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Abstract

The search for natural NP-intermediate problems is one of the holy grails within
computational complexity. Ladner’s original diagonalization technique for gen-
erating NP-intermediate problems, blowing holes, has a serious shortcoming: it
creates problems with a highly artificial structure by arbitrarily removing cer-
tain problem instances. In this article we limit this problem by generalizing
Ladner’s method to use parameters with various characteristics. This allows
one to define more fine-grained parameters, resulting in NP-intermediate prob-
lems where we only blow holes in a controlled subset of the problem. We begin
by fully characterizing the problems that admit NP-intermediate subproblems
for a broad and natural class of parameterizations, and extend the result fur-
ther such that structural CSP restrictions based on parameters that are hard
to compute (such as tree-width) are covered, thereby generalizing a result by
Grohe. For studying certain classes of problems, including CSPs parameterized
by constraint languages, we consider more powerful parameterizations. First, we
identify a new method for obtaining constraint languages Γ such that CSP(Γ)
are NP-intermediate. The sets Γ can have very different properties compared
to previous constructions (by, for instance, Bodirsky & Grohe) and provides in-
sights into the algebraic approach for studying the complexity of infinite-domain
CSPs. Second, we prove that the propositional abduction problem parameter-
ized by constraint languages admits NP-intermediate problems. This settles an
open question posed by Nordh & Zanuttini.
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1. Introduction

Background

Assuming P 6= NP it is natural to consider problems in NP \ P which are not
NP-hard. Such problems are referred to as NP-intermediate, and Ladner [30]
explicitly constructed NP-intermediate problems by removing strings of certain
lengths from NP-complete languages via a diagonalization technique that is
colloquially known as blowing holes in problems. The languages constructed via
blowing are unfortunately famous for being highly artificial: Arora and Barak
[3] write the following.

We do not know of a natural decision problem that, assuming NP
6= P, is proven to be in NP \ P but not NP-complete, and there are
remarkably few candidates for such languages.

More natural examples are known under other complexity-theoretic assump-
tions. For instance, LogClique (the problem of deciding whether an n-vertex
graph contains a clique of size log n) is NP-intermediate under the exponential-
time hypothesis (ETH). We wish to stress the difference between problems that,
assuming P 6= NP, are provably neither P nor NP-complete, and problems whose
complexity is simply undetermined at the moment. As for the latter, of the
dozen problems in Garey & Johnson [20] which at the time where not known to
be P or NP-complete, only a few, such as the integer factorization prob-
lem and the graph isomorphism problem, remain unresolved. The integer
factorization problem is particularly interesting in this sense: it is not likely
to be NP-complete since it is both in NP and coNP, and no polynomial-time
algorithm is known despite considerable efforts to construct one. The lack of
natural NP-intermediate computational problems makes it important to inves-
tigate new classes of NP-intermediate problems and, hopefully, increase our
understanding of the borderline between P and NP.

In the “opposite direction”, there have been attempts to isolate subclasses
of NP which exhibit dichotomies between P and NP-complete, i.e. non-trivial
subclasses that do not admit NP-intermediate problems. For instance, Feder
and Vardi [18] conjectured that the constraint satisfaction problem (CSP) over
finite domains exhibits such a dichotomy, but so far the conjecture is only
known to hold for domains of two and three elements, as proven by Schae-
fer [38] and Bulatov [7], respectively. One of the reasons behind this conjecture
is that the constraint satisfaction problem is included in monotone monadic
SNP without inequality (MMSNP), where SNP is a subset of NP characteriz-
able through a special class of existential second-order sentences, and it is known
that adding only marginally more expressive sentences to MMSNP results in a
non-dichotomizable complexity class [18]. The set MMSNP is therefore viewed
as a candidate as a maximal subclass of NP which does not contain any problems
of intermediate complexity. From this it clearly follows that some restrictions,
e.g. constraint language restrictions, are regarded as more interesting than re-
moving arbitrary strings from the set of valid instances as in Ladner’s original
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proof. In other words the existence of NP-intermediate subproblems depends
heavily on which parameter one chooses to restrict and it is safe to say that we
currently lack a deeper understanding of which parameters one can use to find
NP-intermediate subproblems, and when dichotomies arise. Hence, we propose
a strategy consisting of investigating subclasses of NP induced by different pa-
rameters, in order to determine which problems admit dichotomies and which
do not, and increase our understanding of the puzzling nature of intermediate
problems.

Article Structure

We begin (in Section 3) by presenting a diagonalization method for obtain-
ing NP-intermediate problems, based on parameterizing decision problems in
different ways. In our framework, a parameter, or a measure function, is simply
a computable function ρ from the instances of some decision problem X to the
non-empty subsets of N. We say that such a function is single-valued if ρ(I) is
a singleton set for every instance of X, and multi-valued otherwise. Depending
on the parameter one obtains problems with different characteristics. Simple
applications of our method include the connection between the complexity class
XP and NP-intermediate problems observed by Chen et al. [12]. Even though
our method is still based on diagonalization we claim that the intermediate
problems obtained are qualitatively different from the ones obtained by Lad-
ner’s original method, and that they can be used for gaining new insights into
the complexity of computational problems. Whether a problem is “natural” or
not is of course highly subjective and a matter of taste, but there is a wider
consensus that some types of restrictions, such as constraint language restric-
tions, are more interesting than others. Throughout this article we will see that
our diagonalization framework in combination with different measure functions
allows us to construct NP-intermediate problems also for such non-trivial cases,
which may constitute new and interesting sources of intermediate problems.

In Section 4, we analyze the applicability of the diagonalization method for
single-valued measure functions. Under mild additional assumptions, we obtain
a full understanding of when NP-intermediate problems arise when the mea-
sure function is single-valued and polynomial-time computable. We also relate
the structure of subproblems induced by single-valued measure functions to the
question of whether the set of all NP-intermediate problems is closed under dis-
joint union. Unfortunately, CSPs under structural restrictions (i.e. when con-
sidering instances with bounded width parameters) are not captured by these
results since width parameters are typically not polynomial-time computable.
To remedy this, we present a general method for obtaining NP-intermediate
problems based on structurally restricted CSPs in Section 4.3. This is a gener-
alization of a result by Grohe [22] who has shown that, under the assumption
that FPT 6= W[1], NP-intermediate CSP problems can be obtained by restrict-
ing the tree-width of their corresponding primal graphs. Our result implies that
this holds also under the weaker assumption that P 6= NP and for many width
parameters. NP-intermediate problems based on structural restrictions have
also been identified by Bodirsky & Grohe [5].
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Multi-valued measure functions are apparently harder to study and a full
understanding appears difficult to obtain. We first relate single-valued measure
functions with multi-valued measure functions (in Section 5.1) and show that ev-
ery multi-valued measure function effectively determines a single-valued measure
function which shares many fundamental properties. Despite this, single-valued
measure functions have limited applicability when studying problems parame-
terized by constraint languages, such as constraint satisfaction problems, and we
give several examples which highlight why this is the case. For problems param-
eterized by constraint languages we therefore focus exclusively on multi-valued
measure functions. Our first result (in Section 5.2) is inspired by Bodirsky &
Grohe [5] who proved that there exists an infinite constraint language Γ over
an infinite domain such that CSP(Γ) is NP-intermediate. We extend this and
prove that whenever an infinite language Γ does not satisfy the so called local-
global property, i.e. when CSP(Γ) 6∈ P but CSP(Γ′) ∈ P for all finite Γ′ ⊂ Γ,
then there exists a language closely related to Γ such that the resulting CSP
problem is NP-intermediate. The only requirement is that Γ can be extended
by extension operators satisfying certain closure properties. Such an operator
takes a set of relations as input and returns a superset (possibly infinite) with
the property that any finite number of relations can be removed without affect-
ing the expressive power of the language. We denote these as 〈·〉 and provide
two very different examples. The first operator 〈·〉pow works for languages over
both finite and infinite domains but gives relations of arbitrarily high arity. The
second operator 〈·〉+ is limited to idempotent languages over infinite domains
but does have the advantage that the arity of any relation is only increased by a
small constant factor. Together with the language Γ◦ from Jonsson & Lööw [28]
which does not satisfy the local-global property we are thus able to identify a
concrete language 〈Γ◦〉+ such that CSP(〈Γ◦〉+) is NP-complete, CSP(Γ′) ∈ P
for any finite Γ′ ⊂ 〈Γ◦〉+, and there exists a Γ′′ ⊂ 〈Γ◦〉+ such that CSP(Γ′′) is
NP-intermediate. The so-called algebraic approach [4, 8] has been very success-
ful in studying the computational complexity of both finite- and infinite-domain
CSPs. However, this approach is, to a large extent, limited to constraint lan-
guages that are finite. If one only considers tractable finite subsets of 〈Γ◦〉+,
we miss that there are both NP-intermediate and NP-complete problems within
CSP(〈Γ◦〉+). Hence, the constraint language 〈Γ◦〉+ clearly shows that the al-
gebraic approach in its present shape is not able to give a full understanding of
CSP(〈Γ◦〉+) and its subclasses.

Our second result (in Section 5.4) concerns the propositional abduction prob-
lem Abd(Γ). This problem can be viewed as a non-monotonic extension of
propositional logic and it has numerous important applications ranging from au-
tomated diagnosis and text interpretation to planning. The complexity of propo-
sitional abduction has been intensively studied from a complexity-theoretic
point of view (cf. [16, 35]) and the computational complexity is known for ev-
ery finite Boolean constraint language Γ and many infinite languages [35]. In
Nordh & Zanuttini [35], the question of whether such a classification is possi-
ble or impossible to obtain also for infinite languages was left open. Since the
abduction problem can loosely be described as a combination of the SAT and
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UNSAT problems, it might be expected that it, like the parameterized SAT(·)
problem, does not contain any NP-intermediate problems. By exploiting our
diagonalization method, we present a constraint language Γ such that Abd(Γ)
is NP-intermediate.

2. Preliminaries

For an arbitrary decision problem X, we let I(X) denote its set of instances
and ||I|| denote the number of bits needed for representing I ∈ I(X). By a
polynomial-time reduction from problem X to problem X ′, we mean a Turing
reduction from X to X ′ that runs in time O(p(||I||)) for some polynomial p.
In other words the reduction may query an oracle for X ′ in order to solve X.
We assume that the Turing machine performing the reduction has access to
a specific oracle tape where it inputs the instance to be queried. Whenever
convenient we actually utilize many-one reductions instead of Turing reductions
since these are in some cases more natural.

A function f is said to be computable if it can be computed by a (universal)
Turing machine. We remind the reader that the definitions of such functions
can be recursive since a Turing machine has access to its own description due
to Kleene’s fixpoint theorem. Next, we define the concept of a measure function
which is the cornerstone of the forthcoming diagonalization method.

Definition 1. Let X be a decision problem. A total and computable function
ρ : I(X)→ 2N \ {∅} is said to be a measure function.

If ρ(I) is a singleton set for every I ∈ I(X), then we say that ρ is single-
valued, and otherwise that it is multi-valued. We abuse notation in the first
case and simply assume that ρ : I(X) → N. In addition a measure function
ρ is said to be polynomially bounded if there exists a polynomial p such that
ρ(I) ≤ p(||I||) for every I ∈ I(X). This property is useful since we can write
down ρ(I) in unary in p(||I||) time. The measure function ρ combined with a
decision problem X yields a problem Xρ(S) parameterized by S ⊆ N.

Instance: Instance I of X such that ρ(I) ⊆ S.
Question: Is I a yes-instance?

Note that Xρ(N) is equal to X for any measure function ρ.

Example 2. As an example we consider the Boolean satisfiability problem
(SAT) and define two measure functions. Let I be an instance of SAT and
define ρ1 and ρ2 such that ρ1(I) denotes the number of variables in I and
ρ2(I) = {ar(C) | C is a clause of I}. Note that ρ1 is single-valued while ρ2 is
multi-valued and that both are polynomial-time computable. Let S = {2k | k ∈
N}. Clearly, SATρ1(S) is the SAT problem restricted to an even number of
variables, and SATρ2(S) is the SAT problem restricted to instances with even
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clause length. The problems SATρ1(S) and SATρ2(S) are both NP-complete.
However, we note that SATρ1(T ) is in P whenever T ⊂ S is finite while, for
instance, SATρ2({k}) is NP-complete for all k ≥ 3.

For more examples of both single- and multi-valued measure functions we
refer the reader to Section 3.2. We now define one of the reoccurring decision
problems in this article, the constraint satisfaction problem, which can be viewed
as a generalization of SAT. Let Γ denote a (possibly infinite) set of finitary
relations over some (possibly infinite) set D. We call Γ a constraint language.
Given a relation R ⊆ Dk, we let ar(R) = k. The reader should note that we will
sometimes express Boolean relations as conjunctions of Boolean clauses. The
constraint satisfaction problem over Γ (abbreviated as CSP(Γ)) is defined as
follows.

Instance: A set V of variables and a set C of constraint applications
R(v1, . . . , vk) where R ∈ Γ, k = ar(R), and v1, . . . , vk ∈ V .
Question: Is there a total function f : V → D such that
(f(v1), . . . , f(vk)) ∈ R for each constraint R(v1, . . . , vk) in C?

For example let RNAE be the following ternary relation on {0, 1}: RNAE =
{0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. Then the well known NP-complete problem Not-
All-Equal 3-Sat can be expressed as CSP({RNAE}). Similarly, if we define
the relation R1/3 = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} then CSP({R1/3}) corresponds
to 1-in-3-SAT.

Finally, we prove a simple lemma regarding single-valued measure functions
that will be important later on.

Lemma 3. Let ρ be a single-valued and polynomial-time computable measure
function. Let S ⊆ N and let T be a non-empty subset of S such that S \ T =
{s1, . . . , sk}. If Xρ({si}), 1 ≤ i ≤ k, is in P, then there is a polynomial-time
reduction from Xρ(S) to Xρ(T ).

Proof. Let I be an arbitrary instance of Xρ(S). Compute (in polynomial
time) ρ(I). If ρ(I) ∈ {s1, . . . , sk}, then we can compute the correct answer in
polynomial time. Otherwise, I is an instance of Xρ(T ) and the reduction is
trivial. 2

3. Generation of NP-intermediate Problems

We will now extend Ladner’s method to the parameterized problems in our
framework. Section 3.1 contains the main result and Section 3.2 exemplifies
both multi-valued and single-valued measure functions.
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3.1. Diagonalization Method

Theorem 4. Let Xρ(·) be a computational decision problem with a measure
function ρ. Assume that Xρ(·) and S ⊆ N satisfies the following properties:

P0: I(X) is recursively enumerable.
P1: Xρ(S) is NP-complete.
P2: Xρ(T ) is in P whenever T is a finite subset of S.
P3: Xρ(S) is polynomial-time reducible to Xρ(T ) whenever T ⊆ S and S \ T is
finite.

If P 6= NP then there exists a set S′ ⊂ S such that Xρ(S
′) is in NP \ P and

Xρ(S) is not polynomial-time reducible to Xρ(S
′).

The proof is an adaption of Papadimitriou’s [37] proof where we use the
abstract properties P0 – P3 instead of focusing on the size of instances. Pa-
padimitriou’s proof is, in turn, based on Ladner’s original proof [30]. It may
also be illuminating to compare with Schöning [39] and Bodirsky & Grohe [5].
Before the proof, we make some observations that will be used without explicit
references. If ρ is single-valued and polynomial-time computable, then P2 im-
plies P3 by Lemma 3. In many examples, S = N which means that P1 can be
restated as NP-completeness of X. If P1 holds, then property P3 simply states
that Xρ(T ) is NP-complete for every cofinite T ⊆ S. Finally, we remind the
reader that the polynomial-time bounds may depend on the choice of S in the
definitions of P2 and P3. In the sequel, we let Xρ(·) be a computational decision
problem that together with S ⊆ N satisfies properties P0 – P3. Let AX be an
algorithm for Xρ(S), let M1,M2, . . . be an enumeration of all polynomial-time
bounded deterministic Turing machines, and let R1, R2, . . . be an enumeration
of all polynomial-time Turing reductions. Such enumerations are known to exist,
cf. Papadimitriou [37].

The gist of the proof is to construct a function f which is used to create a
problem which is too sparse to be NP-complete but too dense to be polynomial-
time solvable. We define the function f by explicitly giving an algorithm that
can be computed by a Turing machine F . This algorithm involves two distinct
phases. In the first, for input n we compute a value kn which is obtained by
recursively computing f for i = 1, 2, . . .. The final output, computed by a second
phase of the algorithm, will either be kn or kn + 1. In this phase we choose one
of two cases depending on whether kn is even or odd. These rather complicated
computations determine whether Xρ(S) is solvable in polynomial time for a
large class of instances, or show that a polynomial time reduction is available
for a large class of instances.

We finally use the fact that the problem of interest is NP-hard whilst all finite
parametrizations are solvable in polynomial time, to show that the function f
is strictly increasing. This will be enough to easily show that there exists a
set Se ⊂ S, defined using the function f , which results in a problem of NP-
intermediate complexity. In order to bound the time taken by the calculation
of f we make the Turing machine computing f(n) to stop, in either phase,
when it has taken more than n steps. This is easy to implement by introducing
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Compute f(i) for i = 1, 2, . . .
Let kn = f(i) for the largest i
that was computed

Is kn even?

Simulate Mkn/2 Simulate Rbkn/2c

yes no

Figure 1: A visualization of the two phases when computing f(n). If the computation in any
phase exceeds n steps then the machine stops and returns kn.

a counter which is increased after every step in the computation. Before the
formal definition of f we advise the reader to consult Figure 3.1 which is a
simple diagram visualizing the flow of the Turing machine computing f(n).

3.1.1. The first phase

First let f(0) = f(1) = 0. The computation of f(n) starts with the com-
putation of f(0), f(1), f(2), . . . , until the total number of steps F has used in
computing this sequence exceeds n. Let i be the largest value for which F was
able to completely compute f(i) (during these n steps) and let kn = f(i).

3.1.2. The second phase

In the second phase of the execution of the machine F we have two cases
depending on whether kn is even or odd. In both cases, if this phase requires
F to run for more than n computation steps, F stops and returns kn (i.e.,
f(n) = kn).

The even case

The first case is when kn is even: here, F enumerates all instances I of Xρ(S) —
this is possible by property P0. For each instance I, F simulates Mkn/2 on the
encoding of I, determines whether AX(I) is accepted, and finally, F computes
f for all x ∈ ρ(I). If Mkn/2 rejects and AX(I) was accepted, and f(x) is even
for all x ∈ ρ(I), then F returns kn + 1 (i.e., f(n) = kn + 1). Similarly, F also
returns kn + 1 if Mkn/2 accepts and I is not accepted by AX and f(x) is even
for all x ∈ ρ(I).

The odd case

The second case is when kn is odd. Again, F enumerates all instances I of
Xρ(S). Let E = ∅. Now, for each instance I, F begins simulating Rbkn/2c on
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the encoding of I with an oracle for AX . Whenever the simulation notices that
Rbkn/2c enters an oracle state, we calculate ρ(I ′) = E′ (where I ′ is the Xρ(S)
instance corresponding to the input of the oracle tape), and add the members
of E′ to E. When the simulation is finished we first calculate f(x) for every
x ∈ E. If the result of any f(x) operation is odd we return kn + 1. We then
compare the result of the reduction with AX(I). If the results do not match,
i.e. if one is accepted or rejected while the other is not, we return kn + 1.

3.1.3. Wrapping up

This completes the definition of f . Note that f can be computed in polyno-
mial time (regardless of the time complexity of computing ρ and AX) since the
input is given in unary. We now use the function f to define our intermediate
language. Let

Se = {x | x ∈ S and f(x) is even}.

In other words the function f is used to blow holes in S, and the holes, i.e. the
removed elements, are determined on the basis of whether f(x) is even or odd.

Lemma 5. The function f is increasing and unbounded: for all n ≥ 0, f(n) ≤
f(n+ 1) and {f(n) | n ∈ N} is infinite, unless P = NP.

Proof. We first prove by induction that f(n) ≤ f(n + 1) for all n ≥ 0. This
obviously holds for n = 0 and n = 1. Assume that this holds for an arbitrary
number i > 1. In the first phase of the computation of f(i) the Turing machine
F computes f(i′) for all i′ < i. Let ki and ki+1 be the largest values that was
successfully computed within i and i + 1 steps, respectively. Clearly ki+1 ≥ ki
since the only difference is that we in the latter case can perform one more
computation. In the second phase of the computation of f(i) the Turing machine
F returns either ki or ki + 1. There are two cases to consider. If ki = ki+1 then
F will simulate the same Turing machine Mki or the same reduction Rbki/2c in
the computation of f(i+ 1) — hence f(i+ 1) ≥ f(i). In the second case where
ki+1 > ki the result follows directly since ki+1 ≥ ki + 1.

We continue by showing that there is no n0 such that f(n) = kn0 for all
n > n0 unless P = NP. If there is such an n0, then there is also an n1 such that
for all n > n1, the value kn computed in the first phase is kn0

. If kn0
is even,

then on all inputs n > n1 the machine Mkn0
/2 correctly decides Xρ(Se) and thus

Xρ(Se) is in P. But since f(n) = kn0
for all n > n1, we have that S \Se is finite,

and thus Xρ(S) is polynomial-time reducible to Xρ(Se) by Property P3, which
is a contradiction since Xρ(S) is NP-complete by Property P1. Similarly, if kn0

is odd, then on all inputs n > n1 the function Rbkn0/2c is a valid reduction from
Xρ(S) to Xρ(Se) and thus Xρ(Se) 6∈ P. But since f(n) = kn0

for all n > n1,
we have that Se is finite, and we conclude that Xρ(Se) is in P by Property P2,
which is a contradiction since Xρ(S) is NP-complete by Property P1. 2

Proof of Theorem 4
We conclude the proof by showing that Xρ(Se) is neither in P, nor is Xρ(S)
polynomial-time reducible to Xρ(Se), unless P = NP. By Property P1, Xρ(Se)
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is in NP since Se ⊆ S. Assume now that Xρ(Se) is in P. Then there is an i such
that Mi solves Xρ(Se). Thus, by the definition of f , there is an n1 such that for
all n > n1 we have f(n) = 2i; this contradicts that f is increasing. Similarly,
assume that Xρ(S) is polynomial-time reducible to Xρ(Se). Then, there is an i
such that Ri is a polynomial-time reduction from Xρ(S) to Xρ(Se). It follows
from the definition of f that there is an n1 such that f(n) = 2i−1 for all n > n1,
and this contradicts that f is increasing. 2

It also follows from the proof that property P1 (i.e. the NP-hardness of the orig-
inal problem) can be replaced by hardness for other complexity classes within
NP. By noting that Xρ(Se) is recursively enumerable, we obtain the following
corollary.

Corollary 6. Let Xρ(·) be a computational decision problem with a measure
function ρ such that Xρ(·) and S ⊆ N satisfies properties P0–P3 in Theorem 4.
Let S = T1. Then there exists an infinite chain T1 ⊃ T2 ⊃ . . . such that Xρ(Ti)
is not in P and Xρ(Ti) is not polynomial-time reducible to Xρ(Ti+1) for any
i ≥ 1.

3.2. Examples

We close this section with two examples illustrating single-valued and multi-
valued measure functions. We first see that Ladner’s result is a straightforward
consequence of Theorem 4.

Example 7. Let X be an NP-complete problem such that I(X) is recursively
enumerable. For an arbitrary instance I ∈ I(X), we let the single-valued mea-
sure function ρ be defined such that ρ(I) = ||I||. We verify that Xρ(N) satisfies
properties P0 – P3 and conclude that there exists a set T ⊆ N such that Xρ(T )
is NP-intermediate. Properties P0 and P1 hold by assumption and property P2
holds since Xρ(U) can be solved in constant time whenever U is finite. If U ⊆ N
and N\U = {x1, . . . , xk}, then Xρ({xi}), 1 ≤ i ≤ k, is solvable in constant time
and we can apply Lemma 3. Thus, property P3 holds, too.

If we briefly return to Example 7 from Section 2 where X = SAT and
where ρ1(I) returns the number of variables in I, then by recapitulating the
reasoning in the above example it is easy to show that there exists a set S ⊂ N
such that SATρ1(S) is NP-intermediate. Note however that same reasoning
cannot be applied when ρ2 is the multi-valued measure function returning the
set consisting of the lengths of all clauses in an instance, since SATρ2(N) does
not satisfy property P2.

Example 8. To illustrate multi-valued measure functions, we turn our atten-
tion to the Subset-Sum problem [29].

Instance: A finite set Y ⊆ N and a number k ∈ N.
Question: Is there a Y ′ ⊆ Y such that

∑
Y ′ = k?

10



We define a multi-valued measure function by letting ρ((Y, k)) = Y . Once again,
properties P0 and P1 hold by assumption so it is sufficient to prove that Subset-
Sumρ(N) satisfies P2 and P3. Property P2: instances of Subset-Sum can be
solved in time O(poly(||I||) · c(I)), where c(I) denotes the difference between
the largest and smallest number in Y [19]. This difference is finite whenever
we consider instances of Subset-Sumρ(S) where S ⊆ N is finite. Property P3:
arbitrarily choose S ⊆ N such that N\S is finite. We present a polynomial-time
Turing reduction from Subset-Sumρ(N) to Subset-Sumρ(S). Let I = (Y, k)
be an instance of Subset-Sumρ(N). Let T = Y \ S, i.e. the elements of the
instance which are not members of the smaller set S. Since N \ S is finite, T is
a finite set, too. Let Z = Y ∩ S. For every subset T ′i = {x1, . . . , xim} of T , we
let I ′i = (Z, k′i), where k′i = k − (x1 + . . .+ xim). Then, it is easy to see that I
is a yes-instance if and only if at least one I ′i is a yes-instance. Finally, we note
that the reduction runs in time O(poly(||I||) · 2c), where c = |N \S|, and this is
consequently a polynomial-time reduction for every fixed S.

We see that the existence of a pseudo-polynomial algorithm and the possi-
bility to perform auto-reductions are crucial in the above example but that not
much more is needed. Hence, there are many other pseudo-polynomial prob-
lems that can be used instead of Subset-Sum. Several examples that are closely
related to the example above can be found in Papadimitriou [36]. Another in-
teresting source of pseudo-polynomial problems are those with polynomial-time
approximation schemes: it is known that every “well-behaved” problem that
has a fully polynomial-time approximation scheme can be solved in pseudo-
polynomial time. For details, see Garey & Johnson [19].

4. Single-Valued Measure Functions

Single-valued measure functions have been studied in the literature before.
For instance, Chen et al. [12] have discovered a striking connection between NP-
intermediate problems and the parameterized complexity class XP (XP denotes
the class of decision problems X that are solvable in time O(||I||f(k)) for some
polynomial-time computable parameter k and some computable function f).
Such a connection can be established via Theorem 4, too. Chen et al. demand
that the measure function ρ can be computed in polynomial time, which gives
the following result.

Proposition 9. Let X be a decision problem and ρ a polynomial-time com-
putable single-valued measure function such that Xρ(·) satisfies properties P0
and P1, and Xρ ∈ XP. Then there exists a T ⊆ N such that Xρ(T ) is NP-
intermediate.

Proof. We note that Xρ(S) is in P whenever S is a finite subset of N. Hence,
Xρ satisfies P2 and consequently P3. The result follows from Theorem 4. 2

The above proposition can also be used to construct infinite descending
chains of NP-intermediate problems which strongly mirrors the results from
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Chen et al. The remainder of the section is divided into three parts: Section 4.1
is concerned with properties of polynomial-time computable single-valued mea-
sure functions, Section 4.2 studies the complexity of subproblems induced by
polynomial-time computable measure single-valued measure functions in greater
detail, and Section 4.3 is concerned with structurally restricted CSPs.

4.1. Polynomial-Time Computable Measure Functions

By Theorem 4, we know that properties P0 – P3 are sufficient to assure the
existence of NP-intermediate problems. A related question is to what degree
the properties are also necessary. Here, we investigate the scenario when P2
and P3 do not necessarily hold.

Theorem 10. Assume X is a decision problem and ρ a polynomial-time com-
putable single-valued measure function such that Xρ(N) satisfies P0 and P1. Let
SP = {s ∈ N | Xρ({s}) ∈ P} and assume membership in SP is a decidable
problem. Then, at least one of the following holds:

1. there exists a set T ⊆ SP such that Xρ(T ) is NP-intermediate,

2. there exists a t ∈ N such that Xρ({t}) is NP-intermediate, or

3. Xρ admits no NP-intermediate subproblems.

Proof. If Xρ({s}) is NP-complete for every s ∈ N, then we are in case (3)
so we assume this is not the case. If there exists s ∈ N such that Xρ({s}) is
NP-intermediate, then we are in case (2) so we assume this does not hold either.
Thus, we may henceforth assume that there exists s ∈ N such that Xρ({s}) ∈ P
and that Xρ({u}) is NP-complete whenever u ∈ N \ SP . This implies that SP
is non-empty. Once again, we single out two straightforward cases: if Xρ(SP )
is NP-intermediate, then we are in case (1), and if Xρ(SP ) is in P, then we are
in case (3) (since Xρ({u}) is NP-complete whenever u 6∈ SP ). Hence, we may
assume that Xρ(SP ) is NP-complete (note that Xρ(SP ) ∈ NP since Xρ(N) ∈ NP
by P1), i.e. Xρ(SP ) satisfies P1. Furthermore, Xρ(SP ) satisfies P0 since SP is
a decidable set and the instances of X are recursively enumerable. To generate
the instances of Xρ(SP ), we generate the instances of X one after another and
output instance I if and only if ρ(I) is in SP .

We finally show that Xρ(SP ) satisfies P2 and P3. By Lemma 3 it is sufficient
to prove that Xρ(SP ) satisfies P2 since ρ is single-valued and polynomial-time
computable. Assume there exists a finite set K ⊆ SP such that Xρ(K) 6∈ P. Let
∅ ⊂ K ′ ⊆ K be a subset such that Xρ(K

′) is a member of P; such a set exists
since K ⊆ SP . For every k′ ∈ K ′, we know that Xρ({k′}) ∈ P. Hence, we can
apply Lemma 3 and deduce that there exists a polynomial-time reduction from
Xρ(K) to Xρ(K

′). This contradicts the fact that Xρ(K) is not a polynomial-
time solvable problem. We can now apply Theorem 4 and conclude that there
exists a set T ⊆ SP such that Xρ(T ) is NP-intermediate, i.e. we are in case (1).

2

Problems parameterized by multi-valued measure functions are apparently
very different from those parameterized by single-valued functions. For instance,
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Lemma 3 breaks down which indicates that the proof strategy used in Theo-
rem 10 is far from sufficient to attack the multi-valued case.

4.2. Complexity of Subproblems Induced by Complementary Sets

In this section we study the complexity of problems of the form Xρ(N \ T ),
where T ⊂ N and ρ is a single-valued measure function such that Xρ(T ) is NP-
intermediate. This question is connected to the complexity of unions of disjoint
sets in NP and we note that this is a problem that has attracted considerable
attention in the literature, cf. [21, 40]. We basically show the following: if ρ and
T satisfy certain conditions, then either Xρ(N \ T ) is NP-complete, or the set
of all NP-intermediate problems is not closed under disjoint unions. We also
show that if T is subject to some mild additional restrictions, then Xρ(N \ T )
is NP-complete unconditionally. To describe the results in more detail, let
T = {T1, T2, . . .} denote the subsets of N such that membership in Ti, i ≥ 1,
can be decided in polynomial time for integers written in unary.

Proposition 11. Let X be an NP-complete problem and ρ a polynomial-time
computable and polynomially bounded single-valued measure function on X.
Then one of the following hold:

1. for every T ∈ T, if Xρ(T ) is NP-intermediate, then Xρ(N \ T ) is NP-
complete, or

2. the set of all NP-intermediate problems is not closed under disjoint union.

Proof. Assume to the contrary that the set of all NP-intermediate problems
is closed under disjoint union and that there exists a set T ∈ T such that
Xρ(N \ T ) is not NP-complete. We first show that the problem Xρ(N \ T )
cannot be polynomial-time solvable. Assume to the contrary that there ex-
ists a polynomial-time algorithm A for Xρ(N \ T ). We show that there exists
a polynomial-time many-one reduction from the NP-complete problem X to
Xρ(T ). This leads to a contradiction since Xρ(T ) in NP-intermediate.

The reduction goes as follows: let Iyes, Ino be arbitrary yes- and no-instances
of Xρ(T ), respectively. These are required since we are performing a many-ony
reduction. Given an instance I of X, do the following.

1. let y = ρ(I),

2. let x be y written in unary,

3. if x ∈ N\T , then use algorithm A for checking whether I is a yes-instance
of X or not. If this is the case, then output Iyes and, otherwise, output
Ino and stop,

4. output I.

It is easy to verify that this procedure is a reduction from X to Xρ(T ) and,
furthermore, that it runs in polynomial time. By assumption, y can be computed
in polynomial time and we can compute x in polynomial time, too, since ρ is
polynomially bounded. The test in line 3 can be performed in polynomial time
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due to the choice of T and we have, additionally, assumed that algorithm A
runs in polynomial time.

We have now verified that both Xρ(T ) and Xρ(N \ T ) are NP-intermediate
problems. These two problems are disjoint and their union (which equals Xρ(N)
since ρ is single-valued) is clearly NP-complete since X = Xρ(N). 2

By making some additional assumptions we can make the above proposition
more precise.

Proposition 12. Let X be an NP-complete problem and ρ a polynomial-time
computable and polynomially bounded single-valued measure function on X. As-
sume the following hold:

1. Xρ(T ) is NP-intermediate for some T ∈ T and

2. for each instance I ∈ I(X), one can in polynomial time compute an in-
stance I+ such that ρ(I+) = ρ(I) + 1 and I+ is a yes-instance if and only
if I is a yes-instance.

If x ∈ T implies x + 1 6∈ T , then Xρ(N \ T ) is NP-complete. Otherwise,
there exists a set T ′ ⊆ T such that Xρ(T

′) is NP-intermediate and Xρ(N \
T ′) is NP-complete. The set T ′ can always be assumed to equal either To =
{t | t ∈ T is odd} or Te = {t | t ∈ T is even}.

Proof. We first assume that if x ∈ T , then x+1 6∈ T . We present a polynomial-
time reduction from X to Xρ(N \ T ). Let I be an arbitrary instance of X.
Compute (in polynomial-time) ρ(I). Since ρ is polynomially bounded we can in
polynomial time write down ρ(I) in unary. Let x denote this string. Next, we
check (in polynomial time) whether x ∈ T or not. If x 6∈ T , then the result of the
reduction is I itself. Otherwise, compute (in polynomial time) I+ and output
this instance. We see that this reduction is indeed polynomial-time computable.
Furthermore, it is a reduction from X to Xρ(N\T ) — it is sufficient to note that
ρ(I+) = ρ(I) + 1 and ρ(I) + 1 6∈ T . Finally, we know that I+ is a yes-instance
if and only if I is a yes-instance.

Assume now that there exists x ∈ N such that {x, x + 1} ⊆ T . Obvi-
ously, Xρ(To) and Xρ(Te) are not NP-complete problems since Xρ(T ) is not
NP-complete. Assume both problems are in P. Then, we claim Xρ(T ) is in P,
too, which leads to a contradiction. Given an instance I of Xρ(T ), compute (in
polynomial time) ρ(I). Next, check whether ρ(I) is odd or not. If so, then apply
the polynomial-time algorithm for Xρ(To) and, otherwise, the polynomial-time
algorithm for Xρ(Te). We conclude that at least one of Xρ(To) and Xρ(Te)
is NP-intermediate, and we choose T ′ such that T ′ equals either To or Te and
Xρ(T

′) is NP-intermediate. Note that if x ∈ T ′, then x+1 6∈ T ′. Also note that
given x ∈ N in unary, it is polynomial-time decidable whether x ∈ T ′ (since we
can check whether x ∈ T or not). The first part of the proof immediately gives
the result. 2
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4.3. Structurally Restricted CSPs

When identifying tractable (i.e. polynomial-time solvable) fragments of con-
straint satisfaction problems and similar problems, two main types of results
have been considered in the literature. The first one is to identify constraint
languages Γ such that CSP(Γ) ∈ P, and the second one is to restrict the struc-
ture induced by the constraints on the variables. The second case is often con-
cerned with associating some structure with each instance and then identifying
sets of structures that yield tractable problems. The classical example of this
approach is to study the primal graph or hypergraph of CSP instances. Given
a CSP instance I with variable set V , we define its primal graph G = (V,E)
such that (vi, vj) ∈ E if and only if variables vi, vj occur simultaneously in some
constraint, and we define the hypergraph H = (V, E) such that the hyperedge
{vi1 , . . . , vik} ∈ E if and only if there is a constraint R(vi1 , . . . , vik) in I.

When it comes to defining structurally restricted problems that are tractable,
one is typically interested in certain parameters of these (hyper)graphs such
as tree-width, fractional hypertree width [23], or submodular width [34]. It is,
for instance, known that any finite-domain CSP instance I with primal graph
G = (V,E) can be solved in ||I||O(tw(G)) time [14] where tw(G) denotes the tree-
width of G, and it can be solved in ||I||O(fhw(H)) time [23] where fhw(H) denotes
the fractional hypertree width of H. Since these results rely on the domains
being finite, we restrict ourselves to finite-domain CSPs throughout this section.
Now note that if given a finite constraint language Γ, then the instances of
CSP(Γ) are recursively enumerable and CSP(Γ) is in NP. If Γ is infinite, then
this is not so evident and it may, in fact, depend on the representation of
relations. We adopt a simplistic approach and assume that it is decidable to
check whether a relation is included in Γ, given that it is represented as a
list of tuples. Under this assumption the instances of CSP(Γ) are recursively
enumerable also for infinite Γ.

If we use tw and fhw as measure functions then the resulting problems CSPtw

and CSPfhw
1 satisfy property P2. To see this simply note that if the tree-width

or fractional hypertree width is restricted by k then such CSP instances can be
solved in ||I||O(k) time [14, 23]. If the width parameter under consideration is
polynomial-time computable, then we have property P3 (via Lemma 3), too,
and conclude that NP-intermediate fragments exist. Unfortunately, this is typ-
ically not the case. It is for instance NP-complete to determine whether a given
graph G has treewidth at most k or not [2] if k is part of the input. This is a
common feature that holds for, or is suspected to hold for, many width param-
eters. Hence, width parameters are a natural source of single-valued measure
functions that are not polynomial-time computable. Such measure functions
are problematic since we cannot prove the existence of NP-intermediate sub-
problems by using simplifying results like Proposition 9 or Theorem 10. By a
few additional assumptions we can however still prove the applicability of The-
orem 4. Note that if k is fixed, and thus not part of the input, then the graphs

1We slightly abuse notation since tw and fhw are not directly defined on problem instances.
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with tree-width ≤ k can be recognized in linear time [6]. This is not uncommon
when studying width parameters — determining the width exactly is compu-
tationally hard but it can be computed or estimated in polynomial time under
additional assumptions. We arrive at the following result.

Proposition 13. Assume that X is a decision problem and ρ is a single-valued
measure function such that Xρ(·) satisfies properties P0 and P1. Furthermore,
suppose that for each set {0, . . . , k} there exists a promise algorithm Ak for
Xρ({0, . . . , k}) with the following properties:

• if ρ(I) ≤ k, then Ak returns the correct answer in pk(||I||) steps, where
pk is a polynomial only depending on k, and

• if ρ(I) > k, then Ak either returns a correct answer or does not answer
at all.

Then there exists a set S ⊂ N such that Xρ(S) is NP-intermediate.

Proof. Let Xk denote the computational problem X restricted to instances
I ∈ I(X) such that ρ(I) ≥ k. Assume there exists a k such that Xk ∈ P and let
B be an algorithm for this problem running in time q(||I||) for some polynomial
q. For Xρ({0, . . . , k − 1}), we have algorithm Ak−1 described above. Given
an arbitrary instance I of X, we may not be able to compute ρ(I) and choose
which algorithm to run. Do as follows: run algorithm Ak−1 for pk−1(||I||) steps
on input I. If Ak−1 produces an answer, then this is correct. If Ak−1 does not
produce an answer, then we know that ρ(I) > k−1 and we can apply algorithm
B. All in all, this takes O(pk−1(||I||) + q(||I||)) time so X ∈ P which leads to a
contradiction.

If Xk is NP-intermediate for some k, then we simply let S = {k, k + 1, . . .}.
We can henceforth assume that Xk is NP-complete for all k. Obviously, Xρ(N)
satisfies property P2 since algorithm Ak, k ≥ 0, runs in polynomial time. We
show that it satisfies property P3, too. Let T ⊆ N be a finite set and let m =
maxT . We know that Xm+1 is NP-complete. Hence, there exists a polynomial-
time reduction from the NP-complete problem Xρ(N) to Xm+1 which, in turn,
admits a trivial polynomial-time reduction to Xρ(N \ T ) since {m + 1,m +
2, . . .} ⊆ N \ T . We can now apply Theorem 4 and obtain the set S. 2

We apply this result to CSPtw and CSPfhw, respectively. Clearly, both
these problems satisfy properties P0 and P1 due to the assumptions that we
have made. For CSPtw, we let Ak work as follows: given a CSP instance
I, check whether I has treewidth ≤ k using Bodlaender’s [6] algorithm. If
the algorithm answers “no”, then go into an infinite loop. Otherwise, decide
whether I has a solution or not in ||I||O(k) time. Proposition 13 implies that
there exists a set T ⊆ N such that CSPtw(T ) is NP-intermediate. We observe
that Grohe [22] has shown a similar result under the assumption that FPT 6=
W[1] instead of P 6= NP. Many other width parameters can also be used for
obtaining NP-intermediate problems. One example is CSPfhw for which the
proof is very similar but is instead based on Theorem 4.1 in Marx [33].
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Theorem 14. Given a hypergraph H and a rational number w ≥ 1, it is possible
in time ||H||O(w3) to either

• compute a fractional hypertree decomposition of H with width at most
7w3 + 31w + 7, or

• correctly conclude that the fractional hypertree width of H is strictly greater
than w.

Let Ak work as follows. Given a CSP instance I, apply Marx’s approxi-
mative algorithm with w = k. If the algorithm concludes that the fractional
hypertree width is larger than k, then go into an infinite loop. Otherwise, com-
pute the solution (by using the algorithm by Grohe and Marx [23]) of I in

||I||O(k3) time using the decomposition produced by the algorithm. We con-
clude, by Proposition 13, that there exists a set T ⊆ N such that CSPfhw(T ) is
NP-intermediate.

We finally note that one does not need to consider the full CSP problem (i.e.
where all relations are allowed) when constructing NP-intermediate problems.
To exemplify, let CSP(C,Γ) denote the CSP(Γ) problem restricted to instances
I such that the primal graph of I is a member of C. Arbitrarily choose a con-
straint language Γ such that CSP(Γ) is NP-complete and arbitrarily choose a set
T ⊆ N such that CSPtw(T ) is NP-intermediate. It is now easy to use Proposi-
tion 13 and prove that the problem CSP({G | G is a graph and tw(G) ∈ T},Γ)
is NP-intermediate. This basic idea can be varied in many different ways in
order to obtain various NP-intermediate CSP problems.

5. Multi-Valued Measure Functions

In the following sections we turn our attention to multi-valued measure func-
tions and apply them to constraint problems. The structure is as follows: in
Section 5.1 we describe the relationship between multi-valued and single-valued
measure functions and explain why multi-valued measure functions are prefer-
able when working with constraint language restrictions, in Sections 5.2 and
5.3 we investigate constraint satisfaction problems and provide sufficient condi-
tions for the existence of intermediate problems for both finite and infinite do-
mains, and in Section 5.4 we use our framework to construct an NP-intermediate
Boolean abduction problem.

5.1. Multi-Valued Measure Functions Compared to Single-Valued Measure Func-
tions

To see why multi-valued measure functions are preferable when working with
constraint language restrictions, consider the following illustrative case: given a
constraint satisfaction problem parameterized with a constraint language Γ, let
ρ denote the single-valued measure function defined to return the highest arity
of any constraint in a given instance: ρ((V,C)) = max{k | R(v1, . . . , vk) ∈ C}.
Let CSP∗ρ(X) denote the CSP(Γ) problem restricted to instances I such that
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ρ(I) ∈ X, and assume there exists a set X ⊂ N such that CSP∗ρ(X) is NP-
intermediate. Can we from this conclude that there exists a constraint language
Γ′ ⊂ Γ such that CSP(Γ′) is NP-intermediate? In general, the answer is no since
the set of valid instances of CSP∗ρ(X) are not in a one-to-one correspondence
with any constraint language restriction. Note that CSP∗ρ(X) is not the same
problem as CSP({R ∈ Γ | ar(R) ∈ X}). If we on the other hand define the
multi-valued measure function σ((V,C)) = {k | R(v1, . . . , vk) ∈ C}, then for
every X ⊂ N the problem CSP∗σ(X) is equivalent to CSP({R ∈ Γ | ar(R) ∈
X}).

Multi-valued measure functions are in general therefore more powerful than
single-valued measure function since they are more closely related to e.g. con-
straint language restrictions. For every multi-valued measure function it is how-
ever possible to construct a single-valued measure function which preserves some
of the properties of the original function. The intuition behind this is that every
set ρ(I) (which is finite since a measure function by definition is computable)
with a suitable encoding can be associated with a natural number x. Then
define the single-valued function ρ′ as ρ′(I) = x, and let the set S′ be defined so
that every x ∈ S′ corresponds to a finite subset of S. As will be clear later on
Xρ′(S

′) then defines the same set of instances and satisfies properties P0–P3 if
Xρ(S) satisfies these, but it is a one-way street in the sense that blowing holes
into S′ with ρ′ does not necessarily allow one to do the same thing with S and
ρ. To make this more precise we formalize the notion of encoding a finite set as
a number. Let F denote the set of all finite subsets of N

Definition 15. A function f : F 7→ N is a coding function if (1) f(x) is com-
putable in polynomial time for any x ∈ F and (2) f is injective.

For any multi-valued measure function ρ and coding function f one can then
define a single-valued measure function ρf (I) = f(ρ(I)) for any I ∈ I(X).

Proposition 16. Let Xρ(·) be a computational decision problem with a multi-
valued, polynomial-time computable measure function ρ such that Xρ(·) and
S ⊆ N satisfies properties P0 – P2. Then for any coding function f there exists
an Sf ⊆ N such that (1) I(Xρf (Sf )) = I(Xρ(S)) and (2) Xρf (Sf ) satisfies
properties P0 – P3.

Proof. Let Sf = {f({x1, . . . , xk}) | {x1, . . . , xk} ⊆ S}. By construction it
then follows that ρ(I) ⊆ S if and only if ρf (I) ∈ Sf for any I ∈ I(X). Thus
Xρf (Sf ) satisfies P0 and P1. As for property P2 let T be a finite subset of Sf
and define T ′ =

⋃
x∈T f

−1(x). We can then reduce any instance I of Xρf (T ) to
Xρ(T

′), which is solvable in polynomial time by assumption. Last, by Lemma 3,
Xρf (Sf ) satisfies property P3 since ρf is computable in polynomial time. 2

There is no shortage of coding functions, but some careful steps must be
taken to ensure that it is polynomial-time computable. If we for instance use
a standard textbook Gödel coding g and encode each finite set {x1, . . . , xk} as
g({x1, . . . , xk}) = px1

1 . . . pxk

k , where pi denotes the ith prime number, then g
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is injective but is not known to be polynomial-time computable (if input size
is taken to be the number of bits required to represent the set of numbers).
Instead one can for example define f to return the number corresponding to a
binary encoding of a set {x1, . . . , xk} (demarked in a suitable way). For every
decision problem X, every multi-valued measure function ρ and set of numbers S
it is hence possible to find a closely related polynomial-time computable single-
valued measure function ρ′ and a set of numbers S′, such that I(Xρ(S)) =
I(Xρ′(S

′)). Note however that if T ⊂ S then there does not necessarily exist a
T ′ ⊂ S′ such that I(Xρ(T )) = I(Xρ′(T

′)). For constraint language restrictions
such as the ones in Sections 5.2, 5.3 and 5.4 we therefore still need to use multi-
valued measure functions.

For single-valued measure functions it is also possible to relate the complex-
ity between a problem and its subproblems induced by the measure function.
We give a straightforward proposition illustrating this and sketch why the same
techniques appears infeasible to handle the multi-valued case. A complexity
parameter for a decision problem X is a polynomia-time computable and poly-
nomially bounded function m from I(X) to N. Natural choices for e.g. SAT is
the number of variables or the number of clauses. In the sequel we assume that
m is a complexity parameter for the decision problem X. Let

CX,m = inf{c | there is an algorithm A for X running in time cm(I)}.

A problem X might not necessarily be solvable in time cm(I) but still solvable in
time (c+ ε)m(I) for every ε > 0. When X is solvable in time cm(I) for all c > 0,
we say that X is a subexponential problem. For X = 3-SAT the conjecture that
CX,m > 0, where m returns either the number of variables or the number of
clauses, is known as the exponential time hypothesis (ETH) [24]. We have the
following simple but useful proposition for single-valued measure functions.

Proposition 17. Let X be a computational decision problem, m a complexity
parameter, and ρ a single-valued polynomial-time computable and polynomially
bounded measure function. Assume that the following hold:

• there exist sets S1, . . . , Sk such that N =
⋃k
i=1 Si,

• the question s ∈ Si, 1 ≤ i ≤ k can be decided in polynomial time for
integers written in unary, and

• there exist algorithms A1, . . . , Ak solving Xρ(S1), . . . , Xρ(Sk).

Then, there exists a j such that Aj runs in time Ω(C
m(I)
X,m ).

Proof. To see this, assume Ai, 1 ≤ i ≤ k, runs in time O((CX,m − εi)m(I))
time for some εi > 0, 1 ≤ i ≤ k. Let I be an arbitrary instance of X. Compute
ρ(I) and let x be its unary representation.Then decide (in polynomial time by
assumption) which set Si that x is a member of. Finally, apply algorithm Ai to
instance I. This algorithm solves X and runs in time O((CX − ε)m(I)) where
ε = min{ε1, . . . , εk} > 0. This obviously contradicts the choice of CX,m. 2
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In particular the proposition means that we can “divide” X into finitely
many subexponentially solvable subproblems if and only if X itself is solvable
in subexponential time. Unfortunately, we cannot expect that there are as
straightforward connections between the time complexity of a problem X and
the subproblems induced via a multi-valued measure function.

Example 18. Assume that the exponential time hypothesis holds. Then, for
each k ≥ 3, the problem k-Colourability is not solvable in subexponential
time when using the number of vertices in the instance as the complexity pa-
rameter [25]. We show that there exists a related CSP problem which is also
not solvable in subexponential time even though there exist subexponential sub-
problems. Let R0 = {(x, y) ∈ N2 | x 6= y} and for i > 0 let Ri be the unary
relation {(0), . . . , (i+ 1)} over N. Let CSP∗ = CSP({R0, R1, R2, . . .}) and let ρ
on I(CSP∗) be the multi-valued measure function ρ(I) = {i | Ri appears in I}.
By letting S1 = {0} and S2 = N \ {0} the problem CSP∗ρ and S1, S2 satisfies
all the properties in Proposition 17. However, first observe that CSP∗ is not
solvable in subexponential time since every k-Colourability instance I with n
vertices can be reduced to a CSP∗ instance with n variables. Both CSP({R0})
and CSP({R1, R2, . . .}) are however solvable in polynomial time, and are there-
fore subexponential. Hence, even though the subproblems are subexponential,
the problem itself is not subexponential.

5.2. Constraint Satisfaction Problems and the Local-Global Conjecture

A (possibly infinite) constraint language Γ is said to be locally tractable if
the problem CSP(∆) is in P for all finite ∆ ⊆ Γ. Similarly, Γ is said to be
globally tractable if CSP(Γ) is in P. The local-global conjecture states that Γ is
locally tractable if and only if it is globally tractable. We say that Γ has the
local-global property if it satisfies this conjecture. In Bodirsky & Grohe [5] it
is proven that if Γ is a constraint language over a finite domain D that does
not satisfy the local-global property, then there exists a constraint language Γ′

over D such that CSP(Γ′) is NP-intermediate. In this section we prove a more
general result not restricted to finite domains based on the notion of extension
operators. If R is a k-ary relation and Γ a constraint language over a domain D
we say that R has a primitive positive (p.p.) definition in Γ if

R(x1, . . . , xk) ≡ ∃y1, . . . , yl . R1(x1) ∧ . . . ∧Rm(xm),

where each Ri ∈ Γ ∪ {=} and each xi is a vector over x1, . . . , xk, y1, . . . , yl.

Definition 19. Let Γ be a recursively enumerable constraint language (with
a suitable representation of relations in Γ). We say that 〈·〉 is an extension
operator if (1) 〈Γ〉 is a recursively enumerable set of p.p. definable relations over
Γ, and (2) whenever ∆ ⊂ 〈Γ〉 and 〈Γ〉 \ ∆ is finite, then every R ∈ 〈Γ〉 \ ∆ is
p.p. definable in ∆.

Another way of viewing this is that the expressive power of 〈Γ〉 does not
change when removing finitely many relations. Since Γ and 〈Γ〉 are recursively

20



enumerable we can enumerate relations in Γ or 〈Γ〉 as R1, R2, . . ., and it is not
hard to see that this implies that instances of CSP(Γ) and CSP(〈Γ〉) are also
recursively enumerable. Given an instance I of CSP(Γ) containing the rela-
tions Ri1 , . . . , Rik , we let ρ(I) = {i1, . . . , ik}. Let CSP∗ρ(S) denote the CSP(Γ)
problem over instances I such that ρ(I) ⊆ S. Define the measure function ρ′

analogous to ρ but for instances over CSP(〈Γ〉) using the recursive enumera-
tion scheme for 〈Γ〉, and let CSP×ρ′(S) be the CSP(〈Γ〉) problem restricted to
instances I such that ρ′(I) ⊆ S.

Theorem 20. Assume Γ is a constraint language such that CSP∗ρ(N) satisfies

property P0 – P2. Let 〈·〉 be an extension operator such that CSP×ρ′(〈Γ〉) satisfies
property P0 – P1. If P 6= NP then there exists a Γ′ ⊂ 〈Γ〉 such that CSP(Γ′) is
NP-intermediate.

Proof. We prove that CSP×ρ′(N) satisfies property P0 – P3. The first two
properties are trivial by assumption. For property P2 let T = {i1, . . . , ik} be an
arbitrary finite subset of N and let Θ = {Ri1 , . . . , Rik} ⊆ 〈Γ〉. Note that Θ might
contain relations which are not included in Γ. For every such relation R ∈ Θ we
can however replace it by its p.p. definition in Γ. Let the resulting set of relations
be Θ′ and let S = {i | Ri ∈ Θ′}. It is then not hard to see that CSP×ρ′(T ) is
polynomial-time reducible to CSP∗ρ(S) since every instance of CSP(Θ′) can be
transformed to an equivalent instance of CSP(Θ) by replacing every constraint
application of a relation with its p.p. definition in Θ. This can be done in
polynomial time since both Θ and Θ′ are finite. Since CSP∗ρ(S) is solvable in

polynomial time by assumption it follows that CSP×ρ′(T ) is polynomial-time
solvable, too.

For property P3 let T ⊂ N such that N \ T = {t1, . . . , tk}. To see that
there exists a polynomial-time reduction from CSP×ρ′(N) to CSP×ρ′(T ), we let

I be an arbitrary instance of CSP×ρ′(N). Assume I contains the constraint
Ri(x1, . . . , xm), i ∈ N \ T . Since 〈·〉 is an extension operator the relation Ri is
p.p. definable in 〈Γ〉 \ ∆ where ∆ = {Ri | i ∈ N \ T}. Thus, we can replace
Ri(x1, . . . , xm) with its p.p. definition in 〈Γ〉 \∆, and by doing this for all con-
straints that are not allowed by T , we end up with an instance I ′ of CSP×ρ′(T )
that is satisfiable if and only if I is satisfiable. This is a polynomial-time reduc-
tion since N \ T is a finite set.

By applying Theorem 4, we can now identify a set S ⊂ N such that CSP×ρ′(S)
is NP-intermediate. This implies that CSP(Γ′) is NP-intermediate when Γ′ =
{Ri ∈ 〈Γ〉 | i ∈ S}. 2

Our first extension operator is based on the idea of extending a relation into
a relation with higher arity. For any relation R ⊆ Dn, we define the kth power
of R to be the relation

Rk(x0, . . . , xk·n−1) ≡ R(x0, . . . , xn−1) ∧R(xn, . . . , xn+n−1)∧
R(x2n, . . . , x2n+n−1) ∧ . . . ∧R(x(k−1)n, . . . , x(k−1)n+n−1).
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Given a constraint language Γ, let 〈Γ〉pow = {Rk | R ∈ Γ and k ∈ N}. We rep-
resent each relation in 〈Γ〉pow as a pair (R, k), from which it follows that 〈Γ〉pow
is recursively enumerable and that CSP(〈Γ〉pow) is NP-complete if CSP(Γ) is
NP-complete. Now assume that ∆ ⊂ 〈Γ〉pow and that 〈Γ〉pow \∆ is finite. First
note that for every n-ary R′ ∈ 〈Γ〉pow \∆ there exists R ∈ Γ and k such that
R′ = Rk. Second, since we have only removed a finite number of powers of R
in ∆, there exists a sufficiently large k′ > k such that

Rk(x1, . . . , xn) ≡ ∃xn+1, . . . , xk′·n+n−1.R
k′+1(x1, . . . , xn, xn+1, . . . , xk′·n+n−1).

Hence 〈·〉pow is an extension operator. Extension operators are not uncommon
in the literature. Well studied examples (provided relations can be suitably
represented) include closure under p.p. definitions (known as co-clones) and
closure under p.p. definitions without existential quantification (known as partial
co-clones). These are indeed extension operators since 〈Γ〉pow is always a subset
of the partial co-clone of Γ and hence also of the co-clone of Γ. For a general
introduction to the field of clone theory we refer the reader to Lau [32].

The point of this machinery is that we now can combine the extension op-
erator 〈·〉pow with any constraint language Γ to get a problem which satisfies
property P3, and to find an NP-intermediate CSP problem we only need to
find a language which does not satisfy the local-global property. Let Ra,b,c,U =
{(x, y) ∈ Z2 | ax − by ≤ c, 0 ≤ x, y ≤ U} for arbitrary a, b, U ∈ N and c ∈ Z.
Furthermore, let Γ′U = {Ra,b,c,U | a, b ∈ N, c ∈ Z} for any U ∈ N and the lan-
guage Γ◦ be defined as Γ◦ =

⋃∞
i=0 Γ′i. Note that we can represent each relation

in Γ◦ compactly by four integers written in binary. Due to Jonsson & Lööw [28]
it is known that Γ◦ does not satisfy the local-global property. By combining the
language Γ◦ and the extension operator 〈·〉pow with Theorem 20 we thus obtain
the following result.

Theorem 21. If P 6= NP then there exists a Γ′ ⊂ 〈Γ◦〉pow such that CSP(Γ′)
is NP-intermediate.

Due to the work of Bodirsky & Grohe [5] we already know that the CSP
problem over infinite domains is non-dichotomizable. Their result is however
based on reducing an already known NP-intermediate problem to a CSP prob-
lem while our language Γ′ ⊂ 〈Γ◦〉pow is an explicit example of a locally tractable
language obtained via blowing holes.

5.3. Locally Tractable Languages with Bounded Arity

The downside of the 〈·〉pow operator is that the construction creates relations
of arbitrary high arity even if the language only contain relations of bounded
arity. In this section we show that simpler extensions are sometimes applicable
for constraint languages over infinite domains. Assume that Γ is defined over a
countably infinite domain D. For any k-ary relation R we define the (k+ 1)-ary
relation Ra as Ra(x1, . . . , xn, y) ≡ R(x1, . . . , xn) ∧ (y = a), where a ∈ D and
(y = a) is the constraint application of the relation {(a)}. Let 〈Γ〉+ = {Ra | R ∈
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Γ, a ∈ D}. If we represent each relation in 〈Γ〉+ as a tuple (R, a) then obviously
〈Γ〉+ is recursively enumerable if Γ is recursively enumerable. Now assume that
Γ is an infinite constraint language and that 〈Γ〉+ \∆ is finite. For any relation
Ra ∈ 〈Γ〉+ \∆ we first determine a b such that Rb ∈ ∆. By construction there
exists such a b since 〈Γ〉+ \∆ is finite. Then, since Γ is infinite, there exists an
m-ary relation R′ ∈ Γ such that R′a ∈ ∆. Hence, we can implement Ra as

Ra(x1, . . . , xn, y) ≡ ∃y′, x′1, . . . , x′m.Rb(x1, . . . , xn, y′) ∧R′a(x′1, . . . , x
′
m, y),

by which it follows that 〈·〉+ is an extension operator.
Say that a language Γ is idempotent if for all a ∈ D it holds that {(a)} is

p.p. definable in Γ. We assume that we can find the p.p. definition of {(a)}) in
Γ in polynomial time with respect to the number of bits required to represent
a.

Theorem 22. Let Γ be an idempotent language over an infinite domain such
that Γ does not satisfy the local-global property. If P 6= NP then there exists
a constraint language Γ′ such that (1) CSP(Γ′) is NP-intermediate and (2) Γ′

contains only relations of arity k + 1, where k is the highest arity of a relation
in Γ.

Proof. Recall that ρ is the measure function which given an instance I con-
taining the relations Ri1 , . . . , Rik returns {i1, . . . , ik} (according to some enu-
meration of Γ), and that CSP∗ρ(S) is the CSP(Γ) problem over instances I
such that ρ(I) ⊆ S. Note also that Γ must be infinite since it does not
satisfy the local-global property. Then CSP∗ρ(N) obviously satisfies property
P0–P2, and since 〈·〉+ is an extension operator, we only need to prove that
CSP(〈Γ〉+) is NP-complete. NP-hardness is easy since CSP(Γ) is trivially
polynomial-time reducible to CSP(〈Γ〉+). For membership in NP we give a
polynomial-time reduction from CSP(〈Γ〉+) to CSP(Γ). Let I be an arbitrary
instance of CSP(〈Γ〉+). For any constraint Ra(x1, . . . , xn, y) we replace it by
R(x1, . . . , xn)∧φ(x′1, . . . , x

′
m, y), where x′1, . . . , x

′
m are fresh variables and where

∃x′1, . . . , x′m.φ is the p.p. definition of y = a, which is computable in polyno-
mial time by assumption. If we repeat the procedure for all Ra in I we get an
instance I ′ of CSP(Γ) which is satisfiable if and only if I is satisfiable. Hence,
there exists a Γ′ ⊂ 〈Γ〉+ such that CSP(Γ′) is NP-intermediate by Theorem 20.
Let k denote the highest arity of a relation in Γ. By definition every relation in
〈Γ〉+ then has its arity bounded by k + 1, which trivially also holds for Γ′. 2

It is not hard to see that for the constraint language Γ◦ defined in the
previous section any constant relation is p.p. definable in polynomial time. For
any a ∈ N we simply let (y = a) ≡ ∃x.R0,1,a,a(x, y), i.e. the relation 0 ·x−1 ·y ≤
a ∧ 0 ≤ x, y ≤ a. By Theorem 22 and the fact that Γ◦ only contains relations
of arity 2 we therefore obtain the following.

Theorem 23. If P 6= NP then there exists a Γ′ ⊂ 〈Γ◦〉+ such that (1) CSP(Γ′)
is NP-intermediate and (2) Γ′ contains only relations of arity 3.
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5.4. Propositional Abduction

Abduction is a fundamental form of nonmonotonic reasoning whose compu-
tational complexity has been thoroughly investigated [13, 16, 35]. It is known
that the abduction problem parameterized with a finite constraint language is
always in P, NP-complete, coNP-complete or ΣP

2 -complete. For infinite lan-
guages the situation differs and the question of whether it is possible to obtain
a similar classification was left open in [35]. We will show that there exists
an infinite constraint language such that the resulting abduction problem is
NP-intermediate.

Let Γ denote a constraint language and define the propositional abduction
problem Abd(Γ) as follows.

Instance: A tuple (V,H,M,KB), where V is a set of Boolean variables,
H is a set of literals over V (known as the set of hypotheses), M is a literal
over V (known as the the manifestation), and KB is a set of constraint
applications C1(x1)∧ . . .∧Ck(xk) where Ci denotes an application of some
relation in Γ and xi, 1 ≤ i ≤ k, is a vector of variables in V (KB is known
as the knowledge base).
Question: Does there exist an explanation for I, i.e., a set E ⊆ H such
that KB ∧

∧
E is satisfiable and KB ∧

∧
E |= M , i.e. KB ∧

∧
E ∧ ¬M is

not satisfiable.

This simplified definition of Abd(Γ) avoids some of the additional problems
normally associated with abduction such as preference of minimal explanations
and the class of allowed manifestations. Abduction problems based on non-
classical logics with default theories have also been investigated by Eiter et. al
[17]. However, the non-dichotomy result for Abd(Γ) in this section also implies
a non-dichotomy for the larger class of more general abduction problems.

Let ΓIHSB− be the infinite constraint language consisting of the relations
expressed by the implicative hitting set-bounded clauses (x), (¬x ∨ y) and all
negative clauses {(¬x1 ∨ · · · ∨ ¬xn) | n ≥ 1}. We may represent each relation
in ΓIHSB− with a natural number in the obvious way. Let the finite constraint
language ΓIHSB−/k be the subset of ΓIHSB− that contains all clauses C such
that ar(C) = k. In light of this we define the multi-valued measure function
ρ(I) = {ar(C) | C is a negative clause of KB in I}. With the chosen represen-
tation of relations, ρ is obviously polynomial-time computable. We define the
corresponding parameterized abduction problem Abd∗ρ(Γ) such that I(Abd∗)
is the set of abduction instances over ΓIHSB−. Note the similarity between this
construction and the one for the CSP problem in Section 5.2. We now verify
that Abd∗ρ(N) fulfills property P0 – P3.

Property P0 holds trivially while property P1 follows from Nordh & Zanut-
tini [35]. For property P2, we note that if T is an arbitrary finite subset of N,
then there exists a k ∈ T such that the clauses of every Abd∗ρ(T ) instance is
bounded by k. By [35], we know that Abd(ΓIHSB−/k) is in P for every k, and
hence that Abd∗ρ(T ) is in P for every finite subset of S. To show property P3,
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we present a polynomial-time reduction from Abd∗ρ(N) to Abd∗ρ(T ) when N \T
is finite. Let k = max(N\T ). Arbitrarily choose an instance I = (V,H,M,KB)
of Abd∗ρ(N). Then, for every clause C = (¬x1 ∨ . . . ∨ ¬xl) ∈ KB such that
l ∈ S \ T , replace C by the logically equivalent clause

C ′ = (¬x1 ∨ . . . ∨ ¬xl−1 ∨ ¬xl ∨
k + 1− l ¬xl’s︷ ︸︸ ︷
¬xl . . . ∨ ¬xl)

of length k + 1. If we let the resulting knowledge base be KB ′ then I ′ =
(V,H,M,KB ′) is an instance of Abd∗ρ(T ) which has a solution if and only if I
has a solution.

From this and Theorem 4 it follows that there exists a S′ ⊂ N such that
Abd∗ρ(S

′) is NP-intermediate. Hence, we conclude the following.

Theorem 24. If P 6= NP then there exists a constraint language Γ′IHSB− ⊂
ΓIHSB− such that Abd(Γ′IHSB−) is NP-intermediate.

6. Future Work

One way of obtaining genuinely new NP-intermediate problems is to con-
sider other complexity-theoretic assumptions than P 6= NP. We have pointed
out that the LogClique problem is NP-intermediate under the ETH, and that
the main difficulty is to provide a lower bound, i.e. proving that LogClique
6∈ P. One may suspect that providing lower bounds is the main difficulty also
when considering other problems. We have seen that CSP problems constitute
a rich source of NP-intermediate problems via different kinds of parameteriza-
tions, Hence, it appears feasible that methods for studying the complexity of
parameterized problems will become highly relevant. In particular, linear fpt-
reductions [10, 11] have been used for proving particularly strong lower bounds
which may be used for linking together NP-intermediate problems, parameter-
ized problems, and lower bound assumptions.

The structure of the set of NP-intermediate problems under various reduc-
tions has been studied to some extent, cf. Ambos-Spies [1], Ladner [30], Landwe-
ber et al. [31], and Schöning [39]. We suggest that these kind of questions may
be studied via clone theory. Clone theory is a well-studied subarea of universal
algebra which has proven to be very powerful when studying the computational
complexity of satisfiability and constraint satisfaction problems [8, 26]. Addi-
tionally, it has recently been shown to be useful for studying bounds on the
time complexity of NP-complete problems [27]. The results in [27] are based on
studying a particular kind of clones (known as strong partial clones) with the
aim of obtaining reductions that increases size as little as possible. Such reduc-
tions provide a fine-grained picture of the time complexity of problem classes,
which may be useful when studying NP-intermediate problems. In particular a
Boolean relation R is proven to have the property that CSP({R}) is solvable
at least as fast as any other Boolean CSP(·) problem, with respect to worst
case O(cn) complexity [27]. Attempting to restrict this problem even further
with structural restrictions could in the best case open up new sources of NP-
intermediate problems. We have also noted that recent results by Dell and van
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Melkebeek [15] can be used for proving the non-existence of such fine-grained
reductions under the assumption that the polynomial-time hierarchy does not
collapse. This opens up new ways for studying the class of NP-intermediate
problems.

We have shown that the propositional abduction problem has NP-intermediate
fragments. One may view abduction as a problem that is closely related to
Boolean CSPs. However, there is an important difference: the CSP(Γ) prob-
lem is either a member of P or NP-complete for all choices of Boolean Γ. Hence,
it would be interesting to determine which finite-domain CSP-related problems
can be used for obtaining NP-intermediate problems and which of them have
the local-global property. Inspired by our result on the abduction problem, we
view other forms of non-monotonic reasoning such as circumscription and de-
fault logic as potential candidates. Unfortunately, many problems of this type
are polynomial-time solvable only in very restricted cases, For example, the
minimal constraint inference problem for propositional circumscription (MIN-
INF-CSP(Γ)) is coNP-hard even in extremely restricted cases [9] such as when
Γ only contains the OR relation {(0, 1), (1, 0), (1, 1)}. This makes it hard to find
candidate languages which does not satisfy the local-global property. Thus,
more powerful methods than blowing holes may be needed for identifying NP-
intermediate problems in this and similar cases.
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