by relating CSP problems and certain complexity-theoretical
conjectures, and obtain strong lower bounds for the majority of the problems considered in Section 4.
As an example, we show that the temporal CSP({<,>,=}∨ω) problem, where <,> and = are the
order relations on Q, is solvable in time O(2|V | log |V | · poly(||I||)) but, assuming a conjecture known
as the strong exponential time hypothesis (SETH), not solvable in O(c|V |) time for any c > 1. Hence,
even though the algorithms we present are rather straightforward, there is, in many cases, very little
room for improvement, unless the SETH fails. It appears much more difficult to obtain lower bounds
for problems of the type CSP(B∨=). However, we succeed in giving the lower bound O((

√
2)|V |) for

Allen’s interval algebra. This bound is not based on the (strong) exponential time hypothesis but
on bounds on computing the chromatic number of graphs. The upper bound for Allen’s algebra is
O(22|V |·(1+log |V |)) so there is plenty of room for improvements in this case.

This article is a revised and extend version of an earlier conference publication [39].

2 Preliminaries
In this section, we formally define the constraint satisfaction problem, discuss first-order definable
relations, and provide some basic definitions concerning SAT problems and the exponential time
hypothesis.

2.1 Constraint satisfaction

We begin by providing a formal definition of the CSP problem when it is parameterized by a set of
relations.



Definition 1. Let Γ be a set of finitary relations over some set D of values. The constraint
satisfaction problem over Γ (CSP(Γ)) is defined as follows:

Instance: A set V of variables and a set C of constraints of the form R(v1, . . . , vk), where k is the
arity of R, v1, . . . , vk ∈ V and R ∈ Γ.
Question: Is there a function f : V → D such that (f(v1), . . . , f(vk)) ∈ R for every R(v1, . . . , vk) ∈
C?

The set Γ is referred to as the constraint language. Observe that we do not require Γ or D to be
finite. Given an instance I of CSP(Γ) we write ||I|| for the number of bits required to represent
I. We now turn our attention to constraint languages based on disjunctions. Let D be a set of
values and let B = {B1, . . . , Bm} denote a finite set of relations over D, i.e. Bi ⊆ Dj for some j ≥ 1.
Let the set B∨ω denote the set of relations defined by disjunctions over B. That is, B∨ω contains
every p-ary relation R such that R(x1, . . . , xp) if and only if B1(x1) ∨ · · · ∨Bt(xt) where x1, . . . ,xt
are sequences of variables from {x1, . . . , xp} such that the length of xj equals the arity of Bj , and
B1, . . . , Bt ∈ B. We refer to B1(x1), . . . , Bt(xt) as the disjuncts of R. We assume, without loss of
generality, that a disjunct occurs at most once in a disjunction. We define B∨k, k ≥ 1, as the subset
of B∨ω where each relation is defined by a disjunction of length at most k. It is common, especially
in qualitative temporal and spatial constraint reasoning, to study a restricted variant of B∨k where
all relations in B have the same arity p. Define B∨= to contain every p-ary relation R such that
R(x) if and only if B1(x) ∨ · · · ∨Bt(x), where x = (x1, . . . , xp).

We adopt a simple representation of relations in B∨ω: every relation R in B∨ω is represented by
its defining disjunctive formula. Note that two objects R,R′ ∈ B∨ω may denote the same relation.
Hence, B∨ω is not a constraint language in the sense of Definition 1. We avoid tedious technicalities
by ignoring this issue and view constraint languages as multisets. Given an instance I = (V,C) of
CSP(B∨ω) under this representation, we let

Disj(I) = {Bi1(x1), . . . , Bit(xt) | Bi1(x1) ∨ · · · ∨Bit(xt) ∈ C}

denote the set of all disjuncts appearing in I.
We close this section by introducing some notions that are common in qualitative spatial and

temporal reasoning problems. Let B = {B1, . . . , Bm} be a set of relations (over a domain D) such
that all B1, . . . , Bm have arity p. We say that B is jointly exhaustive (JE) if

⋃
B = Dp and that B is

pairwise disjoint (PD) if Bi∩Bj = ∅ whenever i 6= j. If B is both JE and PD we say that it is JEPD
or, in mathematical terminology, B is a partitioning of the set Dp. Observe that if B1, . . . , Bm have
different arity then these properties are clearly not relevant since the intersection between two such
relations is always empty.

Let Γ be an arbitrary set of relations with arity p ≥ 1. We say that Γ is closed under intersection
if R1 ∩R2 ∈ Γ for all choices of R1, R2 ∈ Γ. Let R be an arbitrary binary relation. We define the
converse R^ of R such that R^ = {(y, x) | (x, y) ∈ R}. If Γ is a set of binary relations, then we say
that Γ is closed under converse if R^ ∈ Γ for all R ∈ Γ.

2.2 First-order definable relations

Languages of the form B∨ω have a close connection to languages defined over first-order structures
admitting quantifier elimination, i.e. every first-order definable relation can be defined by an
equivalent formula without quantifiers. We have the following lemma.



Lemma 2. Let Γ be a finite constraint language first-order definable over a relational structure
(D,R1, . . . , Rm) admitting quantifier elimination, where R1, . . . , Rm are JEPD. Then there exists a
k such that

1. CSP(Γ) is polynomial-time reducible to CSP({R1, . . . , Rm}∨k) and

2. if CSP({R1, . . . , Rm}∨k) is solvable in O(f(|V |) · poly(||I||)) time, then CSP(Γ) is solvable in
O(f(|V |) · poly(||I||)) time.

Proof. Assume that every relation R ∈ Γ is definable through a quantifier-free first-order formula φi
over R1, . . . , Rm. Let ψi be φi rewritten in conjunctive normal form. We need to show that every
disjunction in ψi can be expressed as a disjunction over R1, . . . , Rm. Clearly, if ψi only contains
positive literals, then this is trivial. Hence, assume there is at least one negative literal. Since
R1, . . . , Rm are JEPD it is easy to see that for any negated relation in {R1, . . . , Rm} there exists
Γ ⊆ {R1, . . . , Rm} such that the union of Γ equals the complemented relation. We can then reduce
CSP(Γ) to CSP({R1, . . . , Rm}∨k) by replacing every constraint by its conjunctive normal formula
over R1, . . . , Rm. This reduction can be done in polynomial time with respect to ||I|| since each
such definition can be stored in a table of fixed size. Moreover, since this reduction does not increase
the number of variables, it follows that CSP(Γ) is solvable in O(f(|V |) · poly(||I||)) time whenever
CSP(B∨k) is solvable in O(f(|V |) · poly(||I||)) time.

As we will see in Section 4, this result is useful since we can use upper bounds for CSP(B∨k) to
derive upper bounds for CSP(Γ), where Γ consists of first-order definable relations over B. There is
a large number of structures admitting quantifier elimination and interesting examples are presented
in every standard textbook on model theory, cf. Hodges [33]. A selection of problems that are
highly relevant for computer science and AI are discussed in Bodirsky [8].

2.3 SAT and the exponential time hypothesis

The propositional satisfiability problem (SAT) will be important both for obtaining upper and
lower bounds in later parts of this article. We define the SAT problem as usual: given a set of
propositional clauses, decide whether there is a satisfying assignment or not. We sometimes consider
the SAT problem restricted to clauses of length at most k and we denote this problem k-SAT. We
pointed out the following fact in the introduction but it is worth repeating: if D = {true, false}
and B = {B1, B2} where B1 = {true} and B2 = {false}, then CSP(B∨ω) corresponds to SAT while
CSP(B∨k) corresponds to k-SAT. Note that the problem CSP(B∨=) is different in this respect since
it can be seen as an alternative formulation of 1-SAT, i.e., SAT restricted to unary clauses. SAT and
k-SAT are NP-complete problems when k ≥ 3 while 2-SAT and 1-SAT are solvable in polynomial
time. We often use the domain {0, 1} for Boolean values where 1 is interpreted as ‘true’ and 0 as
‘false’.

NP-hardness does not give us any information concerning the running times of algorithms for
solving such problems (besides the fact that they are superpolynomial under the side condition that
P 6= NP). For instance, under the sole assumption P 6= NP, we cannot, for instance, rule out that
SAT can be solved in O(|V |log |V |) time. The existence of such efficient algorithms are considered
unlikely and to rule out such algorithms we need complexity assumptions that are stronger than P
6= NP. The exponential time hypothesis (ETH) and the strong exponential time hypothesis (SETH)
have been suggested as plausible stronger assumptions. These two hypotheses have been used quite



intensively in the study of central problems in AI such as planning and constraint satisfaction,
cf. Bäckström & Jonsson [2, 3], Kanj & Szeider [43], and Traxler [62].

The ETH states that there exists a δ > 0 such that 3-SAT is not solvable in O(2δ|V |) time by
any deterministic algorithm, i.e. it is not solvable in subexponential time [34]. If the ETH holds,
then there is an increasing sequence δ3, δ4, . . . of reals such that k-SAT cannot be solved in time
2(δk−ε)|V | but it can be solved in 2(δk+ε)|V | time for arbitrary ε > 0. The strong exponential-time
hypothesis (SETH) is the conjecture that the limit of the sequence δ3, δ4, . . . equals 1, and, as a
consequence, that SAT is not solvable in time O(2δ|V |) for any δ < 1 [34]. These conjectures have in
recent years successfully been used for proving lower bounds of many NP-complete problems [48].
The plausibility of the (S)ETH is debatable due to the same reasons as the plausibility of P 6=
NP is debatable: our understanding of this kind of complexity questions is not sufficient. One
ought to note, however, that the failure of any of these hypotheses would have far-reaching and
surprising consequences in connection with, for instance, the existence of subexponential algorithms
for many NP-complete problems [37, 40, 57], the complexity and approximability of optimisation
problems [18, 50], and parameterized complexity theory [19, 20].

3 Fundamental algorithms
In this section we investigate the complexity of algorithms for CSP(B∨ω) and CSP(B∨k) based on
branching on the disjuncts in constraints (Section 3.1) and the sparsification method (Section 3.2.)
Throughout this section we assume that B is a set of basic relations such that CSP(B) is in P. The
reason behind this assumption is that the algorithms that we investigate in this section works by
repeatedly choosing a set of disjuncts, and then checks whether this instance of CSP(B) is satisfiable
or not. Clearly, this assumption is not the only possible one, but in practice it is not a great
restriction, since the most frequently studied problems of the form CSP(B∨ω) satisfy this condition.

3.1 Branching on disjuncts

Let B = {B1, . . . , Bm} be a set of basic relations with maximum arity p ≥ 1. Assume we have an
instance I of CSP(B∨ω) with variable set V . Such an instance contains at most 2m·|V |p distinct
constraints. Each such constraint contains at most m · |V |p disjuncts so the instance I can be solved
in

O((m · |V |p)2m·|V |p · poly(||I||)) = O(22m·|V |p ·log(m·|V |p) · poly(||I||))

time by enumerating all possible choices of one disjunct out of every disjunctive constraint. The
satisfiability of the resulting sets of constraints can be checked in polynomial time due to our initial
assumptions. How does such an enumerative approach compare to a branching search algorithm? In
the worst case, a branching algorithm without heuristic aid will go through all of these cases so the
bound above is valid for such algorithms. Analyzing the time complexity of branching algorithms
equipped with powerful heuristics is a very different (and presumably very difficult) problem.

Assume instead that we have an instance I of CSP(B∨k) with variable set V . There are at most
m · |V |p different disjuncts which leads to at most

∑k
i=0(m|V |p)i ≤ k · (m|V |p)k distinct constraints.

We can thus solve instances with |V | variables in O(kk·(m|V |p)k · poly(||I||)) = O(2k·log k·(m|V |p)k ·
poly(||I||)) time.

Finally, let I = (V,C) be an instance of CSP(B∨=) with variable set V . We analyse the size of
C: given the variable set V , there are |V |p variable sequences of length p and there are 2m different



disjunctive relations over B. Thus, there are at most 2m · |V |p distinct constraints in C and each
such constraint has length at most m. Non-deterministic guessing gives that instances of this kind
can be solved in

O(m2m·|V |p · poly(||I||)) = O(22m·|V |p·logm · poly(||I||))

time. This may appear to be surprisingly slow but this is mainly due to the fact that we have not
imposed any additional restrictions on the set B of basic relations. Hence, assume that the relations
in B are PD. Given two relations R1, R2 ∈ B∨=, it is now clear that R1 ∩R2 is a relation in B∨=,
i.e. B∨= is closed under intersection. Let I = (V,C) be an instance of CSP(B∨=). For any sequence
of variables (x1, . . . , xp), we can assume that there is at most one constraint R(x1, . . . , xp) in C.
This implies that we can solve CSP(B∨=) in O(m|V |p · poly(||I||)) = O(2|V |p logm · poly(||I||)) time.
Combining everything so far we obtain the following upper bounds.

Lemma 3. Let B be a set of basic relations with maximum arity p and let m = |B|. Then

• CSP(B∨ω) is solvable in O(22m·|V |p ·log(m·|V |p) · poly(||I||)) time,

• CSP(B∨k) is solvable in O(2k·log k·(m|V |p)k · poly(||I||)) time,

• CSP(B∨=) is solvable in O(22m·|V |p·logm · poly(||I||)) time, and

• CSP(B∨=) is solvable in O(2|V |p logm · poly(||I||)) time if B is PD.

A bit of fine-tuning is often needed when applying highly general results like Lemma 3 to
concrete problems. For instance, Renz and Nebel [55] show that the RCC-8 problem can be
solved in O(c

|V |2
2 ) for some (unknown) c > 1. This problem can be viewed as CSP(B∨=) where

B contains JEPD binary relations and |B| = 8. Lemma 3 implies that CSP(B∨=) can be solved
in O(23|V |2) which is significantly slower if c < 82. However, it is well known that B is closed
under converse. Let I = ({x1, . . . , xn}, C) be an instance of CSP(B∨=). Since B is closed under
converse, we can always assume that if R(xi, xj) ∈ C, then i ≤ j. Thus, we can solve CSP(B∨=) in

O(m
|V |2

2 · poly(||I||)) = O(2
|V |2

2 logm · poly(||I||)) time. This figure matches the bound by Renz and
Nebel better when c is small.

3.2 Sparsification

The complexity of the algorithms proposed in Section 3 is dominated by the number of constraints.
An idea for improving these running times is therefore to reduce the number of constraints within
instances. One way of accomplishing this is by using sparsification [36]. This method was originally
used for the k-SAT problem with the aim of proving that k-SAT instances with only a linear number
(in |V |) constraints are still NP-complete and, in fact, that the ETH is still true for such instances.
Recall from Section 2.3 that the ETH states that 3-SAT is not solvable in subexponential time.
Sparsification can intutively be described as the process of picking a disjunct that appears in a
relatively large number of constraints, and create two instances I1 and I2, corresponding to the
case where this disjunct is either true or false. In I1 we can safely remove all constraints where this
disjunct appears, and in I2 all such constraints contain at least one less disjunct. We can then check
the satisfiability of I by answering yes if and only if I1 or I2 is satisfiable. By repeating this process,
we end up with a sequence of instances I1, . . . , Ik such that at least one of I1, . . . , Ik is satisfiable if
and only if the original instance is satisfiable.
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Figure 1: A sunflower with m petals.

To concretize this idea, a sunflower is defined to be a set of clauses {C1, . . . , Cm}, containing
the same number of disjuncts, such that C1 ∩ . . . ∩ Cm 6= ∅. Here, we tacitly view a clause Ci as
a set of literals, and with this interpretation, the above condition states that the clauses have at
least one literal in common. The clause C1 ∩ . . . ∩ Cm = C is the heart of the sunflower and the
clauses C1 \C, . . . , Cm \C the petals of the sunflower. This structure is visualized in Figure 3.2. By
searching after a sunflower C1, . . . , Cm where m is as large as possible we obtain the two instances
I1 and I2 corresponding to the case where we branch on either the heart or the petals, and thus
reducing either the number of constraints or the number of disjuncts in constraints. Sunflowers and
related structures are important in combinatorics and there are several connections with central
problems in computer science, cf. Alon et al. [1] or Jukna [41, Sec. 6]. For a more thorough and
formal introduction to sparsification see Chapter 16.3 in Flum and Grohe [28]. Analyzing such
a seemingly simple recursive strategy as described above is by no means trivial and we will not
present the details. The analysis can be found in Impagliazzo et al. [36].

We will now use sparsification for solving infinite-domain CSPs. We need a few additional
definitions. A family of k-sets (U, C) consists of a finite set U (the universe) and a collection
C = {S1, . . . , Sm} where Si ⊆ U and |Si| ≤ k, 1 ≤ i ≤ m. A hitting set for C is a set C ⊆ U such
that C ∩ Si 6= ∅ for each Si ∈ C. Let σ(C) be the set of all hitting sets of C. T is a restriction of C if
for each S ∈ C there is a T ∈ T with T ⊆ S. If T is a restriction of C, then σ(T ) ⊆ σ(C). We then
have the following result1.

Theorem 4 (Impagliazzo et al. [36]). For all ε > 0 and positive k, there is a constant K and an
algorithm that, given a family of k-sets (U, C) where |U | = n, produces a list of t ≤ 2ε·n restrictions
T1, . . . , Tt of C so that σ(C) =

⋃t
i=1 σ(Ti) and so that for each Ti, |Ti| ≤ Kn. Furthermore, the

algorithm runs in time poly(n) · 2ε·n.

Lemma 5. Let B be a set of basic relations with maximum arity p and let m = |B|. Then CSP(B∨k)
is solvable in O(2(ε+K log k)·|V |p·m · poly(||I||)) time for every ε > 0, where K is a constant depending
only on ε and k.

Proof. Let I = (V,C) be an instance of CSP(B∨k) with C = {c1, . . . , cm}. To avoid unnecessary
notation, we view each constraint c = (R1(x1)∨ · · · ∨Rn(xn)) as a set {R1(x1), . . . , Rn(xn)} in this
proof. Note that I has a solution if and only if there exists a set X ⊆ Disj(I) such that

1We remark that Impagliazzo et al. [36] use a slightly different terminology.



1. (V,X) is satisfiable and

2. X ∩ ci 6= ∅, 1 ≤ i ≤ m, i.e. X is a hitting set of C.

We will now apply Lemma 5 on the family of k-sets (U,C) where U = Disj(I): choose some
ε > 0 and let {T1, . . . , Tt} be the resulting set of restrictions. Note that each (V, Ti) can be viewed
as an instance of CSP(B∨k) under the convention of viewing disjunctions as sets.

We claim the following: there exists a 1 ≤ i ≤ t such that Ti is satisfiable if and only if I is
satisfiable. Assume that I is satisfiable. Then there exists a hitting set X ⊆ Disj(I) of C such
that (V,X) is satisfiable. Hence, X ∈ σ(C). This implies that there exists a 1 ≤ i ≤ t such that
X ∈ σ(Ti) since σ(C) =

⋃t
i=1 σ(Ti). Since (V,X) is satisfiable, (V, Ti) is satisfiable, too.

Assume instead that there exists a (V, Ti), 1 ≤ i ≤ t, such that (V, Ti) is satisfiable. Let s be a
solution to Ti. Let X = {R(x) ∈ Disj(I) | s satisfies R(x)} and note that (V,X) is satisfiable and
X is a hitting set of Ti. The set Ti is a restriction of C so for every c ∈ C, there exists a T ∈ Ti such
that T ⊆ c. It follows that X is a hitting set for (V,C) which implies that s is a solution to (V,C).

We conclude that in order to prove that I is satisfiable, it is sufficient to find a satisfiable instance
(V, Ti). Each instance (V, Ti) contains at most K · |U | ≤ K · |V |p ·m distinct constraints, where K is
a constant depending on ε and k, and can therefore be solved in time O(poly(||I||) · kK·|V |p·m) by
exhaustive search as in Section 3.1. This gives a total running time of

poly(|V |p ·m) · 2ε·|V |p·m + 2ε·|V |p·m · kK·|V |p·m · poly(||I||) ∈
O(2ε·|V |p·m · 2K·|V |p·m·log k · poly(||I||)) = O(2(ε+K log k)·|V |p·m · poly(||I||))

since t ≤ 2ε·n.

This procedure can be implemented using only polynomial space, just as the methods presented
in Section 3.1. This follows from the fact that the restrictions T1, . . . , Tt of C can be computed one
after another with polynomial delay [17, Theorem 5.15]. Although this running time still might
seem excessively slow observe that it is significantly more efficient than the 2k·log k·(m|V |p)k algorithm
for CSP(B∨k) in Lemma 3. However, in Theorem 6, Theorem 7, and Theorem 8 in Section 4.1 we
will be able to improve upon this running time even further, by directly enumerating the hitting
sets corresponding to the disjuncts of an instance, rather than reverting to backtracking algorithms
as in Lemma 5. As we will demonstrate in Theorem 13, these bounds can also be strengthened for
certain CSP(B∨k) problems, by using an idea influenced by sparsification.

4 Improved upper bounds
In this section, we show that it is possible to obtain markedly better upper bounds than the ones
presented in Section 3. In Section 4.1 we consider algorithms for CSP(B∨ω) based on structure
enumeration, and in Section 4.2, we consider algorithms for CSP(B∨ω) and CSP(B∨k) based on
domain enumeration.

4.1 Structure enumeration

We begin by presenting a general algorithm for CSP(B∨ω) based on the idea of enumerating all
variable assignments that are implicitly described in instances. As in the case of Section 3 we assume
that B is a set of basic relations such that CSP(B) is solvable in O(poly(||I||)) time.



Theorem 6. Let B be a set of basic relations with maximum arity p and let m = |B|. Then
CSP(B∨ω) is solvable in O(2m|V |p · poly(||I||)) time.

Proof. Let I = (V,C) be an instance of CSP(B∨ω). Let S = Disj(I) and note that |S| ≤ m|V |p. For
each subset Si of S first determine whether Si is satisfiable. Due to the initial assumption this can
be done in O(poly(||I||)) time since this set of disjuncts can be viewed as an instance of CSP(B).
Next, check whether Si satisfies I by, for each constraint in C, determine whether at least one
disjunct is included in Si. Each such step can determined in time O(poly(||I||)) time. The total
running time for this algorithm is therefore in O(2m|V |p · poly(||I||)).

The advantage of this approach compared to the branching algorithm in Section 3 is that
enumeration of variable assignments is much less sensitive to instances with a large number of
constraints. At this point, it may be interesting to discuss what is actually meant by ‘a large number
of constraints’. Assume we have a set B = {B1, . . . , Bm} of p-ary basic relations. Let us consider
CSP(B∨2) instances with |V |2p constraints. The number of constraints is thus polynomially bounded
in the number of variables. Theorem 6 shows that we solve such instances in O(2m|V |p · poly(||I||))
time. A backtracking algorithm, on the other hand, needs O(2|V |2p · poly(||I||)) time if we reason in
the same way as in Section 3.1, i.e. we need to choose one disjunct out of every constraint and we
need to try all possibilities in the worst case. Obviously, 2|V |2p

> 2m|V |p even for quite small |V |
and this indicates that structure enumeration beats branching algorithms even when the number of
constraints are polynomially bounded in the number of variables.

We can speed up this result even further by making additional assumptions on the set B. This
allows us to enumerate smaller sets of constraints than in Theorem 6.

Theorem 7. Let B be a set of basic relations with maximum arity p and let m = |B|. Then
CSP(B∨ω) solvable in O(2|V |p·logm · poly(||I||))) time if B is JEPD.

Proof. Let I = (V,C) be an instance of CSP(B∨ω). Observe that every basic relation has the same
arity p since B is JEPD. Let F be the set of functions from |V |p to B and for every f ∈ F , we let
Sf = {Bj(x) | x ∈ V p, f(x) = Bj}. The set Sf contains the constraints that are specified by the
function f so it contains one constraint for each tuple in V p. The size of the set is polynomially
bounded in (V,C) since p is a fixed constant that only depends on the choice of basic relations. We
begin by proving two claims.

Claim 1. I is satisfiable if and only if there exists an f ∈ F such that (V,C ∪ Sf ) is satisfiable. If
I is not satisfiable, then there trivially is no f ∈ F such that (V,C ∪ Sf ) is satisfiable. Assume
instead that I has a solution s. Arbitrarily choose a tuple (x1, . . . , xp) ∈ V p. Since B is JEPD, the
tuple (s(x1), . . . , s(xp)) is a member of exactly one B ∈ B. Thus, for every tuple (x1, . . . , xp) ∈ V p,
there exists a unique B ∈ B such that (s(x1), . . . , s(xp)) ∈ B. Define the function g : V p → B such
that it returns this relation. By definition, g is a member of F . The function s is a solution to the
CSP instance (V, Sf ) due to the choice of f and this implies that s is a solution to the instance
(V,C ∪ Sf ), too.

Claim 2. If (V, Sf ) is satisfiable for some f ∈ F , then we can check in polynomial time whether
(V,C ∪ Sf ) is satisfiable or not. Let s be a solution to (V, Sf ). Arbitrarily choose a constraint
c = (c1 ∨ · · · ∨ ck) ∈ C. Consider c1 = Bi(x1) where Bi ∈ B. There is a constraint Bj(x1) in Sf
by the construction of Sf . If i = j, then s satisfies the disjunct c1 and thus the constraint c. If
i 6= j, then s does not satisfy c1 since B is PD. Otherwise, check the next disjunct and so on. If



no disjunct c1, . . . , ck passes the test, then C ∪ Sf is not satisfiable. By repeating this process for
all constraints in C, we can check whether (V,C ∪ Sf ) is satisfiable or not. This can be done in
polynomial time in the size of (V,C) since the size of the set Sf is polynomially bounded in the size
of (V,C), as we noted in the beginning of the proof.

Consider the following algorithm for solving CSP(B∨ω).

1. ans := false

2. for every f ∈ F do the following

3. compute Sf

4. if (V, Sf ) is satisfiable then

5. if (V,C ∪ Sf ) is satisfiable then ans := true

6. return ans

We first verify that the algorithm is correct. If (V,C) is not satisfiable, then (V,C ∪ Sf ) is not
satisfiable for any choice of f ∈ F and the algorithm will answer false. If (V,C) is satisfiable, then
there exists an f ∈ F such that (V,C ∪Sf ) is satisfiable by Claim 1 and the algorithm answers true.
Note here that (V, Sf ) is satisfiable, too, so the algorithm will indeed perform the test in Line 5.

We continue by analysing its time complexity. Computing Sf takes polynomial time in the
size of (V,C) since p and |B| are fixed constants that only depends on the choice of B. Checking
whether (V, Sf ) is satisfiable or not takes polynomial time since CSP(B) is a polynomial-time solvable
problem. Finally, checking whether (V,C ∪ Sf ) is satisfiable or not takes polynomial time due to
Claim 2. The set F contains |B||V |p = 2|V |p logm functions and these functions can be incrementally
computed with neglible overhead. We conclude that the algorithm runs in O(2|V |p·logm · poly(||I||)))
time.

Let us reconsider the RCC-8 example from Section 3.1 and let B denote the corresponding set
of eight basic relations. We know (from Renz and Nebel [55]) that CSP(B∨=) is solvable in O(c

|V |2
2 )

time for some c > 1, and we obtained the concrete bound O(2
3|V |2

2 · poly(||I||)) time by utilising a
simple branching algorithm. Theorem 7(1) gives that CSP(B∨ω) is solvable in O(23|V |2 · poly(||I||))
time. We can once again exploit the fact that B is closed under converse and instead of enumerating
all functions from V 2 to B (as in the proof of Theorem 7), we assume that V = {x1, . . . , xn} and
we merely enumerate the functions from {(xi, xj) | 1 ≤ i < j ≤ n} to B. This gives us the time

bound O(2
3|V |2

2 · poly(||I||)), i.e. we can solve CSP(B∨ω) as fast as the severely restricted problem
CSP(B∨=). This indicates that there may be more efficient algorithms for CSP(B∨=).

If the set of basic relations B are PD but not JE, then we get a slightly slower algorithm for
CSP(B∨ω).

Theorem 8. Let B be a set of basic relations with arity p and let m = |B|. Then CSP(B∨ω) is
solvable in O(2|V |p·log(m+1) · poly(||I||))) time if B is PD.



Proof. Let I = (V,C) be an instance of CSP(B∨ω). We introduce a symbol > for indicating that
we do not care about the exact relation between the variables in a variable tuple. Let F ′ be the set
of functions from |V |p to B ∪ {>} and for every f ∈ F ′ let Sf = {Bj(x) | x ∈ V p, fi(x) = Bj 6= >}.

We say that a function f ∈ F ′ is compatible if f(x) = B 6= > for at least one disjunct B(x) in
each constraint in C. We begin by proving an auxiliary result: I is satisfiable if and only if there
exists a compatible f ∈ F ′ such that (V, Sf ) is satisfiable. Assume there exists an f ∈ F ′ such that
(V, Sf ) has a solution s. The fact that f is compatible implies that at least one disjunct in each
constraint in C is satisfied by s. Thus, (V,C) is satisfiable.

Assume instead that (V,C) has the solution s. Let the set S contain one disjunct that is satisfied
by s from each constraint in C. Define the function f : V p → B ∪ {>} such that f(x) = B if
B(x) ∈ S and f(x) = > otherwise. Note that f is a well-defined function since it cannot be the case
(due to PD) that B(x) and B′(x) are simultaneously in S if B 6= B′. Also note that f is compatible
since the solution s satisfies at least one disjunct in each constraint.
Consider the following algorithm for solving CSP(B∨ω).

1. ans := false

2. for every compatible f ∈ F ′ do the following

3. compute Sf

4. if (V, Sf ) is satisfiable then ans := true

5. return ans

The correctness of the algorithm was verified above. We continue by analysing its time complexity.
Computing Sf takes polynomial time in the size of (V,C) since p and |B| are fixed constants that
only depends on the choice of B. Checking whether (V, Sf ) is satisfiable or not takes polynomial time
since CSP(B) is a polynomial-time solvable problem. The set F contains (|B|+ 1)|V |p = 2|V |p log(m+1)

functions and these functions can be incrementally computed with neglible overhead. Furthermore,
checking whether a function f ∈ F ′ is compatible or not can be done in polynomial time. We
conclude that the algorithm runs in O(2|V |p·log(m+1) · poly(||I||))) time.

4.2 Domain enumeration

A fundamental problem with structure enumeration is that the number of instances to be enumerated
increases rapidly with the number of variables. This phenomenon is particularly noticeable if the
basic relations have high arity: if the arity of the basic relations {B1, . . . , Bm} is p, then we need to
consider between 2m|V |p instances (in the general case) and 2logm·|V |p instances (in the JEPD case.)
We will suggest an alternative enumeration method in this section, domain enumeration, that offers
a partial solution to the problems with structure enumeration. This section contains four parts: we
begin by presenting the method and giving temporal reasoning examples in Sections 4.2.1 and 4.2.2,
respectively. We continue by elaborating upon the method in Sections 4.2.3 and 4.2.4.

4.2.1 Basics

A possible solution to the problem outlined above is to enumerate domain elements instead — a
method that is analogous to the basic algorithm for solving finite-domain CSPs. This approach
presents certain difficulties, though:



1. there needs to exist some finite selection of elements that guarantees that solvable instances
have solutions restricted to these elements,

2. the elements need to be representable in some suitable way, and

3. we need an efficient method for verifying whether a variable assignment using these elements
is a solution or not.

We concretize these requirements in the next theorem.

Theorem 9. Let B be a set of basic relations with maximum arity p and m = |B|. Assume there
exist functions t, u : N→ N such that for arbitrary n > 0

1. there exist finite sets Sn1 , . . . , Snan
for some an > 0 such that for every solvable instance

I = (V,C) of CSP(B) with |V | = n, there exists a solution f : V → Sni for some 1 ≤ i ≤ an,

2. the set {Sni | 1 ≤ i ≤ n} can be generated in t(n) time, and

3. it can be verified in u(||I||) time whether a function f : V → S
|V |
i is a solution to a given

instance I = (V,C) of CSP(B∨ω).

Let bi = max{|Si1|, . . . , |Siai
|}. Then CSP(B∨ω) is solvable in O(t(|V |) + a|V | · 2|V | log b|V | ·u(||I||) ·

poly(||I||)) time.

Proof. Let I = (V,C) be an arbitrary instance of CSP(B∨ω). If I has a solution, then there is a
solution f : V → S

|V |
i for some 1 ≤ i ≤ a|V | by condition (1). Condition (2) allows us to compute

the set S = {Sni | 1 ≤ i ≤ n}. For each S ∈ S, we generate every function from V to S and check
whether it is a solution or not—there is a method for this by condition (3). Generating the set S
takes t(|V |) time by (2). Given an S ∈ S, there are at most (b|V |)|V | = 2|V |·log b|V | functions from
V to S, and the size of S is at most a|V | by (1). Checking whether such a function is a solution
or not can be done in u(||I||) time by (3). Taken together, it follows that CSP(B∨ω) is solvable in
O(t(|V |) + a|V | · 2|V | log b|V | · u(||I||) · poly(||I||)) time.

A basic requirement for structure enumeration is that CSP(B) is in P (or, at least, does not
have too high time complexity.) Observe that this is irrelevant in domain enumeration since it is
sufficient to check whether concrete variable assignments are solutions or not.

4.2.2 Two examples from temporal reasoning

Let T = {<,>,=} denote the JEPD order relations on Q. The CSP problem for T ∨= is often
referred to as the time point algebra and it has been intensively studied within the temporal reasoning
community. It was realized quite early that CSP(T ) is tractable [64] and, soon after, that CSP(T ∨=)
is tractable [63], too. It is also well-known that CSP(T ∨ω) is NP-complete. This follows from
general results by Broxvall et al. [16] but it was known earlier: it can, for instance, quite easily be
inferred from the original NP-hardness proof for Allen’s algebra [64].

We now recall that Theorem 7 implies that CSP(T ∨ω) can be solved in O(2|V |2·log 3 · poly(||I||))
time. We improve this bound using domain enumeration as follows.

Theorem 10. CSP(T ∨ω) is solvable in O(2|V | log |V | · poly(||I||)) time.



a

b c

d e

f

g hi

Figure 2: The forest in Example 11

Proof. Let I = (V,C) be an arbitrary instance of CSP(T ∨ω). If I has a solution, then we claim
that there is a solution f : V → {1, . . . , |V |}. To see this, let f ′ : V → Q be an arbitrary solution to
I. Assume {f ′(v) | v ∈ V } = {a1, . . . , ap} where a1 < a2 < · · · < ap. Define f : V → {1, . . . , |V |}
such that f(v) = i if and only if f ′(v) = ai. We see that f is a solution to I since f(v) < f(v′) if
and only if f ′(v) < f ′(v′), f(v) = f(v′) if and only if f ′(v) = f ′(v′), and f(v) > f(v′) if and only if
f ′(v) > f ′(v′).

The set {1, . . . , |V |} has cardinality |V | and it can be computed in O(|V | · log(|V |)) time. In
other words, a|V | = 1, b|V | = |V |, and t, u are polynomials. Theorem 9 gives that CSP(T ∨ω) can be
solved in

O(t(|V |) + a|V | · 2|V | log b|V | · u(||I||) · poly(||I||)) =

O(poly(|V |) + 1 · 2|V | log |V | · poly(||I||)) =

O(2|V | log |V | · poly(||I||))

since |V | ≤ ||I||.

As our second example, we consider CSPs for branching time temporal reasoning. Here, we will
use domain enumeration in a more substantial way that in the previous example. The branching time
model has been used in, for instance, planning [23] and the analysis and verification of concurrent
systems [27]. Let F be the forest containing all oriented, finite trees where the indegree of each
node is at most one and let DF be the nodes in F . We then define the following four relations on F .
Arbitrarily choose x, y ∈ DF .

1. x =F y if and only if there is a path from x to y and a path from y to x,

2. x <F y if and only if and there is a path from x to y but no path from y to x,

3. x >F y if and only if there is a path from y to x but no path from x to y, and

4. x||F y if and only if there is no path from x to y and no path from y to x.

These four basic relations are known as the point algebra for branching time. We let P = {=F

, <F , >F , ||F } and we note that P is JEPD. The problem CSP(P∨=) is in P [31] while the problem
CSP(P∨ω) is NP-complete [15].

Example 11. Let I = (V,C) be an instance of CSP(P∨ω) where V = {x1, x2, x3, x4, x5} and C
contains the constraints

{x1 <F x4, x5||F x4, x3 ≤F x5, x5 ≤F x3, x2||F x5, x1 <>F x2, x1 <>F x5},



where xi ≤F xj is an abbreviation of (xi <F xj) ∨ (xi =F xj) and xi <>F xj an abbreviation of
(xi <F xj) ∨ (xi >F xj). This instance is satisfiable by e.g. the function f(x1) = a, f(x2) = b,
f(x3) = d, f(x4) = e and f(x5) = d, where a, b, d, e are the points in the forest in Figure 2. But
if we let f ′(x) = f(x) for x ∈ {x1, x3, x4, x5} and f ′(x2) = g, then f ′ is not satisfying assignment
since the constraint x1 <>F x2 is not satisfied by the partial order in Figure 2.

From a formal viewpoint, we need to work with the structure F and view solutions as functions
from variables to DF . It is, however, quite impractical to work with the large and opaque structure
F directly. It is easier to use the following observation: an instance (V,C) of CSP(P∨ω) has a
solution if and only if there exist an oriented forest T with the property that

1. the indegree of each node in T is at most one and

2. the number of nodes in T equals |V |,

such that the relations in C are satisfied by T (according to the interpretation of the basic
relations given above). In particular, Theorem 9 is still applicable but we do not have to explicitly
give unique names to all elements in DF and invent algorithms that work with this representation.

We know from Theorem 7 that CSP(P∨ω) can be solved in O(2|V |2·log 4 · poly(||I||)) = O(22|V |2 ·
poly(||I||)) time. We will now improve upon this result. Let τ(n) denote the number of unlabelled
trees on n vertices. Otter [52] has shown that there exist constants C,α such that limn→∞

τ(n)
Cαnn−5/2 =

1 where C > 0.53 and α < 2.96.

Theorem 12. CSP(P∨ω) is solvable in O(2|V |+log(τ(|V |))+|V | log |V | · poly(||I||)) time.

Proof. In this proof, we will utilise Theorem 9 so we need to define the constants a1, a2, . . . ,
b1, b2, . . . , the sets Sn1 , . . . , Snan

for arbitrary n, and the functions t and u. We will use the alternative
representation of solutions that we outlined after Example 11 so the sets Sn1 , . . . , Snan

will be concrete
forests and not subsets of DF .

Given some n > 0, we first estimate the number of directed forests with n nodes where each
node has indegree at most one. To enumerate all forests instead of trees, we can enumerate all
unlabelled trees with n+ 1 vertices and only consider the trees where the extra vertex is connected
to all other vertices. By removing this vertex we obtain a forest with n vertices (which implies that
bn = n). Hence, there are at most 2nτ(n+ 1) directed forests with n nodes. The factor 2n stems
from the observation that each forest contains at most n edges, where each edge has two possible
directions. We then filter out the directed forests containing a tree where the indegree of any vertex
is more than one, and we let Sn1 , ..., Snan

denote these forests. It follows that we can upper bound an
with 2nτ(n+ 1).

Next, we need a way to compute the set of all directed forests where each node has indegree at
most one. The only non-constructive argument above is the generation of all directed labelled trees
with n nodes. However, these can be efficiently enumerated (with polynomial delay) as demonstrated
by Wright et al. [67]. Thus, t(n) = 2nτ(n+ 1) · poly(n).

Finally, we need a way of checking whether a function f : V → S
|V |
i is a solution to an instance

(V,C) of CSP(P∨ω). Since S|V |i is a forest, we can directly use the definitions of the basic relations
in P when verifying this condition. This can be done in polynomial time so the function u is some
polynomial.



Putting the pieces together with the aid of Theorem 9, we see that CSP(P∨ω) is solvable in time

O(2|V |τ(|V |+ 1) · poly(|V |) + 2|V |τ(|V |+ 1) · 2|V | log |V | · poly(||I||) =

O(2|V |+log(τ(|V |))+|V | log |V | · poly(||I||))

A simpler algorithm is obtained if we enumerate all labelled trees (by, for instance, using Prüfer
sequences [54]) instead of the unlabelled trees. However, there are nn−2 such trees on n vertices
according to Cayley’s formula. This implies that the resulting algorithm runs in O(2|V |+2|V | log |V | ·
poly(||I||)) time. This is substantially slower than the algorithm in Theorem 12 since log τ |V | ≤
(1 + ε)|V | (for arbitrary ε > 0) when |V | is sufficiently large.

4.2.3 Bounded disjunctions

This section contains a more efficient method for solving CSP(B∨k) when k is a fixed constant. In
particular, such problems are interesting when studying finite constraint languages due to Lemma 2.
The idea is to construct a number of k-SAT instances with the property that at least one of them is
satisfiable if and only if the original instance has a solution. More or less similar ideas have been
used frequently in the literature and examples include algorithms for k-SAT [22], algorithms for
combinatorial optimization [61, Sec. 8], and derandomization of probabilistic CSP algorithms [51].
One may also see certain similarities to the sparsification method that we presented in Section 3.2:
sparsification is also based on the idea of transforming a single CSP instance into a set of CSP
instances with advantageous properties. In the statement of the following theorem, let ck denote
an arbitrary real number ck < 1 such that there exists a deterministic algorithm solving k-SAT in
O(2ck·|V |) time.

Theorem 13. Let B be a set of basic relations with maximum arity p and m = |B|. Assume that
the following holds for every n > 0.

1. there exist finite sets Sn1 , . . . , Snan
such that for every solvable instance I = (V,C) of CSP(B),

there exists a solution f : V → Sni for some 1 ≤ i ≤ an and

2. the set {Sni | 1 ≤ i ≤ n} can be generated in u(n) time.

Let bi = max{|Si1|, . . . , |Siai
|}. Then CSP(B∨k) is solvable in O(u(|V |)+a|V |·2|V |(log b|V |−1+log(ckp))·

poly(||I||)) time.

Proof. Let I = (V,C) be an arbitrary instance of CSP(B∨k). Assume V = {x1, . . . , xs}. If I has a
solution, then there is a solution f : V → S

|V |
i for some 1 ≤ i ≤ a|V | by Condition (1). Thus, we

begin by computing the set S = {Sni | 1 ≤ i ≤ n}. This is possible due to Condition (2). We assume,
without loss of generality, that |S| is even for every S ∈ S and, for simplicity, we additionally
assume that S = {1, . . . , 2t} for some t ≥ 1. For each S ∈ S, we construct a set of k-SAT instances
F1, . . . , Fp such that there exists (at least) one Fi that is satisfiable if and only if there is a solution
f : V → S to I. We describe this construction next.

Arbitrarily choose a vector z = (z1, . . . , z|V |) where zi ∈ {1, 3, 5, . . . , 2t − 1}, 1 ≤ i ≤ |V |. We
let Fz denote the k-SAT instance associated with the vector z. The instance Fz contains variable
set V ′ = {x′1, . . . , x′s} where we interpret variable xi as follows: if x′i is false, then variable xi has



value zi and, otherwise, xi has value zi + 1. Arbitrarily choose a constraint in C. For simplicity, we
assume that the constraint has maximal arity kp and that it equals R(x1, . . . , xkp). For each tuple

r ∈ {z1, z1 + 1} × {z2, z2 + 1} × · · · × {zkp, zkp + 1}

that is not a member of the set

R ∩ ({z1, z1 + 1} × {z2, z2 + 1} × · · · × {zkp, zkp + 1}),

add the clause that ‘forbids’ this assignment to the variables, given the interpretation of variables
described above. Note that this clause has arity kp, too. Do this for all constraints in C. It follows
that F is satisfiable if and only if there exists a satisfying solution f : V → {1, . . . , 2t} to I such
that f(x1) ∈ {z1, z1 + 1}, f(x2) ∈ {z2, z2 + 1}, and so on.

By choosing all possible vectors z, we end up with (2t/2)|V | = (b|V |/2)|V | kp-SAT instances such
that at least one of them is satisfiable if and only if I has a solution. We need to verify the time
complexity of this procedure. Note first that computing Fz can be done in polynomial time since
the number of assignments that are forbidden by a constraint is at most 2p, and p is a fixed constant.
Finally, the time needed for verifying the satisfiability of Fa is O(2ckp·|V |), and computing the set S
takes u(|V |) time due to condition (2). It follows that

u(|V |) + (b|V |/2)|V | · 2ckp·|V |) = u(|V |) + 2|V | log(b|V |/2) · 2|V | log(ckp)

= u(|V |) + 2|V |(log b|V |−1+log(ckp))

which concludes the proof.

The change in time complexity may seem minimal in comparison with Theorem 9. However,
note that

2|V | log b|V | = 2|V | · 2|V |(log b|V |−1)

so there is an exponential speed-up even if we do not take the negative term log ckp into account.
We remind the reader that the bounded length of disjunctions is vital for this method to work. If
the length is unbounded, then there may be an exponential number of assignments that must be
excluded by adding clauses to Fz. This implies that the time needed for constructing Fz adds an
exponential factor to the complexity figure in Theorem 13.

We will now turn our attention towards finite temporal constraint languages. Let us first consider
total-ordered time. The computational complexity of such CSP problems has been intensively studied
in the literature. In a breakthrough result, Bodirsky and Kára [13] have determined the complexity
of CSP(Γ) for all such Γ and their result shows that CSP(Γ) is either tractable or NP-complete. It
is well known that the first-order theory of (Q, <) admits quantifier elimination [13, 33]. Hence, we
can exploit Lemma 2 and Theorem 13 to obtain the following corollary.

Corollary 14. Let Γ be a finite constraint language that is first-order definable in (Q, <). If CSP(Γ)
is NP-complete, then it is solvable in time O(2|V |(log |V |−1−sΓ) · poly(||I||)) where 0 ≤ sΓ ≤ 1 is a
constant that only depends on the choice of Γ. Otherwise, CSP(Γ) is polynomial-time solvable.

Unfortunately, we cannot give a similar result for branching time since branching time does
not admit quantifier elimination [8, Section 4.2] (so Lemma 2 is not applicable) and there is no
complexity classification available. However, there are closely connected constraint languages on
trees that have this property. Examples include the triple consistency problem with important
applications in bioinformatics [14]: here we have both quantifier elimination and a complexity
classification [11].



4.2.4 Improved domain enumeration

In the proof of Theorem 9, we compute a set {S1, . . . , Sn} of finite variable domains and then
consider all possible functions V → S1, V → S2, . . . , V → Sn. There are obviously cases where
we do not need to enumerate all functions and this may lead to improved complexity figures. We
demonstrate this by considering equality languages. An equality language is a set of relations
definable through first-order formulas over the structure (D,=). Such languages are of fundamental
interest in complexity classifications for infinite domain CSPs, since a classification of CSP problems
based on first-order definable relations over some fixed structure typically includes the classification
of equality constraint language CSPs.

Let E = {=, 6=} over some countably infinite domain D. Note that E∨ω is a sublanguage of T ∨ω
so CSP(E∨ω) can be solved in O(2|V | log |V | · poly(||I||)) time by Theorem 10 (which, in turn, is based
on Theorem 9). We will now improve upon this bound but first we need some additional machinery.
A partition of a set X with n elements is a pairwise disjoint set {X1, . . . , Xm}, m ≤ n such that⋃m
i=1Xi = X. A set X with n elements has Bn partitions, where Bn is the n-th Bell number. Let

L(n) = 0.792n
ln(n+1) . It is known that Bn < L(n)n [5] and that all partitions can be enumerated in

O(nBn) time [25, 60].

Theorem 15. CSP(E∨ω) is solvable in O(|V |2|V |·logL(|V |) · poly(||I||)) time.

Proof. Let I = (V,C) be an instance of CSP(E∨ω). For every partition S1∪ . . .∪Sn of V we interpret
the variables in Si as being equal and having the value i, i.e. a constraint (x = y) holds if and
only if x and y belong to the same set and (x 6= y) holds if and only if x and y belong to different
sets. Then check in poly(||I||) time if this partition satisfies I using the above interpretation. The
complexity of this algorithm is therefore O(|V |L|V | · poly(||I||)) ⊆ O(|V |L(|V |)|V | · poly(||I||)) =
O(|V |2|V |·logL(|V |) · poly(||I||)).

The approach taken in Theorem 15 can be viewed as an opposite extreme of Theorem 9: here,
we only consider one function per set of possible values.

It is well known that equality constraint languages admit quantifier elimination [12]. Hence, we
can use Lemma 2 to extend Theorem 15 to cover arbitrary equality constraint languages.

Corollary 16. Let Γ be a finite set of relations first-order definable over (D,=). Then CSP(Γ) is
solvable in O(|V |2|V |·logL(|V |) · poly(||I||)) time.

Recall that T ∨k (and consequently E∨k) can be solved in time O(2|V |(log |V |−1−sk) · poly(||I||))
where 0 ≤ sk ≤ 1. This bound is beaten by Corollary 16 whenever logL(|V |) < (log |V | − 1− sk)
and this occurs even for fairly small |V | since

logL(|V |) ≤ log(0.792|V |)− log(ln |V |)) ≤ log |V | − log 1.26− log(ln |V |).

5 Lower bounds
The algorithms presented in Section 4 give improved upper bounds (compared to the bounds
given in Section 3) for many constraint satisfaction problems. It is natural to also ask, given
reasonable complexity theoretical assumptions, how much room there is for improvement. Even
though providing systematic lower bounds appears to be a challenging problem, non-trivial lower
bounds can be given in certain cases. Such results are typically obtained by reducing a problem,



which is believed to have a particular lower bound, to the problem in question. The reduction needs
to have certain properties in order to be useful: basically, the reduction is not allowed to blow up
the parameter that we are interested in too much. Since we measure time complexity in the number
of variables, we need reductions that introduce only a small number of additional variables.

This section is divided into two parts. Section 5.1 contains lower bounds for CSP(B∨ω) and
CSP(B∨k) based on the (strong) exponential time hypothesis, and Section 5.2, where we obtain
lower bounds for Allen’s interval algebra based on the Chromatic Number problem.

5.1 Lower bounds based on (S)ETH

We begin by providing a general lower bound for CSP(B∨ω) (Theorem 17) and we immediately
observe (Corollary 18) that this reduction is useful for analysing CSP(B∨k) when k ≥ 3, too. We
continue by refining our results in Theorem 19: if B is JEPD and contains the equality relation,
then there is a stronger lower bound for CSP(B∨ω) than the one given in Theorem 17. This result
is not useful for studying CSP(B∨k) since it introduces disjunctive constraints with many disjuncts.

Theorem 17. Let B = {R1, R2, . . . , Rm}, m > 1, be a set of nonempty p-ary basic relations such
that R1 ∩ R2 = ∅. If the SETH holds, then CSP(B∨ω) cannot be solved in O(2δ|V |) time for any
δ < 1.

Proof. If the SETH holds then SAT cannot be solved in O(2δ|V |) time for any δ < 1. We provide a
polynomial-time many-one reduction from SAT to CSP(B∨ω) which only increases the number of
variables by a constant (that only depends on the choice of B) — hence, if CSP(B∨ω) is solvable in
O(2δ|V |) time for some δ < 1 then SAT is also solvable in O(2δ|V |) time, contradicting the original
assumption. We begin by constructing a useful gadget. Consider the following CSP instance:

I1 : R1(u1, . . . , up) ∧R2(v1, . . . , vp).

This instance is satisfiable since both R1 and R2 are non-empty relations. Consider instead the
instance

I2 : R1(z1, u2, . . . , up) ∧R2(z1, v2, . . . , vp).

In this case, the instance can be either satisfiable or not satisfiable. If it is not satisfiable, then one
may note that every solution f to instance I1 has the property f(u1) 6= f(v1). If I2 is satisfiable,
then we can continue the process of identifying variables until we reach a non-satisfiable instance

I3 : R1(z1, . . . , z1︸ ︷︷ ︸
k times

, uk+1, . . . , up) ∧R2(z1, . . . , z1︸ ︷︷ ︸
k times

, vk+1, . . . , vp).

We thus have the following satisfiable instance

I4 : R1(z1, . . . , z1︸ ︷︷ ︸
k−1 times

, uk, . . . , up) ∧R2(z1, . . . , z1︸ ︷︷ ︸
k−1 times

, vk, . . . , vp)

and we can continue the process of identifying variables by introducing a fresh variable z2 and arrive
at the instance

I5 : R1(z1, . . . , z1︸ ︷︷ ︸
k−1 times

, z2, uk+1, . . . , up) ∧R2(z1, . . . , z1︸ ︷︷ ︸
k−1 times

, z2, vk+1, . . . , vp)



Just as in the case when we introduced z1, this instance may or may not be satisfiable. If it is not
satisfiable, then I4 is satisfiable and every solution f satisfies f(uk) 6= f(vk). Otherwise, we can
continue the process described above. In the end, we will end up with a satisfiable instance

I∗ : R1(z1, . . . , z1︸ ︷︷ ︸
k1 times

, z2, . . . , z2︸ ︷︷ ︸
k2 times

, . . . , zm, . . . , zm︸ ︷︷ ︸
km times

, y, uk1+···+km+2, . . . , up)∧

R2(z1, . . . , z1︸ ︷︷ ︸
k1 times

, z2, . . . , z2︸ ︷︷ ︸
k2 times

, . . . , zm, . . . , zm︸ ︷︷ ︸
km times

, y′, vk1+···+km+2, . . . , vp)

such that every solution f satisfies f(y) 6= f(y′). Note that the property PD guarantees that the
process above will stop at some point since R1(x) ∧ R2(y) is not satisfiable when the variable
vectors x and y are identical. We abbreviate the resulting instance R1(z, y,u) ∧R2(z, y′,v) and let
K = k1 + · · ·+ km + 2. Let f∗ be an arbitrary solution to I∗.

We are now ready to present the reduction. Let I = (V,C) be an instance of SAT, where
V is a set of variables and C a set of clauses. First observe that since m ≥ 2 and since B
is PD, B must be defined over a domain with two or more elements. Introduce the variables
z1, . . . , zm, vK , . . . , vp, uK , . . . , up. Given a variable x, define

φ(x) = R1(z, x,u)

and
φ(¬x) = R2(z, x,v).

For every clause (`1 ∨ . . . `k) ∈ C, create the constraint (φ(`1) ∨ . . . ∨ φ(`k)). We prove that the
resulting instance J is satisfiable if and only if I is satisfiable.

Assume first that I has a solution f : V → {0, 1}. We construct a solution g : V ∪
{z1, . . . , zm, vK , . . . , vp, uK , . . . , up} → D to J as follows. First let g(zi) = f∗(zi) (1 ≤ i ≤ m),
g(ui) = f∗(ui) (K ≤ i ≤ p), and g(vi) = f∗(vi) (K ≤ i ≤ p). Furthermore, let g(x) = f∗(y) if
f(x) = 1 and let g(x) = f∗(y′) if f(x) = 0.

Arbitrarily choose a clause C = (`1 ∨ · · · ∨ `m) in C and recall that there is a corresponding
constraint C ′ = (φ(`1) ∨ · · · ∨ φ(`m)) in J . Assume without loss of generality that `1 is satisfied by
f . If `1 = x1, then f(x1) = 1 and the corresponding relation in C ′ is R1(z, x,u). Note that this
relation (and thus the constraint C ′) is indeed satisfied by g, If `1 = ¬x1, then f(x1) = 0 and the
corresponding relation in C ′ is R2(z, x,v). Once again, the constraint C ′ is satisfied by g, and J is
satisfiable.

Assume instead that J has a solution f . This solution makes at least one disjunct in each
constraint satisfied so we let the set S contain exactly one satisfied disjunct from each constraint.
The set S cannot simultaneously contain the constraints R1(z, x,u) and R1(z, x,v) for any variable
x ∈ V . Thus we can construct a solution g for I as follows: if R1(z, x,u) ∈ S, then g(x) = 1
and g(x) = 0 otherwise. Since there is a one-to-one correspondence between clauses in I and the
disjunctive constraints in J , it follows that g must be a satisfying assignment to I.

If the SAT instance I in the proof of Theorem 17 has clauses of length at most k, then the
resulting CSP instance J is an instance of CSP(B∨k). The ETH immediately gives us the following
result.

Corollary 18. Let B = {R1, R2, . . . , Rm}, m > 1, be a set of nonempty p-ary basic relations such
that R1 ∩R2 = ∅. If the ETH holds, then CSP(B∨k), k ≥ 3, cannot be solved in O(2δk|V |) time.



Theorem 17 and Corollary 18 have a wide range of applicability since the only restriction on the
set B is that it contains two distinct relations R1, R2 such that R1 ∩R2 = ∅. There are significantly
better lower bounds if we impose additional restrictions on the set B. By assuming that the relations
are JEPD and that we have access to = (as usual, we let = denote the equality relation on a given
domain), we can view several variables as a single variable and thus obtain stronger lower bounds.
Similar techniques have been used when proving lower bounds by, for instance, Traxler [62] and
Gutin & Wahlström [30].

Theorem 19. Let B = {=, R1, . . . , Rm} be a set of binary JEPD relations over a countably infinite
domain. If the SETH holds, then CSP(B∨ω) cannot be solved in O(c|V |) time for any c > 1.

Proof. First observe that the binary inequality relation 6= over D can be defined as
⋃m
i=1Ri since B

is JEPD. In the the proof we therefore use 6= as an abbreviation for
⋃m
i=1Ri. Let I = (V,C) be

an instance of SAT with variables V = {x1, . . . , xn} and the set of clauses C. Let K be an integer
such that K > log c. Assume without loss of generality that n is a multiple of K. We will construct
an instance of CSP(B∨ω) with n

K + 2K = n
K +O(1) variables. First, introduce 2K fresh variables

v1, . . . , v2K and make them different by imposing 6= constraints. Second, introduce n
K fresh variables

y1, . . . , y n
K
, and for each i ∈ {1, . . . , nK } impose the constraint

(yi = v1 ∨ yi = v2 ∨ · · · ∨ yi = v2k).

Let V1, . . . , V n
K

be a partition of V such that each |Vi| = K. We will represent each set Vi of Boolean
variables by one yi variable over D. To do this we will interpret each auxiliary variable zi as a K-ary
Boolean tuple. Let h : {v1, . . . , v2K} → {0, 1}K be an injective function which assigns a Boolean
K-tuple for every variable vi. Let g+ be a function from {1, . . . ,K} to subsets of {v1, . . . , v2K} such
that vi ∈ g(j) if and only if the j-th element in h(vi) is equal to 1. Define g− in the analogous way.
Observe that |g+(j)| = |g−(j)| = 2K−1 for each j ∈ {1, . . . ,K}.

For the reduction, let (`i1 ∨ . . . ∨ `in′ ), `ij = xij or `ij = ¬xij , be a clause in C. We assume that
n′ ≤ n since the clause contains repeated literals otherwise. For each literal `ij let Vi′ ⊆ V be the
set of variables such that xij ∈ Vi′ . Each literal `ij is then replaced by∨

z∈g+(ij)
yi′ = z

if `ij = xij , and with ∨
z∈g−(ij)

yi′ = z

if `ij = ¬xij . This reduction can be done in polynomial time since a clause with n′ literals is replaced
by a disjunctive constraint with n′2K−1 disjuncts (since K is a constant depending only on c). It
follows that SAT can be solved in

O(c
n
K

+O(1) · poly(||I||)) = O(2( n
K

+O(1))·log c · poly(||I||)) = O(2δ·n · poly(||I||))

for some δ < 1, since K > log c . Thus, the SETH does not hold.

As an illustrative use of the theorem we see that the temporal problem CSP(T ∨ω) is solvable
in O(2|V | log |V | · poly(||I||)) time but not in O(c|V |) time for any c > 1 if the SETH holds. Lower
bounds can also be obtained for the branching time problem CSP(P∨ω) since there is a trivial



Basic relation Example Endpoints
x precedes y p xxx xe < ys

y preceded by x p−1 yyy

x meets y m xxxx xe = ys

y met-by x m−1 yyyy

x overlaps y o xxxx xs < ys < xe,
y overl.-by x o−1 yyyy xe < ye

x during y d xxx xs > ys,
y includes x d−1 yyyyyyy xe < ye

x starts y s xxx xs = ys,
y started by x s−1 yyyyyyy xe < ye

x finishes y f xxx xe = ye,
y finished by x f−1 yyyyyyy xs > ys

x equals y ≡ xxxx xs = ys,
yyyy xe = ye

Table 1: The thirteen basic relations in Allen’s interval algebra. The endpoint relations xs < xe and
ys < ye that are valid for all relations have been omitted.

reduction from CSP(T )∨ω which does not increase the number of variables: simply add a constraint
(x < y ∨ x > y ∨ x = y) for every pair of variables in the instance. Similarly, the equality constraint
satisfaction problem CSP(E∨ω) is not solvable in O(c|V |) time for any c > 1 either, unless the SETH
fails. Hence, even though the algorithms that were presented in Section 4 might appear to be quite
simple, there is very little room for improvement.

5.2 Lower bounds based on Chromatic Number

The results in Section 5.1 show that the (S)ETH can be used for obtaining lower bounds for problems
such as CSP(B∨ω) and CSP(B∨k). Unfortunately, it is not obvious how to obtain lower bounds
for CSP(B∨=) using this assumption. In this section, we present lower bounds for Allen’s interval
algebra using a conjecture concerning the time complexity of computing the chromatic number of
graphs. The bound will not be as strong as the ones obtained by using the (S)ETH and it does not
seem to (easily) generalize to other CSP(B∨=) problems.

We first recapitulate the basics of Allen’s interval algebra. Allen’s algebra is a well-known
formalism for temporal reasoning where one considers relations between intervals of the form [x, y],
where x, y ∈ R is the starting and ending point, respectively. Let Allen be the 213 = 8192 possible
unions of the set of the thirteen relations in Table 1. For convenience we write constraints such as
(p ∨m)(x, y) as x{p,m}y, using infix notation and omitting explicit disjunction signs. The problem
CSP(Allen) is NP-complete and all tractable fragments have been identified [45].

Given an instance I = (V,C) of CSP(Allen) we first create two fresh variables xsi and xei for
every x ∈ V , intended to represent the startpoint and endpoint of the interval x. Then observe
that a constraint x{r1, . . . , rm}y ∈ C, where each ri is a basic relation, can be represented as a
disjunction of temporal constraints over xs, xe, ys and ye by using the definitions of each basic
relation in Table 1. Applying Theorem 10 to the resulting instance gives the following result.

Corollary 20. CSP(Allen) is solvable in O(22|V |(1+log |V |) · poly(||I||)) time.

We will now relate CSP(Allen) to the Chromatic Number problem, i.e. the problem of
computing the number of colours needed to colour a given graph.



Theorem 21. If CSP(Allen) can be solved in O(
√
c
|V |) time for some c < 2, then Chromatic

Number can be solved in O((c+ ε)|V |) time for arbitrary ε > 0.

Proof. We first present a polynomial-time many-one reduction from k-Colourability to CSP(Allen)
which introduces k fresh variables. Given an undirected graph G = ({v1, . . . , vn}, E), introduce the
variables z1, . . . , zk and v1, . . . , vn, and:

1. impose the constraints z1{m}z2{m} . . . {m}zk,

2. for each vi, 1 ≤ i ≤ n, add the constraints vi{≡, s−1}z1, vi{p,m, f−1, d−1}zj (2 ≤ j ≤ k − 1),
and vi{p,m, f−1}zk,

3. for each (vi, vj) ∈ E, add the constraint vi{s, s−1}vj .

Consulting Table 1, we see that for each vi, it holds that its right endpoint must equal the
right endpoint of some zi, and its left endpoint must equal the left endpoint of z1. Thus, there are
exactly k possible choices for the right endpoint of vi. If there is an edge (vi, vj), then we have the
constraint vi{s, s−1}vj which ensures that the right endpoints of the corresponding variables differ.
It follows that the resulting instance has a solution if and only if G is k-colourable. Hence, there
is a polynomial-time Turing reduction from Chromatic Number to CSP(Allen) by combining
binary search (that will evaluate logn Allen instances) with the reduction above (recall that
O(logn · cn) ⊆ O((c+ ε)n) for every ε > 0) . Observe that if k = n then the reduction introduces n
fresh variables, which is where the constant

√
c in the expression O(

√
c
|V |) stems from.

The exact complexity of Chromatic Number has been analysed and discussed in the literature.
Björklund et al. [6] have shown that the problem is solvable in 2|V | · poly(||I||) time. Impagliazzo
and Paturi [35] poses the following question: ‘Assuming SETH, can we prove a 2n−o(n) lower bound
for Chromatic Number?’. Hence, an O(

√
c
|V |), c < 2, algorithm for CSP(Allen) would also be a

major breakthrough for Chromatic Number.

6 Research directions
The study of infinite-domain CSP time complexity is still in its infancy, and there is a large amount
of open questions that need to be addressed. We present a small selection below.

Analysis of algorithms. We have investigated several novel algorithms for solving disjunctive CSP
problems, which, with respect to worst-case time complexity, are much more efficient than e.g.
backtracking algorithms without heuristics. These bounds can likely be improved, but, due to the
lower bounds in Section 5, probably not to a great degree. Despite this, algorithms for solving
infinite domain constraint satisfaction problems are in practice used in many non-trivial applications.
In light of this the following research direction is particularly interesting: how to formally analyse
the time complexity of branching algorithms equipped with (powerful) heuristics? In the case of
finite-domain CSPs and, in particular, DPLL-like algorithms for the k-SAT problem there are
numerous results to be found in the literature, cf. the survey by Vsemirnov et al. [65]. This is not
the case for infinite-domain CSPs, even though there is a considerable amount of empirical evidence
that infinite-domain CSPs can be efficiently solved by such algorithms, so one ought to be optimistic
about the chances of actually obtaining non-trivial bounds. Yet, sharp formal analyses appear to be
virtually nonexistent in the literature.



Quantified constraint satisfaction. In our article, we have limited ourselves to infinite-domain CSP
problems included in NP. A natural generalization of the CSP problem is to consider instances which
are allowed to also contain universally quantified variables, in addition to existentially quantified
variables. This problem is in general known as the quantified constraint satisfaction problem (QCSP).
For finite domains this problem is included in PSPACE, and this is also known to hold for many
well-studied languages over infinite domains. For example, QCSP problems over equality constraint
languages and temporal constraint languages are in general PSPACE-complete [9]. Would it be
possible to exploit the algorithms for CSP(E∨ω) and CSP(T ∨ω) in order to obtain upper bounds for
their QCSP counterparts?

Upper bounds. A natural step is to obtain upper bounds for spatial formalisms such as RCC-5 or
RCC-8. We have encountered structure enumeration for formalisms with binary basic relations B
several times during the course of the article: the problem CSP(B∨ω) can be solved in c|V |2 where
the constant c depends on B. This bound is clearly applicable to RCC-5 and RCC-8 and it raises
the question whether domain enumeration may lead to improved algorithms or not. A starting point
may be to analyse the complexity of the point algebra for partially ordered time since the relations
in this algebra is expressible in both RCC-5 and RCC-8. One possibility here is to construct an
algorithm based on the algorithm for branching time in Section 4.2.2. It is known that there are
slightly more than 2n2/4 partial orders on n nodes [53]. Thus, this approach will not immediately
lead to a significantly faster algorithm than the c|V |2 time algorithm based on structure enumeration,
even if we have a polynomial delay algorithm for enumerating partial orders. It may, though, exist
a domain enumeration algorithm running in (c′)|V |2 time with c′ < c. Such a speed-up may still be
considered important.

Lower bounds. Another obvious research direction is to strengthen the lower bounds in Section 5
even further. The probably most challenging problem here is to obtain stronger lower bounds for
CSP(B∨=). It appears that the (strong) exponential time hypothesis is not so useful since the use of
disjunctions seems essential. We have seen that the conjecture for Chromatic Number was useful
when studying Allen’s algebra, even though the achieved bound is weaker than those obtained for
more expressive disjunctive constraints. Unfortunately, it is not obvious how to generalize the Allen
result to other problems of the type CSP(B∨=).

It would also be interesting to prove stronger lower bounds for CSP(B∨k) for some concrete
choices of B and k. As an example, consider the temporal problem CSP(T ∨4). From Corollary 18
we see that CSP(T ∨4) is not solvable in O(2s4|V |) time for some s4 < log 1.6, assuming the ETH
holds, since the currently best deterministic algorithm for 4-SAT runs in O(1.6|V |) time [58]. On the
other hand, if CSP(T ∨4) is solvable in O(

√
c
|V |) time for some c < 2, then Chromatic Number

can be solved in O((c+ ε)|V |) time for arbitrary ε > 0. This can be proven similar to the reduction
in Theorem 21 but by making use of temporal constraints instead of interval constraints. Hence,
for certain choices of B and k it might be possible to improve upon the general bounds given in
Section 5.
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